Inférence topologique avec l'homologie persistante

Raphaël Tinarrage

Séminaire MACS, UMPA Lyon

I - Homologie singulière

II - Homologie persistante

III - Exemples

IV - Homologie persistante pour mesures

Homologie singulière

3/21 (1/7)

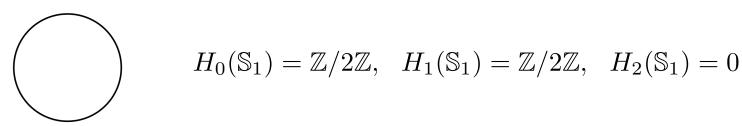
Soit $\mathbb{Z}/2\mathbb{Z}$ le corps à deux éléments.

A tout espace topologique X est associé une suite d'espaces vectoriels sur $\mathbb{Z}/2\mathbb{Z}$, notés $H_0(X),\ H_1(X),\ H_2(X),\ \dots$

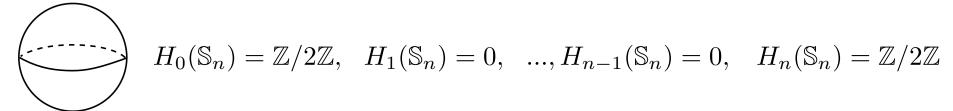
A tout espace topologique X est associé une suite d'espaces vectoriels sur $\mathbb{Z}/2\mathbb{Z}$, notés $H_0(X),\ H_1(X),\ H_2(X),\ \dots$

Exemples:

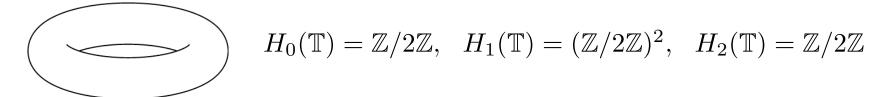
ullet Si X est le cercle $\mathbb{S}_1\subset\mathbb{R}^2$, alors



ullet Si X est la sphère $\mathbb{S}_n\subset\mathbb{R}^{n+1}$, alors



lacksquare Si X est le tore $\mathbb{T}\subset\mathbb{R}^3$, alors



A tout espace topologique X est associé une suite d'espaces vectoriels sur $\mathbb{Z}/2\mathbb{Z}$, notés $H_0(X),\ H_1(X),\ H_2(X),\ \dots$

Construction des groupes d'homologie :

Soit Δ^n le n-simplexe (l'espace topologique défini comme l'enveloppe convexe des vecteurs de la base canonique de \mathbb{R}^{n+1}). Un n-simplexe singulier est une application continue $\sigma \colon \Delta^n \to X$. Pour tout $i \in [0,n]$, sa $i^{\text{ème}}$ face est le (n-1)-simplexe singulier défini par $\delta_i \sigma \colon (t_0,...,t_{n-1}) \mapsto \sigma(t_0,...,t_i,0,t_{i+1},...,t_{n-1})$.

Soit $C_n(X)$ le groupe libre engendré par les n-simplexes et avec coefficients dans $\mathbb{Z}/2\mathbb{Z}$. On définit l'opérateur de bord $\partial_n \colon C_n(X) \to C_{n-1}(X)$ comme $\partial_n(\sigma) = \sum_{i=0}^n \delta_i \sigma$. On a la relation $\delta_n \circ \delta_{n+1} = 0$.

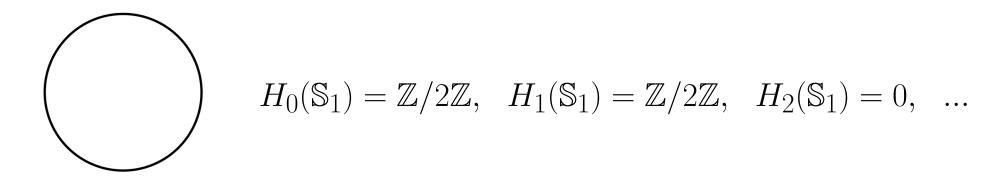
Pour tout $n \geq 0$, on définit les n-cycles $Z_n(X) = \ker(\partial_n)$ et les n-bords $B_n(X) = \operatorname{im}(\partial_{n+1})$. La relation $Z_n(X) \subseteq B_n(X)$ permet de définir le $n^{\operatorname{\`e}me}$ groupe d'homologie $H_n(X) = Z_n(X)/B_n(X)$.

A tout espace topologique X est associé une suite d'espaces vectoriels sur $\mathbb{Z}/2\mathbb{Z}$, notés $H_0(X),\ H_1(X),\ H_2(X),\ \dots$

- $H_0(X) \simeq (\mathbb{Z}/2\mathbb{Z})^{k_0}$, où k_0 est le nombre de composantes connexes de X
- $H_1(X) \simeq (\mathbb{Z}/2\mathbb{Z})^{k_1}$, où k_1 est le nombre de "trous dans X"
- $H_2(X) \simeq (\mathbb{Z}/2\mathbb{Z})^{k_2}$, où k_2 est le nombre de "trous de dimension 2 dans X"

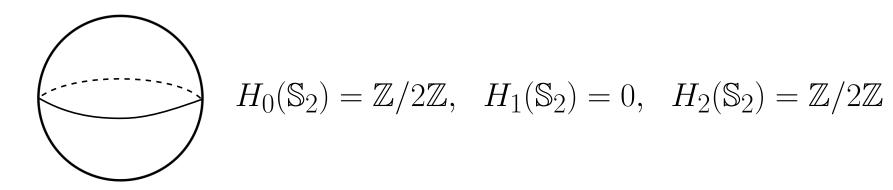
A tout espace topologique X est associé une suite d'espaces vectoriels sur $\mathbb{Z}/2\mathbb{Z}$, notés $H_0(X),\ H_1(X),\ H_2(X),\ \dots$

- $H_0(X) \simeq (\mathbb{Z}/2\mathbb{Z})^{k_0}$, où k_0 est le nombre de composantes connexes de X
- $H_1(X) \simeq (\mathbb{Z}/2\mathbb{Z})^{k_1}$, où k_1 est le nombre de "trous dans X"
- $H_2(X) \simeq (\mathbb{Z}/2\mathbb{Z})^{k_2}$, où k_2 est le nombre de "trous de dimension 2 dans X"



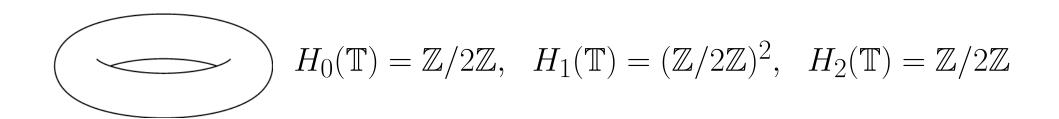
A tout espace topologique X est associé une suite d'espaces vectoriels sur $\mathbb{Z}/2\mathbb{Z}$, notés $H_0(X),\ H_1(X),\ H_2(X),\ \dots$

- $H_0(X) \simeq (\mathbb{Z}/2\mathbb{Z})^{k_0}$, où k_0 est le nombre de composantes connexes de X
- $H_1(X) \simeq (\mathbb{Z}/2\mathbb{Z})^{k_1}$, où k_1 est le nombre de "trous dans X"
- $H_2(X) \simeq (\mathbb{Z}/2\mathbb{Z})^{k_2}$, où k_2 est le nombre de "trous de dimension 2 dans X"



A tout espace topologique X est associé une suite d'espaces vectoriels sur $\mathbb{Z}/2\mathbb{Z}$, notés $H_0(X),\ H_1(X),\ H_2(X),\ \dots$

- $H_0(X) \simeq (\mathbb{Z}/2\mathbb{Z})^{k_0}$, où k_0 est le nombre de composantes connexes de X
- $H_1(X) \simeq (\mathbb{Z}/2\mathbb{Z})^{k_1}$, où k_1 est le nombre de "trous dans X"
- $H_2(X) \simeq (\mathbb{Z}/2\mathbb{Z})^{k_2}$, où k_2 est le nombre de "trous de dimension 2 dans X"



Le $n^{\text{ème}}$ groupe d'homologie est un foncteur $\mathrm{Top} \longrightarrow \mathrm{Vect}$, où Top est la catégorie des espaces topologiques, et Vect celle des $\mathbb{Z}/2\mathbb{Z}$ -espaces vectoriels.

Autrement dit, on peut aussi transformer les applications entre espaces topologiques.

$$X \xrightarrow{f} Y \qquad H_n(X) \xrightarrow{H_n(f)} H_n(Y)$$

Cette opération préserve les diagrammes commutatifs :

$$X \xrightarrow{g \circ f} Z, \qquad H_n(g \circ f) \xrightarrow{H_n(g \circ f)} H_n(Y) \xrightarrow{H_n(g)} H_n(Z).$$

Le $n^{\text{ème}}$ groupe d'homologie est un foncteur $\mathrm{Top} \longrightarrow \mathrm{Vect}$, où Top est la catégorie des espaces topologiques, et Vect celle des $\mathbb{Z}/2\mathbb{Z}$ -espaces vectoriels.

Conséquence : deux espaces topologique du même type d'homotopie ont les mêmes groupes d'homologie.



$$H_0 = \mathbb{Z}/2\mathbb{Z}, \quad H_1 = \mathbb{Z}/2\mathbb{Z}, \quad H_2 = 0$$

Invariance du domaine

Montrons que \mathbb{R}^n et \mathbb{R}^m , avec $n \neq m$, ne sont pas homéomorphes.

Soit $h: \mathbb{R}^n \to \mathbb{R}^m$ un homéomorphisme.

Soit $x \in \mathbb{R}^n$ quelconque, et condisérons l'application restreinte

$$h: \mathbb{R}^n \setminus \{x\} \longrightarrow \mathbb{R}^m \setminus \{h(x)\}$$

On a des isomorphismes en homologie :

$$H_i(h): H_i(\mathbb{R}^n \setminus \{x\}) \simeq H_i(\mathbb{R}^m \setminus \{h(x)\})$$

Mais $\mathbb{R}^n \setminus \{x\} \simeq \mathbb{S}_{n-1}$, donc on a

$$H_i(\mathbb{S}_{n-1}) \simeq H_i(\mathbb{S}_{m-1})$$

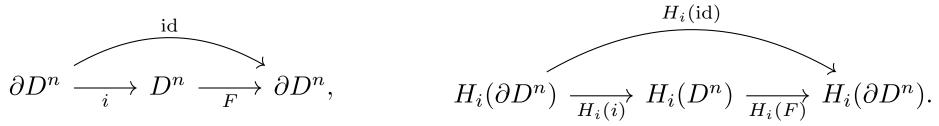
Contradiction si $n \neq m$.

Point fixe de Brouwer

Soit $f: D^n \to D^n$ continue, où D^n est le disque unité de \mathbb{R}^n . Montrons que f admet un point fixe.

Si ce n'est pas le cas, on peut construire une application $F\colon D^n\to \partial D^n$ telle que F restreinte à ∂D^n soit l'identité. Pour cela, définir F(x) comme la première intersection entre la demi-droite [x,f(x)) et ∂D^n .

Soit l'inclusion $i: \partial D^n \to D^n$. Alors $F \circ i: \partial D^n \to \partial D^n$ est l'identité. Par naturalité de l'homologie, on a les diagrammes



Mais pour i = n - 1, on a un diagramme absurde :

$$\mathbb{Z}/2\mathbb{Z} \longrightarrow 0 \longrightarrow \mathbb{Z}/2\mathbb{Z}.$$

Théorème de Borsuk-Ulam

Soit $f : \mathbb{S}_n \to \mathbb{R}^n$ continue. Montrons qu'il existe x tel que f(x) = f(-x).

Supposons que ce ne soit pas le cas. Soit la fonction $g \colon \mathbb{S}_n \to \mathbb{S}_{n-1}$ définie par

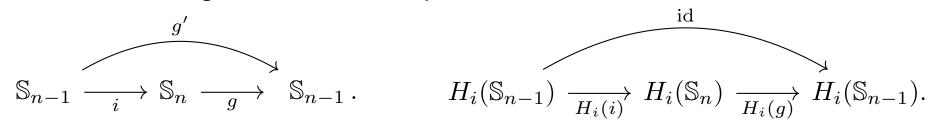
$$g(x) = \frac{f(x) - f(-x)}{\|f(x) - f(-x)\|}$$

Soit un grand cercle $\mathbb{S}_{n-1} \subset \mathbb{S}_n$ et la restriction $g' \colon \mathbb{S}_{n-1} \to \mathbb{S}_{n-1}$. Cette fonction est impaire, et on peut en déduire que l'application induite

$$H_i(g'): H_i(\mathbb{S}_{n-1}) \to H_i(\mathbb{S}_{n-1})$$

est l'identité.

On obtient un diagramme absurde pour i = n - 1:



I - Homologie singulière

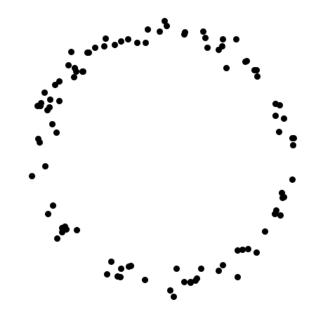
II - Homologie persistante

III - Exemples

IV - Homologie persistante pour mesures

Homologie en pratique

Après une expérience scientifique, on obtient un nuage de points.

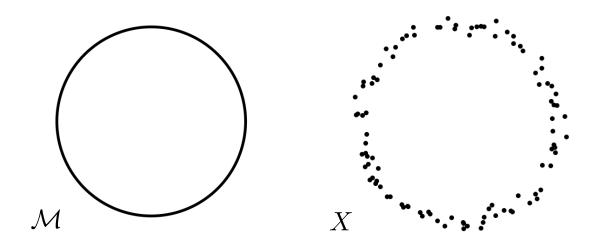


lci, $X \subset \mathbb{R}^2$ semble être proche du cercle \mathbb{S}_1 .

Mais son homologie est décevante :

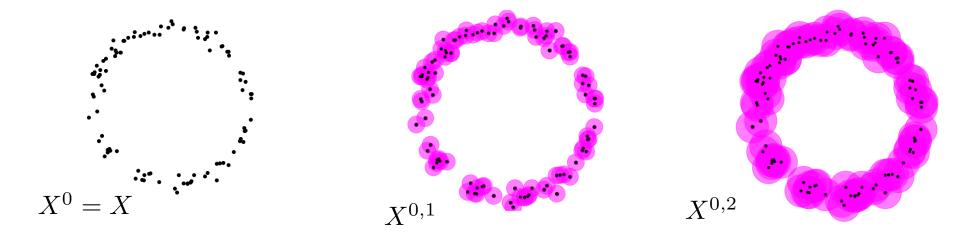
$$H_0(X) = (\mathbb{Z}/2\mathbb{Z})^{100}, \quad H_1(X) = 0, \quad H_2(X) = 0, \dots$$

On va essayer de reconstruire le cercle à partir de X.



Pour tout $t \ge 0$, on définit le t-épaisissement de X:

$$X^{t} = \{ y \in \mathbb{R}^{n}, \exists x \in X, ||x - y|| \le t \}$$



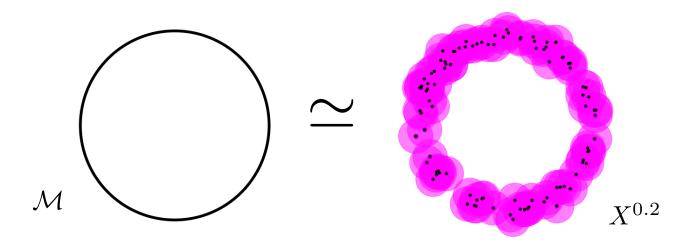
Théorème (Chazal, Cohen-Steiner, Lieutier, 2009)

Soient \mathcal{M}, X deux sous-ensembles de \mathbb{R}^n .

On suppose que portée $(\mathcal{M}) > 0$ and $d_H(X, \mathcal{M}) \leq \frac{1}{17}$ portée (\mathcal{M}) . Soit

$$t \in [4d_{\mathrm{H}}(X, \mathcal{M}), \mathsf{port\acute{e}e}(\mathcal{M}) - 3d_{\mathrm{H}}(X, \mathcal{M}))$$
.

Alors X^t et \mathcal{M} ont le même type d'homotopie.



Epaisissements

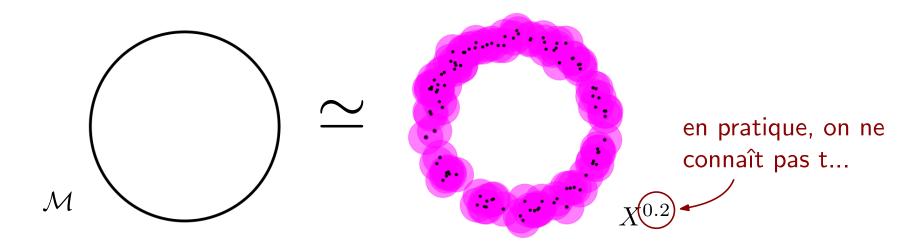
Théorème (Chazal, Cohen-Steiner, Lieutier, 2009)

Soient \mathcal{M}, X deux sous-ensembles de \mathbb{R}^n .

On suppose que portée $(\mathcal{M}) > 0$ and $d_H(X, \mathcal{M}) \leq \frac{1}{17}$ portée (\mathcal{M}) . Soit

$$t \in [4d_{\mathrm{H}}(X, \mathcal{M}), \mathsf{port\acute{e}e}(\mathcal{M}) - 3d_{\mathrm{H}}(X, \mathcal{M}))$$
.

Alors X^t et \mathcal{M} ont le même type d'homotopie.



Definition

La filtration de Čech de X est la collection :

$$V[X] = \left(X^t\right)_{t>0}.$$

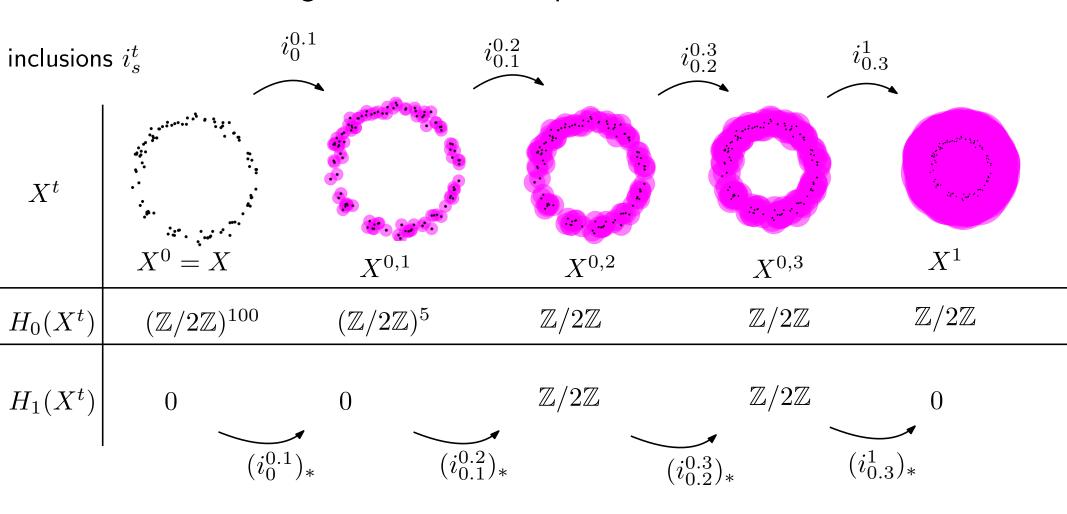
Homologie de la filtration de Čech

9/21 (1/2)

On calcule l'homologie de chacun des épaisissements.

X^t	$X^0 = X$	$X^{0,1}$	$X^{0,2}$	$X^{0,3}$	X^1
$H_0(X^t)$	$(\mathbb{Z}/2\mathbb{Z})^{100}$	$(\mathbb{Z}/2\mathbb{Z})^5$	$\mathbb{Z}/2\mathbb{Z}$	$\mathbb{Z}/2\mathbb{Z}$	$\mathbb{Z}/2\mathbb{Z}$
$H_1(X^t)$	0	0	$\mathbb{Z}/2\mathbb{Z}$	$\mathbb{Z}/2\mathbb{Z}$	0

On calcule l'homologie de chacun des épaisissements.

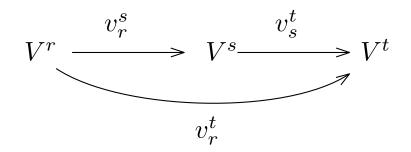


La donnée de $(H_i(X^t))_{t \geq 0}$ et $((i_s^t)_*)_{s < t}$ s'appelle un *module de persistance*.

Définition

Un module de persistance \mathbb{V} sur \mathbb{R}^+ est une famille de $\mathbb{Z}/2\mathbb{Z}$ -espaces vectoriels $(V^t)_{t\geq 0}$, et une famille d'applications linéaires $(v^t_s\colon V^s\to V^t)_{0\leq s\leq t}$ telles que:

- pour tout $t \geq 0$, $v_t^t \colon V^t \to V^t$ est l'application identité,
- ullet pour tout $r,s,t\geq 0$ tels que $r\leq s\leq t$, on a $v_s^t\circ v_r^s=v_r^t$.



Construction générale des modules de persistance :

Une filtration de \mathbb{R}^n est un collection de sous-ensembles $(X_t)_{t\geq 0}$ tels que $X_s\subset X_t$ quand $s\leq t$.

En appliquant le $i^{\text{ème}}$ foncteur d'homologie, on obtient un module de persistance.

Théorème (Crawley-Boevey, 2015)

Un module de persistance (suffisament régulier) est isomorphe à une somme de modules-intervalles.

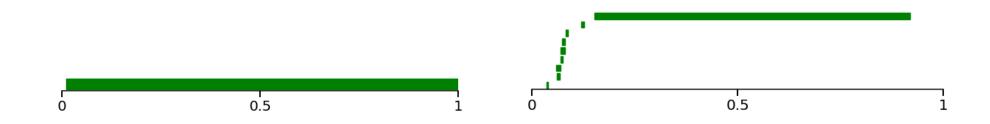
Ce multi-ensemble d'intervalles s'appelle le *code-barre*. C'est un invariant complet des modules de persistance.

0.5

Codes-barres du module de persistance associé à la filtration de Čech : H_0 en rouge et H_1 en vert.

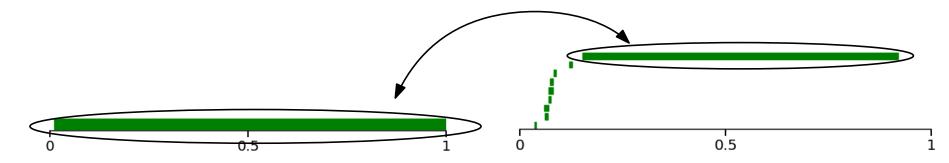
11/21 (1/7)

On peut définir une distance sur les codes-barres : la distance bottleneck.



11/21 (2/7)

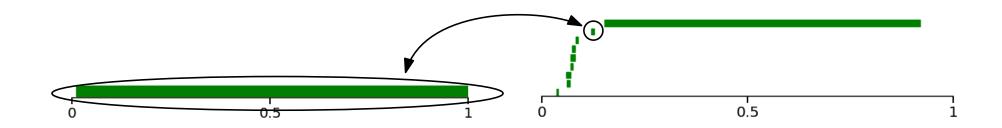
On peut définir une distance sur les codes-barres : la distance bottleneck.



Soit un appariement partiel entre deux codes-barres (certaines barres sont appareillées, d'autres non).

1/21 (3/7)

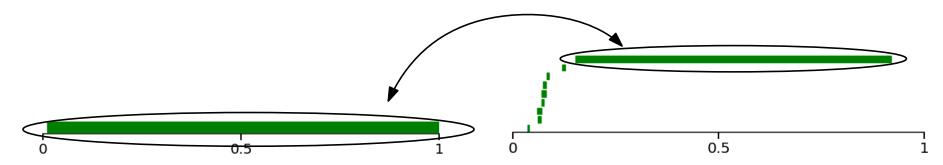
On peut définir une distance sur les codes-barres : la distance bottleneck.



Soit un appariement partiel entre deux codes-barres (certaines barres sont appareillées, d'autres non).

11/21 (4/7)

On peut définir une distance sur les codes-barres : la distance bottleneck.



Soit un appariement partiel entre deux codes-barres (certaines barres sont appareillées, d'autres non).

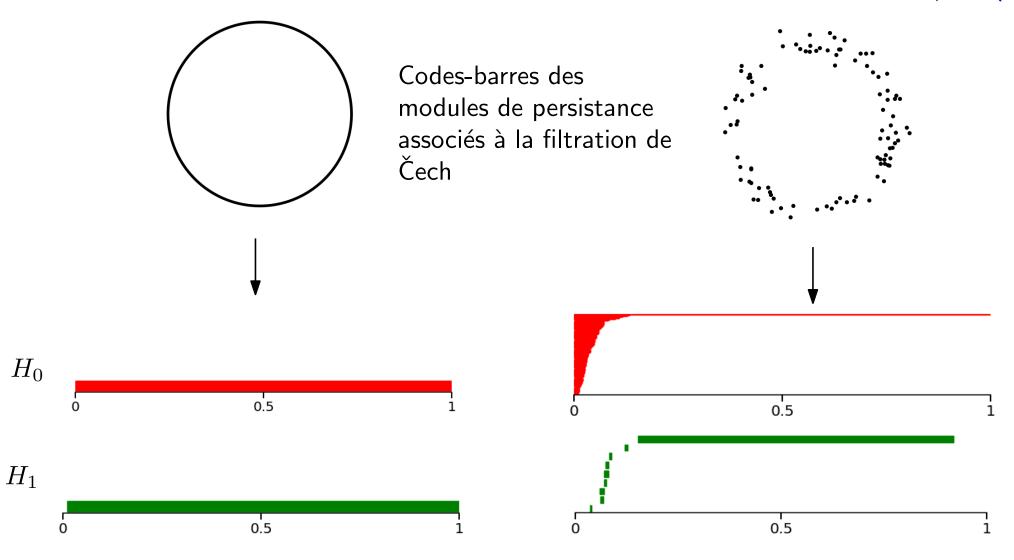
Son *coût* est le maximum entre :

- la différence entre deux barres appareillées
- la longueur des barres non-appareillées

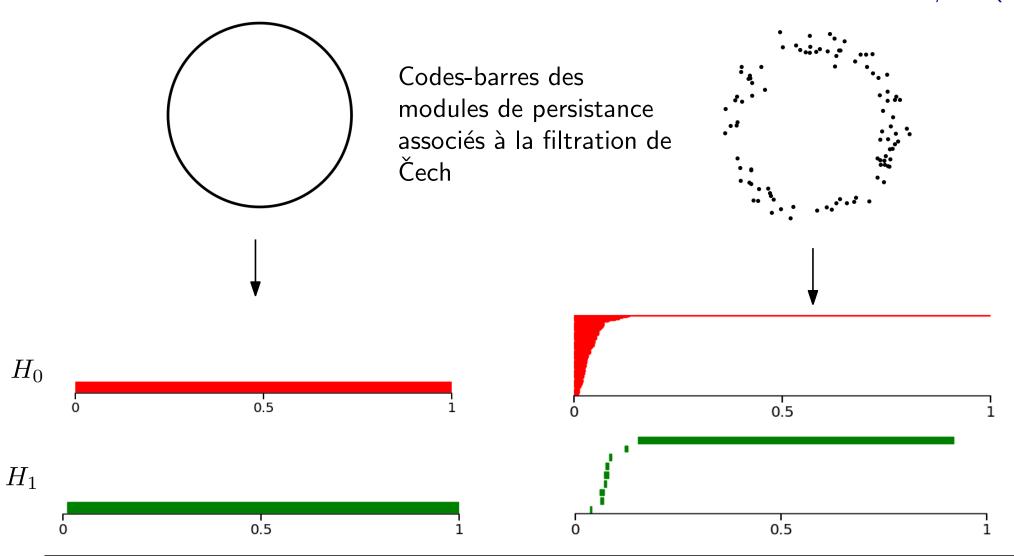
La distance bottleneck est le plus petit coût parmi les appariements partiels.

Les petites barres ont peu d'importance pour la distance bottleneck.

11/21 (5/7)



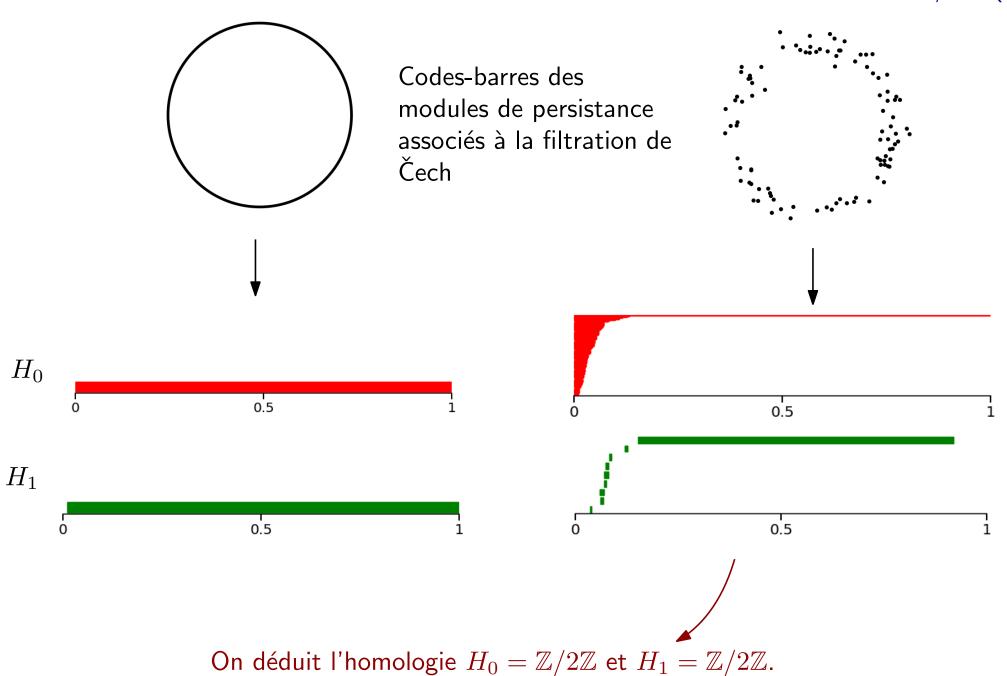
11/21 (6/7)



Théorème de stabilité (Edelsbrunner, Harer, Cohen-Steiner, 2005)

Soit $X, Y \subset \mathbb{R}^n$ deux sous-ensembles compacts. Alors la distance bottleneck entre les codes-barres de leur filtration de Čech est majorée par la distance de Hausdorff $d_H(X,Y)$.

11/21 (7/7)



I - Homologie singulière

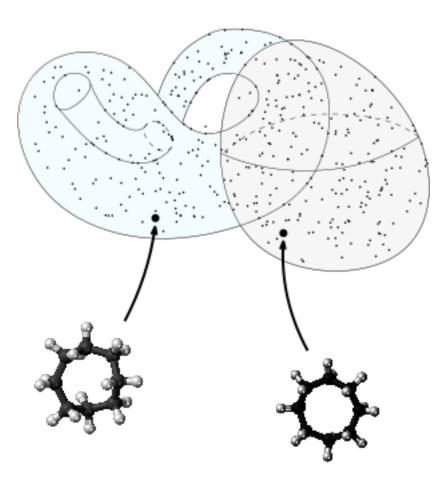
II - Homologie persistante

III - Exemples

IV - Homologie persistante pour mesures

Depuis [S. Martin, A. Thompson, E. A. Coutsias, and J-P. Watson, Topology of cyclo-octane energy landscape, 2010]

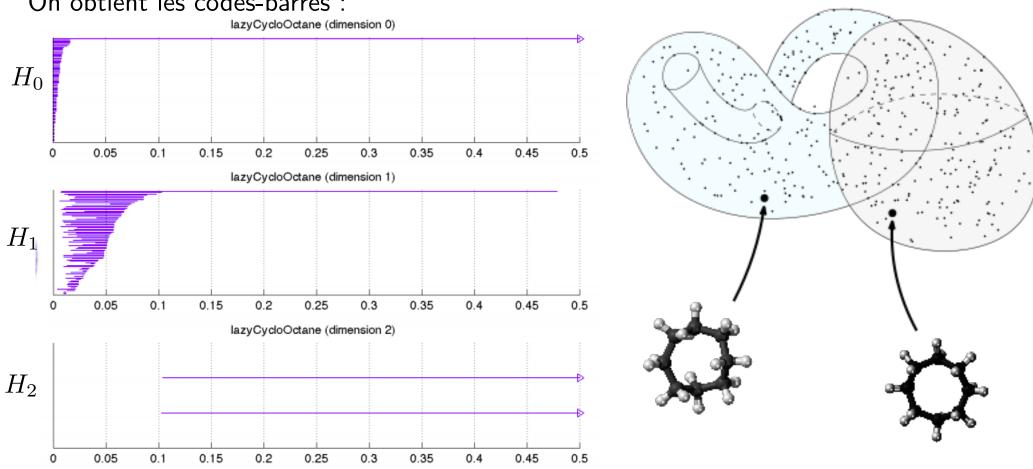
Une molécule de cyclooctane C_8H_{16} peut être transformée en un point dans \mathbb{R}^{72} $(3 \times (8+16)=72)$.



Depuis [S. Martin, A. Thompson, E. A. Coutsias, and J-P. Watson, Topology of cyclo-octane energy landscape, 2010]

Une molécule de cyclooctane C_8H_{16} peut être transformée en un point dans \mathbb{R}^{72} $(3 \times (8+16) = 72).$

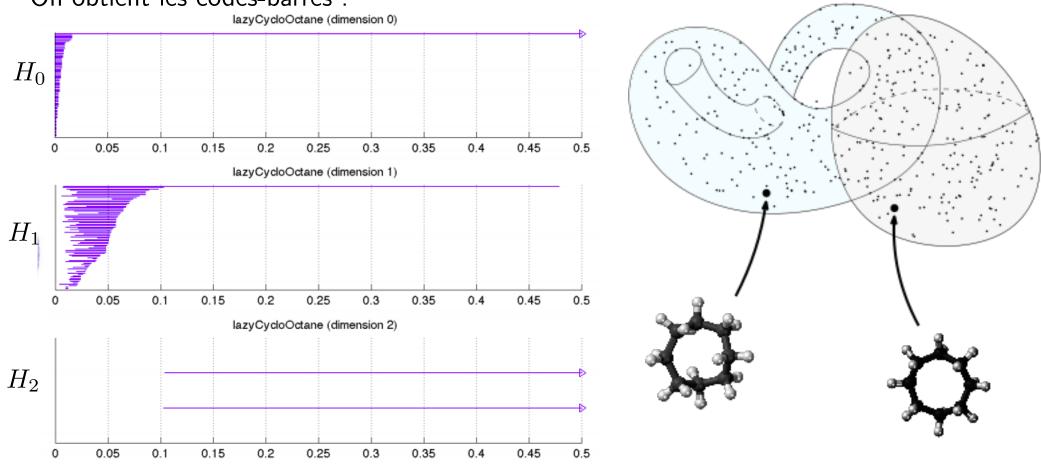
On obtient les codes-barres :



Depuis [S. Martin, A. Thompson, E. A. Coutsias, and J-P. Watson, Topology of cyclo-octane energy landscape, 2010]

Une molécule de cyclooctane C_8H_{16} peut être transformée en un point dans \mathbb{R}^{72} $(3 \times (8+16)=72)$.

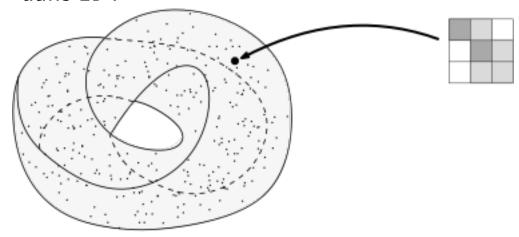
On obtient les codes-barres :



On déduit : $H_0=\mathbb{Z}/2\mathbb{Z}, \ H_1=\mathbb{Z}/2\mathbb{Z}, \ H_2=(\mathbb{Z}/2\mathbb{Z})^2$

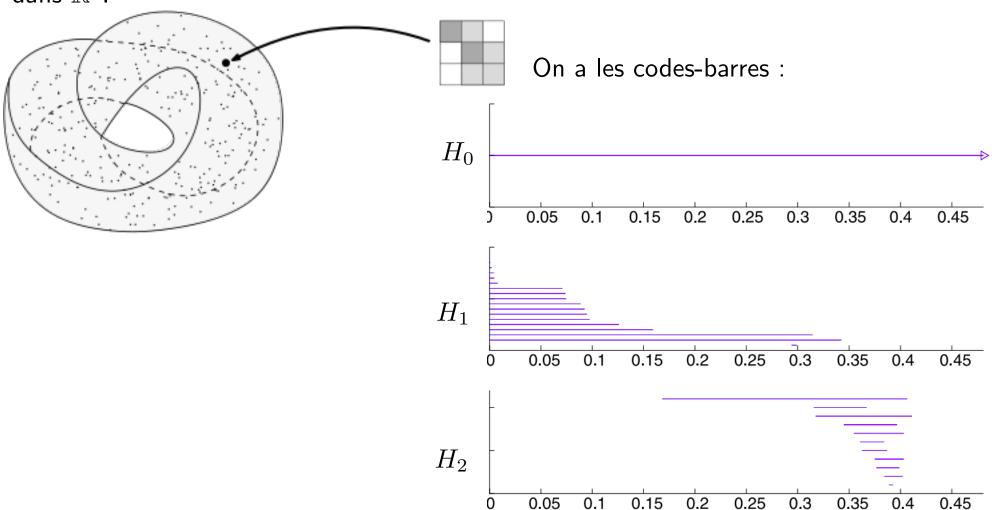
Depuis [On the Local Behavior of Spaces of Natural Images, Gunnar Carlsson, Tigran Ishkhanov, Vin de Silva, and Afra Zomorodian, 2008.]

À partir d'une large collection d'images, les auteurs extraient des sous-images de taille 3×3 pixels. L'ensemble de ces patches peut ainsi être vu comme un nuage de points dans \mathbb{R}^9 .



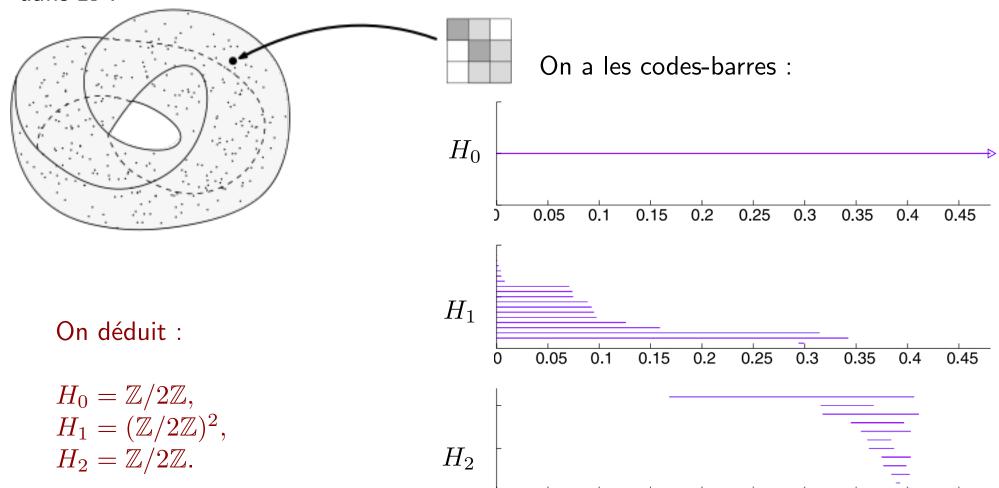
Depuis [On the Local Behavior of Spaces of Natural Images, Gunnar Carlsson, Tigran Ishkhanov, Vin de Silva, and Afra Zomorodian, 2008.]

À partir d'une large collection d'images, les auteurs extraient des sous-images de taille 3×3 pixels. L'ensemble de ces patches peut ainsi être vu comme un nuage de points dans \mathbb{R}^9 .



Depuis [On the Local Behavior of Spaces of Natural Images, Gunnar Carlsson, Tigran Ishkhanov, Vin de Silva, and Afra Zomorodian, 2008.]

À partir d'une large collection d'images, les auteurs extraient des sous-images de taille 3×3 pixels. L'ensemble de ces patches peut ainsi être vu comme un nuage de points dans \mathbb{R}^9 .



0

0.05

0.15

0.2

0.25

0.3

0.35

I - Homologie singulière

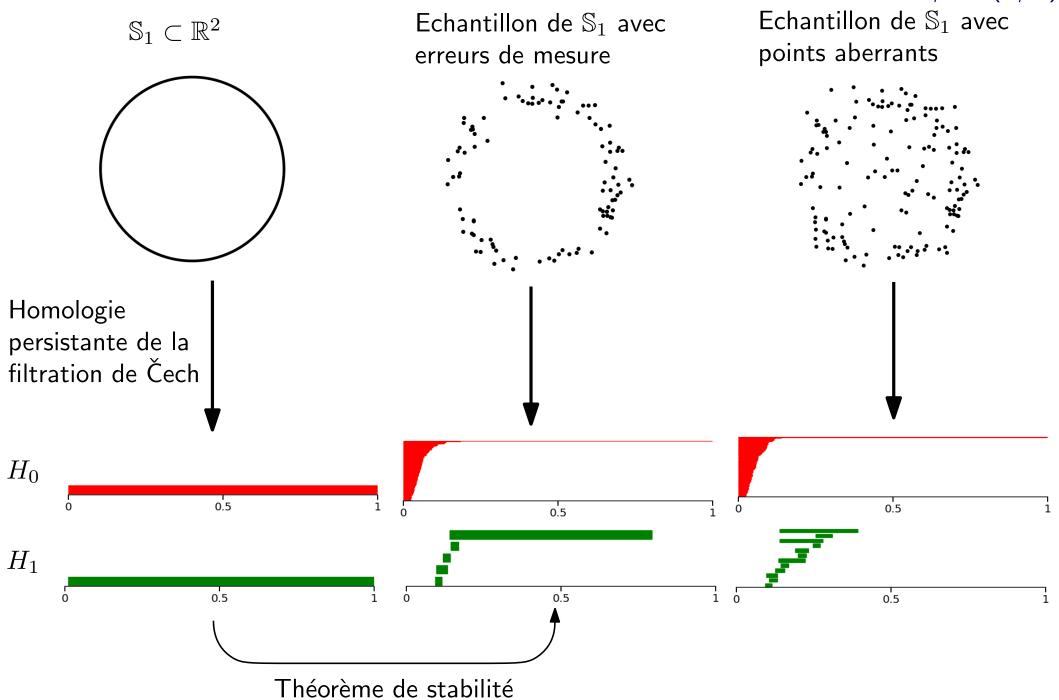
II - Homologie persistante

III - Exemples

IV - Homologie persistante pour mesures

Le problème des points aberrants

16/21 (1/2)



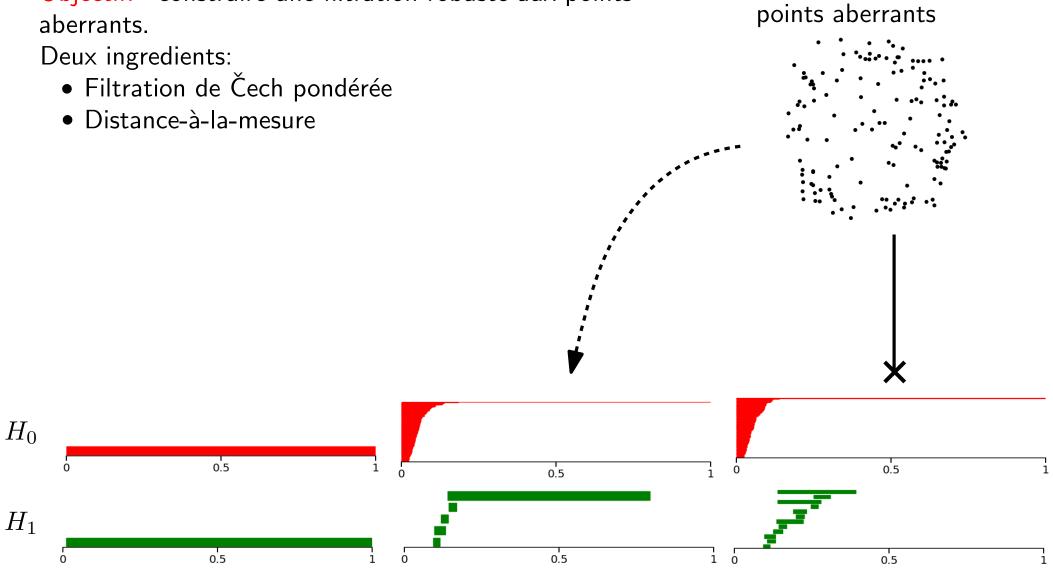
Le problème des points aberrants

16/21 (2/2)

Echantillon de \mathbb{S}_1 avec

Objectif: construire une filtration robuste aux points aberrants.

 H_1



Données : $X \subset \mathbb{R}^n$

Rappel : La filtration de Čech de X est la collection $V[X] = (X^t)_{t \geq 0}$, où

$$X^{t} = \bigcup_{x \in X} \overline{\mathcal{B}}(x, t).$$

Soit $f: X \to \mathbb{R}^+$ une application quelconque.

Définition

La filtration de Čech pondérée de X avec paramètre f est la collection $V[X,f]=\left(V^t[X,f]\right)_{t\geq 0}$, où

$$V^{t}[X, f] = \bigcup_{x \in X} \overline{\mathcal{B}}(x, t - f(x)).$$

Données : $X \subset \mathbb{R}^n$

Rappel : La filtration de Čech de X est la collection $V[X] = (X^t)_{t \geq 0}$, où

$$X^{t} = \bigcup_{x \in X} \overline{\mathcal{B}}(x, t).$$

Soit $f: X \to \mathbb{R}^+$ une application quelconque.

Définition

La filtration de Čech pondérée de X avec paramètre f est la collection $V[X,f]=\left(V^t[X,f]\right)_{t\geq 0}$, où

$$V^{t}[X, f] = \bigcup_{x \in X} \overline{\mathcal{B}}(x, t - f(x)).$$

Plus f(x) est grand, plus on retarde l'apparition de x dans la filtration. On voudrait choisir f qui prenne de grandes valeurs sur les points aberrants.

Distance-à-la-mesure (DTM)

18/21 (1/3)

Introduite dans [Chazal, Cohen-Steiner, Mérigot. Geometric inference for probability measures, 2011].

Soit μ une mesure de probabilité. Pour $x \in \mathbb{R}^n$ et $t \in [0,1)$, on définit

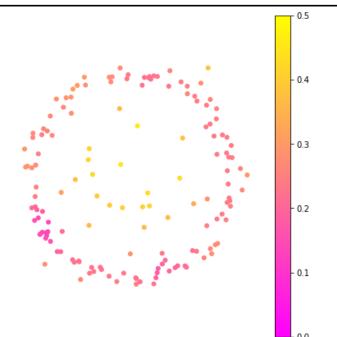
$$\delta_{\mu,t}(x) = \inf\{r \ge 0, \mu(\overline{\mathcal{B}}(x,r) > t\}.$$

Définition

Soit $m \in [0, 1[$. La DTM de μ avec paramètre m est l'application :

$$d_{\mu,m}: \mathbb{R}^n \longrightarrow \mathbb{R}$$

$$x \longmapsto \sqrt{\frac{1}{m} \int_0^m \delta_{\mu,t}^2(x) dt}$$



 $\mathrm{d}_{\mu,m}$ avec m=0,1 μ mesure empirique sur X

Distance-à-la-mesure (DTM)

18/21 (2/3)

Introduite dans [Chazal, Cohen-Steiner, Mérigot. Geometric inference for probability measures, 2011].

Soit μ une mesure de probabilité. Pour $x \in \mathbb{R}^n$ et $t \in [0,1)$, on définit

$$\delta_{\mu,t}(x) = \inf\{r \ge 0, \mu(\overline{\mathcal{B}}(x,r) > t\}.$$

Définition

Soit $m \in [0, 1[$. La DTM de μ avec paramètre m est l'application :

$$d_{\mu,m}: \mathbb{R}^n \longrightarrow \mathbb{R}$$

$$x \longmapsto \sqrt{\frac{1}{m} \int_0^m \delta_{\mu,t}^2(x) dt}$$

Théorème (Chazal, Cohen-Steiner, Mérigot, 2011)

Pour toute mesures de probabilité μ, ν and $m \in (0, 1)$, on a

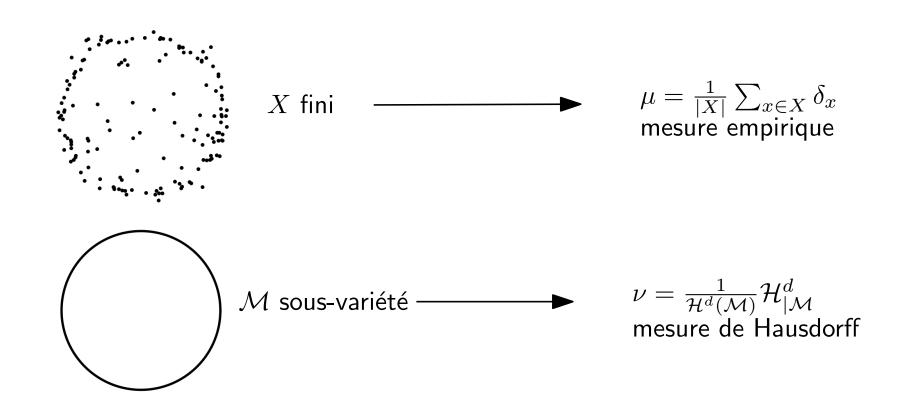
$$\|d_{\mu,m} - d_{\nu,m}\|_{\infty} \le m^{-\frac{1}{2}} W_2(\mu,\nu),$$

où W₂ représente la distance de Wasserstein.

Distance-à-la-mesure (DTM)

18/21 (3/3)

On va maintenant comparer les nuages de points via leur distance de Wasserstein.



X et $\mathcal M$ ne sont pas proches en distance de Hausdorff...

Mais μ et ν sont proches en distance de Wasserstein !

Définition

Soit μ une mesure de probabilité et $m \in [0, 1)$.

La filtration-DTM de paramètres μ et m est la filtration de Čech pondérée V[X,f] avec les paramètres :

- $\bullet X = \operatorname{supp}(\mu)$
- $\bullet f = \mathbf{d}_{\mu,m}$

Elle est notée $W[\mu, m]$.

Explicitement, $W[\mu, m] = (W^t[\mu, m])_{t \ge 0}$ avec :

$$W^{t}[\mu, m] = \bigcup_{x \in \text{supp}(\mu)} \overline{\mathcal{B}}(x, t - d_{\mu, m}(x))$$

Définissons $c(\mu, m) = \sup_{x \in \text{supp}(\mu)} d_{\mu, m}(x)$.

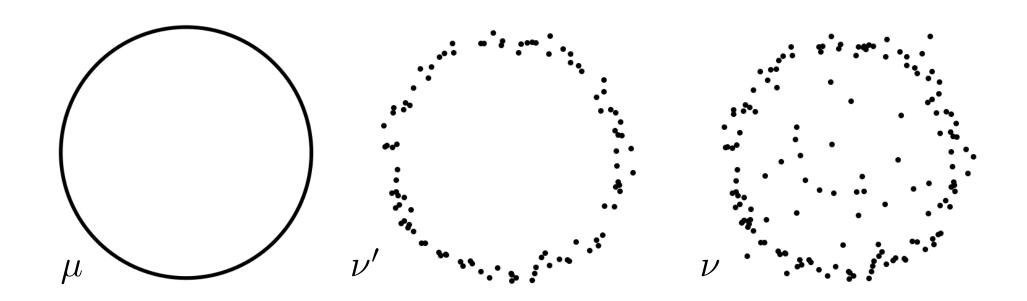
La quantité c est faible si la mesure μ est proche de la mesure de Hausdorff sur un sous-variété.

Théorème (Anai, Chazal, Glisse, Ike, Inakoshi, T. and Umeda, 2020)

Soient μ, ν des mesures de probabilité. Soit ν' une mesure de probabilité à support compact inclus dans $\operatorname{supp}(\nu)$.

La distance bottleneck entre les filtrations-DTM $W[\mu,m]$ et $W[\nu,m]$ est bornée par :

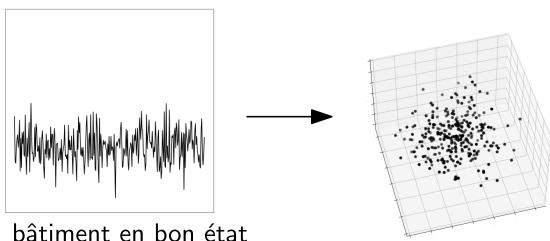
$$m^{-\frac{1}{2}}W_2(\mu,\nu') + m^{-\frac{1}{2}}W_2(\nu',\nu) + c(\mu,m,p) + c(\nu',m,p)$$



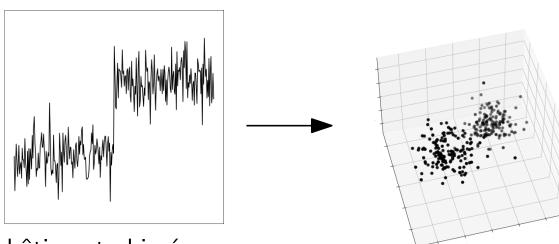
On s'intéresse à l'usure des bâtiments.

On obtient des séries temporelles (mesures de capteurs inertiels). On transforme une série temporelle (x_1, x_2, \dots, x_n) en le nuage de points

$$\{(x_1,x_2,x_3),(x_2,x_3,x_4),\ldots,(x_{n-2},x_{n-1},x_n)\}.$$



bâtiment en bon état

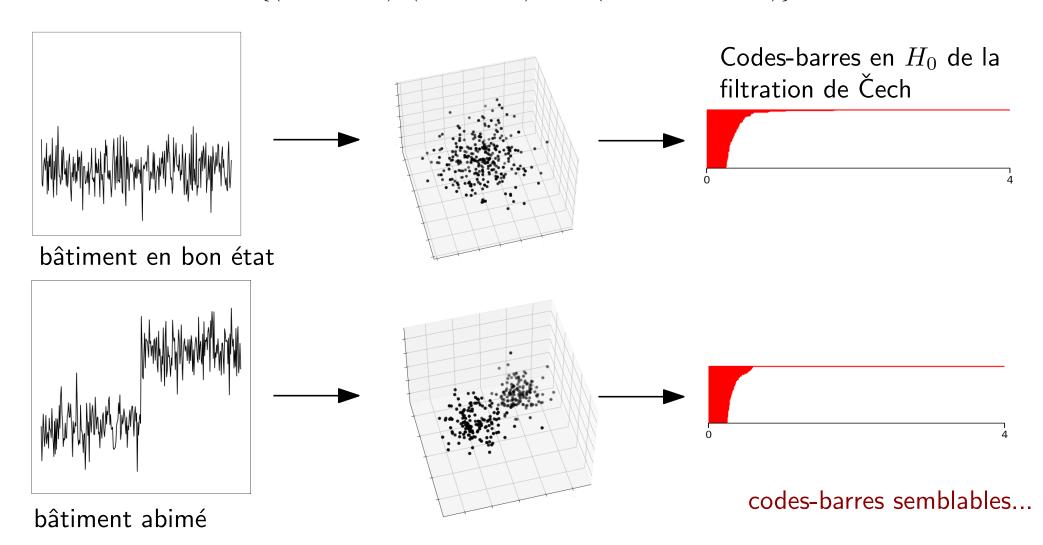


bâtiment abimé

On s'intéresse à l'usure des bâtiments.

On obtient des séries temporelles (mesures de capteurs inertiels). On transforme une série temporelle (x_1, x_2, \ldots, x_n) en le nuage de points

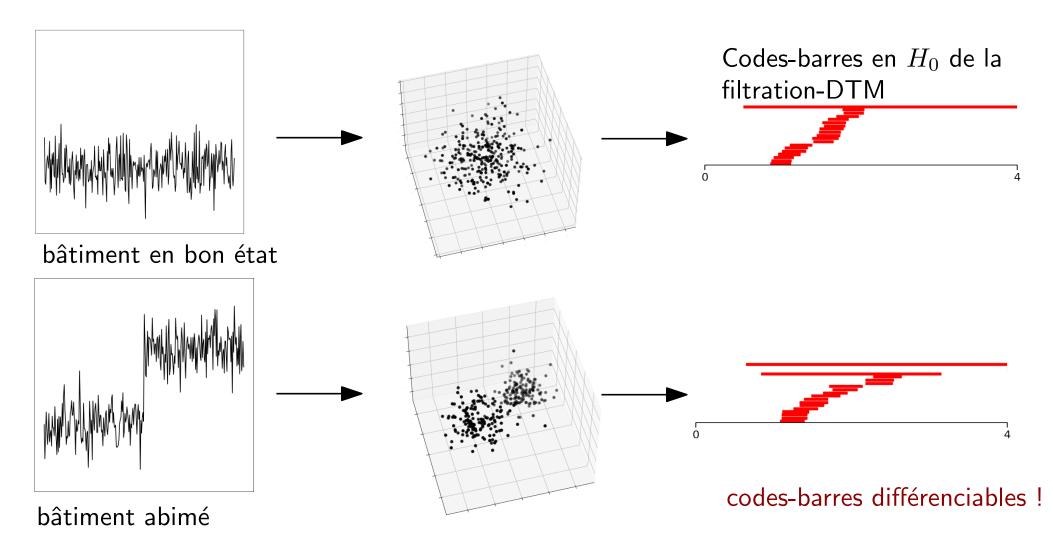
$$\{(x_1, x_2, x_3), (x_2, x_3, x_4), \dots, (x_{n-2}, x_{n-1}, x_n)\}.$$



On s'intéresse à l'usure des bâtiments.

On obtient des séries temporelles (mesures de capteurs inertiels). On transforme une série temporelle (x_1, x_2, \ldots, x_n) en le nuage de points

$$\{(x_1,x_2,x_3),(x_2,x_3,x_4),\ldots,(x_{n-2},x_{n-1},x_n)\}.$$



Conclusion

- L'homologie persistante permet d'estimer l'homologie des objets géométriques sous-jacents aux jeux de données.
- Repose sur l'hypothèse qu'un tel objet géométrique sous-jacent existe.
- On peut réparer la théorie pour le cas où le jeu de données contient des points aberrants.

Conclusion

- L'homologie persistante permet d'estimer l'homologie des objets géométriques sous-jacents aux jeux de données.
- Repose sur l'hypothèse qu'un tel objet géométrique sous-jacent existe.
- On peut réparer la théorie pour le cas où le jeu de données contient des points aberrants.

Merci!