EMAp — Summer School On Data Science — 27/02/23

From Algebraic Topology
to Data Analysis

Part I1/III: Homological inference
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Part I/II1: Topological invariants
Thursday 26, 9~11am

Part I1/III: Homological inference
Friday 27, 9~11am

Part IT1I/III: Persistent Homology

Friday 27, 3~bpm



Lembrete de ontem 3/44

Some datasets contain topology Invariants of homotopy classes allow to
. describe and understand topological spaces

Number of connected components
Euler characteristic y
Betti numbers 5y, 51, B2, . ..
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Bo(X) 1 1 1

B1(X) 0 1 0 2 9

B2(X) 0 0 1 0 0



Cardapio 4/44 (1/5)

Today we will define a powerful invariant, homology groups, that already contains the
number of connected components, and the Euler characteristic.

Algebraic topology
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Today we will define a powerful invariant, homology groups, that already contains the
number of connected components, and the Euler characteristic.
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Cardépio 4/44 (3/5)

Today we will define a powerful invariant, homology groups, that already contains the
number of connected components, and the Euler characteristic.

Algebraic topology

Homology groups Cohomology algebra Characteristic classes Functor K
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Singular homology Simplicial homology Cellular homology



Cardapio 4/44 (4/5)

Today we will define a powerful invariant, homology groups, that already contains the
number of connected components, and the Euler characteristic.

Algebraic topology

Homology groups Cohomology algebra Characteristic classes Functor K
Singular homology Simplicial homology Cellular homology

7\

Over a finite field Over 7Z



Cardépio 4/44 (5/5)

Today we will define a powerful invariant, homology groups, that already contains the
number of connected components, and the Euler characteristic.

Algebraic topology

Homology groups Cohomology algebra Characteristic classes Functor K
Singular homology Simplicial homology Cellular homology
Over a finite field Over Z

\

Singular homology over the finite field Z /27



I - Simplicial homology
1 - Reminder of algebra
2 - Homological algebra
3 - Incremental algorithm

IT - More about homology
1 - Topology of simplicial complexes

2 - Singular homology
3 - Functoriality

III - Homological inference
1 - Thickening parameter selection

2 - Cech complex
3 - Rips complex



O grupo Z/27 6 /44

The group 7Z /27 can be seen as the set {0, 1} with the operation

0+0=0
O+1=1
1+0=1
1+1=0

For any n > 1, the product group (Z/27Z)™ is the group whose underlying set is
(Z)27.)" = {(€1,...,€n), €1,...,€n € L/27}
and whose operation is defined as

(€1, s €n) + (€], s €) = (€1 + €15y € + €.

The group Z /27 can be given a field structure

O0x0=0
Ox1=0
1x0=0
1x1=1

and (Z/27.)™ can be seen as a Z/27Z-vector space over the field Z/27Z.



Espacos vetoriais sobre Z /27 7/44 (1/3)

A vector space over Z /27 is a set V endowed with two operations
VxV-—V 7]22. x V. — V
(u,v) — u + v (A, v) — A v
such that
(associativity) Yu,v,w €V, (u+v)+w=1u+ (v+ w),
(identity) 30 eV, Yo eV, v4+0=04+v =1,
(inverse) Yo e V. 3w eV, u+v=v+u=0,
(commutativity) Yu,v € V, u+v=v+u,
(compatibility of multiplication) VA, u € Z/2Z,Yv € V. X - (u-v) = (A X u) - v,
(scalar identity) Yo € V,1-v =,
(scalar distributivity) Yu,v € Z/2Z,NYv € V, (A4+v)-v=A-v+v -,
(vector distributivity) Yu € Z/2Z,Nv,w € V, A-(u+v) =A-v+v-v.



Espacos vetoriais sobre Z /27 7/44 (2/3)

A vector space over Z /27 is a set V endowed with two operations
VxV-—V 7]22. x V. — V
(u,v) — u + v (A, v) — A v
such that
(associativity) Yu,v,w €V, (u+v)+w=1u+ (v+ w),
(identity) 30 eV, Yo eV, v4+0=04+v =1,
(inverse) Yo e V. 3w eV, u+v=v+u=0,
(commutativity) Yu,v € V, u+v=v+u,
(compatibility of multiplication) VA, u € Z/2Z,Yv € V. X - (u-v) = (A X u) - v,
(scalar identity) Yo € V,1-v =,
(scalar distributivity) Yu,v € Z/2Z,NYv € V, (A4+v)-v=A-v+v -,
(vector distributivity) Yu € Z/2Z,Nv,w € V, A-(u+v) =A-v+v-v.

Proposition: Le (V,+) be a commutative group.
It can be given a Z/27Z-vector space structure iff Yo € V,v 4+ v = 0.

Proposition: Let (V,+, ) be a finite Z/27Z-vector space. Then there exists n > 0 such
that V' has cardinal 2™, and (V,+,-) is isomorphic to the vector space (Z/27,)".

Proof: Consequence of the theory of vector spaces.



Espacos vetoriais sobre Z /27 7/44 (3/3)

A linear subspace of (V,+,-) is a subset W C V such that

Vu,v € Wiu+veW and Yve WNNeZ/2Z, v e W.

We define the following equivalence relation on V: for all u,v € V,
U~V <= u—veWw

Denote by V/W the quotient set of V' under this relation. For any v € V, one shows
that the equivalence class of v is equal tov+ W ={v4+w |w € W}.

One defines a group structure @& on V/W as follows:
(u4+W)d (W +W) =(u+u)+W.

The vector space (V/W,®,-) is called the quotient vector space.

Proposition: We have dim V/W = dim V' — dim W.
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Cadeias 9/44 (1/4)

Let V' be a set (called the set of vertices). A simplicial complex
over V is a set K of subsets of V' (called the simplices) such that, for every ¢ € K and
every non-empty 7 C o, we have 7 € K.

The dimension of a simplex o € K is dim(o) = |o| — 1.

K

Let K be a simplicial complex. For any n > 0, define

K(n) = {O‘ c K | dim(a) = n}




Cadeias 0/44 (2/4)

Let n > 0. The n-chains of K is the set C),(K) whose elements are the formal sums

Z €, -0 where Vo € K,), ¢, € Z/2Z.
UEK(n)

Example: The 0-chains of K = {[0], [1],[2], [0, 1], [0, 2]} are:

1 2 o o ° ° o o o o

0 @ o o O
0 0] [1] 2] o]+ 1] [O+1[2] [1]+[2] [0] +[1] + [2]

and the 1-chains

0 0, 1] 0, 2] 0,1] + [0, 2]



Cadeias 0/44 (3/4)

Let n > 0. The n-chains of K is the set C),(K) whose elements are the formal sums

Z €, -0 where Vo € K,), ¢, € Z/2Z.
UEK(n)

We can give C},(K) a group structure via

Z €g - O+ Z Ny + O = Z (€0 +1M5) - 0.

oEK (n) €K (n) €K (n)
Moreover, C),(K') can be given a Z/2Z-vector space structure.

Example: The 0-chains of K = {[0], [1],[2], [0, 1], [0, 2]} are:

1 2 o o ° ° o o o o

0 @ o o O
0 0] [1] 2] o]+ 1] [O+1[2] [1]+[2] [0] +[1] + [2]

and the 1-chains



Cadeias 0/a4 (4/4)

Let n > 0. The n-chains of K is the set C),(K) whose elements are the formal sums

Z €, -0 where Vo € K,), ¢, € Z/2Z.
UEK(n)

We can give C},(K) a group structure via

Z €g - O+ Z Ny + O = Z (€0 +1M5) - 0.

€K (n) €K (n) €K (n)

Moreover, C),(K') can be given a Z/2Z-vector space structure.

Example: In the simplicial complex K = {[0], [1], [2], [0, 1], [0, 2]}, the sum of the
0-chains [0] 4 [1] and [0] + [2] is [1] + [2]:



Operador bordo 10/44 (1/5)

Let n > 1, and 0 = [z0, ..., x,| € K(;,) a simplex of dimension n. We define its
boundary as the following element of C),_;(K):

0,0 = Z T

TCoOo
|7|=]o|—1

We can extend the operator 0,, as a linear map 9,,: C,(K) — C,_1(K).

Example: Consider the simplicial complex
K = {0}, 1], [2],[3],10,1],10,2], (1, 2], [1, 3], (2, 3], [0, 1, 2] }.

The simplex [0, 1] has the faces [0] and [1]. Hence

1[0,1] = [0] + [1].

1 2 01 O




Operador bordo 10/44 (2/5)

Let n > 1, and 0 = [z0, ..., x,| € K(;,) a simplex of dimension n. We define its
boundary as the following element of C),_;(K):

0,0 = Z T

TCoOo
|7|=]o|—1

We can extend the operator 0,, as a linear map 9,,: C,(K) — C,_1(K).

Example: Consider the simplicial complex
K = {0}, 1], [2],[3],10,1],10,2], (1, 2], [1,3],(2,3], [0, 1, 2] }.

The boundary of the 1-chain [0, 1] + [1,2] 4+ [2,0] is
o1 ([0,1] + [1,2] + [2,0]) = 01[0,1] + 611, 2] + 612, 0]
= (0] + (1] + (1] + [2] + [2] +-[0] = 0
1 — 2 )

e -
0 3




Operador bordo 10/44 (3/5)

Let n > 1, and 0 = [z0, ..., x,| € K(;,) a simplex of dimension n. We define its
boundary as the following element of C),_;(K):

0,0 = Z T

TCoOo
|7|=]o|—1

We can extend the operator 0,, as a linear map 9,,: C,(K) — C,_1(K).

Example: Consider the simplicial complex
K = {0}, 1], [2],[3],10,1],10,2], (1, 2], [1, 3], (2, 3], [0, 1, 2] }.

The simplex [0,1,2] has the faces [0, 1] and [1,2] and [2,0]. Hence

8:[0,1,2] = [0,1] + [1,2] + [2,0].

1 2 Do —_—

0'3 - ‘/




Operador bordo 10/44 (4/5)

Let n > 1, and 0 = [z0, ..., x,| € K(;,) a simplex of dimension n. We define its
boundary as the following element of C),_;(K):

0,0 = Z T

TCoOo
|7|=]o|—1

We can extend the operator 0,, as a linear map 9,,: C,(K) — C,_1(K).

For any n > 1, for any ¢ € C,,(K), we have 0,,_1 0 0, (c) = 0.

1 2 82 . 81 .X 2 .X 2
4 . 7 . Wi -
0 3 J



Operador bordo 10/44 (5/5)

For any n > 1, for any ¢ € C,,(K), we have 0,,_1 0 0, (c) = 0.

Proof: Suppose that n > 2, the result being trivial otherwise.
Since the boundary operators are linear, it is enough to prove that 9,,_1 0 9, (c) = 0 for

all simplex o € K(y).
By definition, d,(c) = > +co T, and

o1
an—l O an(o-) — Z an 1 ) — Z Z
o)1 1=l |21

We can write this last sum as

)SRED DRPED SR

vCo

[T|=lo|-1|v|=[r]-1 lv|=lo|-2
where a, ={17 Co ||| =|o| —1,v C 7T}.
It is easy to see that for every v such that dimv = dim7 — 2, we have a, =2 = 0.
X2 X2
1 2 ) — o1 O .

»‘/ .‘:

X 2



Ciclos e bordos 11/44 (1/4)

Let n > 0. We have a sequence of vector spaces

on-+1 on

oo — 1 (K) 2255 Cp(K) =5 C_1(K) — ...

The maps 0,11 and 0,, are linear maps, and we can consider their kernel and image.

Definition: We define:
e The n-cycles: Zn(K) =Ker(0,) ={ce C,(K) | On(c) =0},
e The n-boundaries: B, (K) =1Im(0,+1) = {0n11(c) | c € Cpi1(K)}.

1 2
Example: Consider the simplicial complex
0 3
The 1-cycles are: The 1-boundaries are:
0 [0,2] + [2,3] + [0, 3] 0

0.1+ [L,2] 4 0.2 [0,1] + [1,2] + [2,3] + [0, 3]. [0,1] + [1,2] + [0, 2]



Ciclos e bordos 11/44 (2/4)

Let n > 0. We have a sequence of vector spaces

on-+1 on

oo — 1 (K) 2255 Cp(K) =5 C_1(K) — ...

The maps 0,11 and 0,, are linear maps, and we can consider their kernel and image.

Definition: We define:
e The n-cycles: Zn(K) =Ker(0,) ={ce C,(K) | On(c) =0},
e The n-boundaries: B, (K) =1Im(0,+1) = {0n11(c) | c € Cpi1(K)}.

We have B, (K) C Z,(K).

1 2
Example: Consider the simplicial complex
0 3
The 1-cycles are: The 1-boundaries are:
0 [0,2] + [2,3] + [0, 3] 0

0.1+ [L,2] 4 0.2 [0,1] + [1,2] + [2,3] + [0, 3]. [0,1] + [1,2] + [0, 2]



Ciclos e bordos 11/44 (3/4)

Let n > 0. We have a sequence of vector spaces

on-+1 on

The maps 0,11 and 0,, are linear maps, and we can consider their kernel and image.

Definition: We define:
e The n-cycles: Zn(K) =Ker(0,) ={ce C,(K) | On(c) =0},
e The n-boundaries: B, (K) =1Im(0,+1) = {0n11(c) | c € Cpi1(K)}.

We have B, (K) C Z,(K).

Definition: We say that two chains ¢, ¢’ € C,,(K) are homologous if there exists
b € B, (K) such that c = ¢ +b.

interpretation: two cycles are homologous if they represent the same ‘hole’

Example:

A=11V - A=1

0,2] +1(2,3]+[0,3] =[0,1] + [1,2] + [2,3] +[0,3] + [0, 1] + |0, 2] + [1, 2].



Ciclos e bordos 11/44 (4/4)

Let n > 0. We have a sequence of vector spaces

on-+1 on

The maps 0,11 and 0,, are linear maps, and we can consider their kernel and image.

Definition: We define:
e The n-cycles: Zn(K) =Ker(0,) ={ce C,(K) | On(c) =0},
e The n-boundaries: B, (K) =1Im(0,+1) = {0n11(c) | c € Cpi1(K)}.

We have B, (K) C Z,(K).

Proof: Let b € B,,(K) be a boundary. By definition, there exists ¢ € C,,;1(K) such
that b = 0,,11(c). Using 0,0,411 = 0, we get

B () = D1 (c) = 0,

hence b € Z,,(K).



Grupos de homologia 12/44 (1/4)

We have defined a sequence of vector spaces, connected by linear maps
cor — Cpa1(K) — Cp(K) — Cr 1 (K) — -+
and for every n > 0, we have defined the cycles and the boundaries Z,,(K) and B, (K).

Since B, (K) C Z,(K), we can see B, (K) as a linear subspace of Z,, (K).

Definition: The n'" (simplicial) homology group of K is the quotient vector space



Grupos de homologia 12/44 (2/4)

We have defined a sequence of vector spaces, connected by linear maps
o — Cp1 (K) — Cp(K) — Crp 1 (K) —> - -
and for every n > 0, we have defined the cycles and the boundaries Z,,(K) and B, (K).
Since B, (K) C Z,(K), we can see B, (K) as a linear subspace of Z,, (K).
Definition: The n'" (simplicial) homology group of K is the quotient vector space
Hy(K) = Zn(K)/Bn(K).

Remark: A finite Z/27Z-vector space must be isomorphic to (Z/2Z)* for some k.

Definition: Let K be a simplicial complex and n > 0. lts nt" Betti number is the
integer 3, (K) = dim H,(K).

H,(K) = (Z/2Z)" - Bn(K) =k



Grupos de homologia 12/44 (3/4)

We have defined a sequence of vector spaces, connected by linear maps
o — Cp1 (K) — Cp(K) — Crp 1 (K) —> - -
and for every n > 0, we have defined the cycles and the boundaries Z,,(K) and B, (K).
Since B, (K) C Z,(K), we can see B, (K) as a linear subspace of Z,, (K).
Definition: The n'" (simplicial) homology group of K is the quotient vector space
Hy(K) = Zn(K)/Bn(K).

Remark: A finite Z/27Z-vector space must be isomorphic to (Z/2Z)* for some k.

Definition: Let K be a simplicial complex and n > 0. lts nt" Betti number is the
integer 3, (K) = dim H,(K).

Example: Ho(K) =7/2Z - Bo(K) =1
H\(K) =Z/2Z - Bi(K) =1
Hy(K) =0 ~ B2(K)=0



Grupos de homologia

12/44 (4/4)
- 08 O :O
H(X)  Z)2Z 7./27 7./27 7./27 (2,27,
H(X) 0 7./27. 0 (Z.)27.)? (Z./27.)?
B1(X) 0 1 0 2 2
Hy(X) o 0 7./27, 0 0
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Ordenar o complexo simplicial 14/44

Let K be a simplicial complex with n simplices. Choose a total order of the simplices
ol <ot <. <o”

such that
Vo,re K, TC 0o — 7 <o.

In other words, a face of a simplex is lower than the simplex itself.
For every 1 < n, consider the simplicial complex

K'={o', .. 0"}

We have Vi < n, K"t = K*U {o"*t'}, and K™ = K. They form an inscreasing
sequence of simplicial complexes

K' c K? ¢ ... ¢ K"

B Y N N N A (0 ) 4




Positividade dos simplexos

15/44 (1/8)

Kl

K2

K3

*—a0

o o
K5

]

K6

]

K?

| ]

K8
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K9
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KlO

Let £ > 0. We will compute the homology groups of K* incrementally:

Hy(KY), Hy(K?), H,(K?), H,(K*), Hy(K®), H,(K°), H,(K"), Hp(K?®), H,(K°), Hp(K)



Positividade dos simplexos 15/44 (2/8)

L AR

Kl K2 K3 K4 K5 K6 K? K8 K9 KlO

Let £ > 0. We will compute the homology groups of K* incrementally:
Hy(K'), He(K?), Hy(K?), H(K?"), Hi(K°), He(K®), Hy(K"), Hi(K®), Hi(K"), Hp(K'")

Definition: Let i € [1,n], and d = dim(c*). Recall that K* = K*~' U {0;}.
The simplex o is positive if there exists a cycle c € Z4(K") that contains o".

In other words, there exist ¢ = Zong g0 € C,(K") such that €,: = 1 and

On(c) = 0. Otherwise, o’ is negative.

Example:
e 0! € K is positive because it is included in the cycle c = ¢! (indeed, 9y(c!) = 0).



Positividade dos simplexos

15/44 (3/8)
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Let £ > 0. We will compute the homology groups of K* incrementally:

Hy(KY), Hy(K?), H,(K?), H,(K*), Hy(K®), H,(K°), H,(K"), Hp(K?®), H,(K°), Hp(K)

Definition: Let i € [1,n], and d = dim(c*). Recall that K* = K*~' U {0;}.
The simplex o is positive if there exists a cycle c € Z4(K") that contains o".
In other words, there exist c =Y ;i €, -0 € Cp(K") such that €,: =1 and

(n)

On(c) = 0. Otherwise, o’ is negative.

Example:

e 0! € K is positive because it is included in the cycle c = ¢! (indeed, 9y(c!) = 0).

e 0% € K? is positive because it is included in the cycle ¢ = 02 (indeed, dy(c?)

=0).



Positividade dos simplexos 15/44 (4/8)

LA

Kl K2 K3 K4 K5 K6 K? K8 K9 KlO

Let £ > 0. We will compute the homology groups of K* incrementally:
Hy(K'), He(K?), Hy(K?), H(K?"), Hi(K°), He(K®), Hy(K"), Hi(K®), Hi(K"), Hp(K'")

Definition: Let i € [1,n], and d = dim(c*). Recall that K* = K*~' U {0;}.
The simplex o is positive if there exists a cycle c € Z4(K") that contains o".

In other words, there exist ¢ = Zong g0 € C,(K") such that €,: = 1 and

On(c) = 0. Otherwise, o’ is negative.
Example:
e 0! € K is positive because it is included in the cycle c = ¢! (indeed, 9y(c!) = 0).

e 0% € K? is positive because it is included in the cycle ¢ = 02 (indeed, 9y(c?) = 0).

e 0% € K® is negative because it is not included in a cycle Z;(K?). Indeed, C1(K?)
only contains 0 and o5, and 91(c°) = 0! + o2 # 0.



Positividade dos simplexos 15/44 (5/8)

I R P S N A (B B | p || 4

Kl K2 K3 K4 K5 K6 K? K8 K9 KlO

Let £ > 0. We will compute the homology groups of K* incrementally:
Hy(K'), He(K?), Hy(K?), H(K?"), Hi(K°), He(K®), Hy(K"), Hi(K®), Hi(K"), Hp(K'")

Definition: Let i € [1,n], and d = dim(c*). Recall that K* = K*~' U {0;}.
The simplex o is positive if there exists a cycle c € Z4(K") that contains o".

In other words, there exist ¢ = Zong g0 € C,(K") such that €,: = 1 and

On(c) = 0. Otherwise, o’ is negative.

Example:
e 0! € K is positive because it is included in the cycle c = ¢! (indeed, 9y(c!) = 0).

e 0% € K? is positive because it is included in the cycle ¢ = 02 (indeed, 9y(c?) = 0).
e 0% € K® is negative because it is not included in a cycle Z;(K?). Indeed, C1(K?)
only contains 0 and o5, and 91(c°) = 0! + o2 # 0.

e 0% € K8 is positive because it is included in the cycle c = 0® + 0% + 07 4+ ¢°
(indeed, 91(c) = 20! + 202 + 203 + 20% = 0).



Positividade dos simplexos 15/44 (6/8)

Definition: Let ¢ € [[1,n], and d = dim(0;). Recall that K* = K*~1 U {0;}.
The simplex ¢; is positive if there exists a cycle ¢ € Z;(K") that contains o;.
Otherwise, o; is negative.

Remark: By adding ¢ in the simplicial complex, the only groups that may change are
Zd(KZ> and Bd_l(Ki).



Positividade dos simplexos 15/44 (7/8)

Definition: Let ¢ € [[1,n], and d = dim(0;). Recall that K* = K*~1 U {0;}.
The simplex ¢; is positive if there exists a cycle ¢ € Z;(K") that contains o;.
Otherwise, o; is negative.

Remark: By adding ¢ in the simplicial complex, the only groups that may change are
Zd(KZ> and Bd_1<Ki).

If 0% is positive, then 84(K") = B4(K* 1) + 1,
and for all d’ # d, By (K*) = By (K*1).

Proof: We start by proving the following fact: if c € Z;(K?") is a cycle that contains o,
then c is not homologous (in K*) to a cycle of ¢/ € Zz(K*™1).

By contradiction: if c = ¢ + b with ¢/ € Zy(K* ') and b € By(K"), then
c—c =be By(K"). This is absurd because we just added o;: it cannot appear in a
boundary of K*.

As a consequence, dim Z4(K*) = dim Zg(K*™1) + 1.
We conclude by using the relation 34(K*) = dim Z4(K"*) — dim Bg(K*).



Positividade dos simplexos 15/44 (8/8)

Definition: Let ¢ € [[1,n], and d = dim(0;). Recall that K* = K*~1 U {0;}.
The simplex ¢; is positive if there exists a cycle ¢ € Z;(K") that contains o;.
Otherwise, o; is negative.

Remark: By adding ¢ in the simplicial complex, the only groups that may change are
Zd(KZ> and Bd_1<Ki).

If 0% is positive, then 84(K") = B4(K*™1) +1,
and for all d’ # d, By (K*) = By (K*1).
If o' is negative, then Bq_1(K") = Bq_1(K" 1) —1,
and forall d' #d—1, By (K") = B (K1),
Proof: We start by proving the following fact: 94(c") is not a boundary of K*~1.

Otherwise, we would have 9;4(c*) = 94(c) with ¢ € Cy(K*™1), i.e. 94(c" +¢) = 0.
Hence o + ¢ would be a cycle of K* that contains ¢, contradicting the negativity of o*.

As a consequence, dim By_1(K") = dim By (K" 1) + 1.
We conclude by using the relation 8;_1(K*) = dim Z4_1(K*) — dim By_1(K").



Algoritmo incremental 16 /44 (1/2)

If o' is positive, then B4(K*) = Bq(K*™1) +1,
and for all d’ # d, By (K*) = By (K1).

If 0% is negative, then B4_1(K") = Bq_1 (K" 1) —1,
and forall d' #d—1, B4(K*) = Bg (K 1).

We deduce the following algorithm:

Input: an increasing sequence of simplicial complexes K! C --- C K" = K
Output: the Betti numbers [y(K),...34(K)
/80 < 0, ey Bd. — 0,
for i + 1 to n do

d = dim(o?);

if o' is positive then

| Br(KY) « Bp(K") + 1

else if d > 0 then

| Broa(KY) = B (K — 1




Dimension
Positivity
Bo(K*)
B1(K*)

Algoritmo incremental

16/44 (2/2)

(P Ry %
® o

Kl K2 K3 K4 K5 K6 K? KS K9 KlO

0 0 0 0 1 1 1 1 1 2

+ + + + — — — + + —

1 2 3 4 3 2 1 1 1 1

0 0 0 0 0 0 0 1 2 1
We deduce the following algorithm:

Input: an increasing sequence of simplicial complexes K! C --- C K" = K

Output: the Betti numbers [y(K),...34(K)
/80 — 0? seey ﬁd. — 0:
for i + 1 to n do

d = dim(o?);
if o' is positive then
| Be(K?) = Br(K*) + 1;
else if d > 0 then
| Bre—1(K7) = Beoa (K1) = 1




Caracteristica de Euler 17/44 (1/2)

Reminder: the Euler characteristic of a simplicial complex K is

X(K) = Z (—=1)* - (number of simplices of dimension 7).
0<<n

Proposition: The Euler characteristic is also equal to

X(K) = Z (—1)"- Bi(K).

0<i:<n



Caracteristica de Euler 17/44 (2/2)

Proposition: The Euler characteristic of K is equal to

X(K) = Z (—1)"- Bi(K).

0<:<n

Proof: Pick an ordering K! C --- Cc K" = K of K, with K* = K"t U {0"} for all
2 <1 <n.

By induction, let us show that, for all 1 < m <n,
Z (=1)" - Bi( K™) = Z (=1)* - (number of simplices of dimension i of K™).
0<i<m 0<i<m
For m =1, 0™ is a O-simplex, and the equality reads 1 = 1.

Now, suppose that the equality is true for 1 < m < n, and consider the simplex o™ 1.
Let d = dim o™ *!. The right-hand side of the Equation is increased by (—1)<.

If 0™ is positive, then B4;(K™ 1) = B4(K™) + 1, hence the left-hand side of the

Equation is increased by (—1)<.

Otherwise, it is negative, and By_1(K™%!) = 84_1(K™) — 1, hence the left-hand side
of the Equation is increased by —(—1)4=1 = (—1)<.



Matriz de bordo

The only thing missing to apply the incremental algorithm is to determine whether a

simplex is positive or negative.

18/44 (1/8)

Let K be a simplicial complex, and ¢! < 0% < --- < ¢™ and ordering of its simplices.
p p g

Define the boundary matrix of K, denoted A, as follows: A is a n X n matrix, whose

(7, 7)-entry (i row, j* column is)

6

A;; = 1 if o’ isa face of 07 and |0"| = |o?| — 1
0 else. g2 g3 A o g
o! (o 0 0 0 0
10 0 0 O
o 10 0 0 0 O
o4 10 0 0 0 0 O
o 10 0 0 0 0 O
o 10 0 0 0 0 O
o 10 0 0 0 0 O
o 10 0 0 0 0 O
& 10 0 0 0 0 O
20 \0 0 0 0 0 0

oSO O O O O

o O

OO OO OO

o = O

OO O O O O




18/44 (2/8)

Matriz de bordo

By adding columns one to the others, we create chains.

If we were able to reduce a column to zero, then we found a cycle.

O.l 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 0.10

~ N
OO OO —-H OO —-H - O
O O - OO OO OO
OO OO o oo o oo
OO —H - O OO O OO
O —A - O O OO O OO
— — O O O OO O OO
OO OO oo oo o oo
OO O OO o oo o oo
OO OO o oo o oo
OO OO o oo o oo
~_ -
— &N 0NN | o0 © I~ 0 o o
B b b b b b b b 010
yl TN
OO OO —-H OO —-H - O
O O - OO O OO
——N O O - OO OO OO
OO - 14 OO OO O O
OlH)I—I OO O O O O O O
— — O O O OO O OO
OO OO oo o o oo
OO OO o oo o oo
OO OO o oo o oo
OO OO o oo o oo
N~ -
— &N Mo < 0 © >~ o0 o O
B b b b b b b b 010

O1(c®>+ 0%+ 0" +0%) =0

01(0%) = 0% + 03



Matriz de bordo 18/44 (3/8)

The process of reducing columns to zero is called Gauss reduction.
For any j € [1,n], define 5(j) = max{i € [1,n] | Ass # 0},
If A;; =0 for all j, then §(j) is undefined.

We say that the boundary matrix A is reduced if the map d is injective on its domain of

definition. &
14X 4

@XO@XO

ol 62 o3 ot 55 56 o7 gxoéaxgm
01(0000100000\
210 00011 0 0 0 0
10 00 0 0()1 0 0 0
410 0 00O OO 0 O
510 0 00O O OO0 0 1
10 0 0 0 0 0O O0OO0OTO0O
710 0 0 0 00O 0O O0O0O0
10 0 0 00OO O OO0 1
910 0 0 0 0 0 0 0 011
Lo \0 00 0O0O0O0GO0O0 0



18/44 (4/8)

5(j) do

Matriz de bordo

Output: a reduced matrix A

for <1 ton do

L

while there exists i < j with 6(7)
L add column 7 to column j;

Algorithm 2: Reduction of the boundary matrix
Input: a boundary matrix A

9 0.10

Yo ©

ol 0% o3 ot o° 0% of

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 0.10

)

110

1

1 001 O
o0 0 0 0 0 1/]0|1 O

0O 0/ 10 O

0000000001
000000000 0
0000000000 0
000000000 1
0000000001
\0 0000000 0 0

0 0 0 0 1
0 0 0 0 1
0 0 0 0 0 1

[

0_1
0_2
0_3
0_4
0_5
0_6
0_7
08
0_9
0_10

0
0
1 0 0 O
1)1 0

o0 0 0 0 0 0 0 1
0O 0 0 0 0 0 0 0 0
o0 0 0 0 0 0 0 0
0O 000 0 0 0 0 01

0000 0C(
\0 00000000 0

0O 0 0 0 0 1

0

0

o 0 0 0 0 0 0 0 0 1

0
0




18/44 (5/8)

5(j) do

Matriz de bordo

Output: a reduced matrix A

for <1 ton do

L

while there exists i < j with 6(7)
L add column 7 to column j;

Algorithm 2: Reduction of the boundary matrix
Input: a boundary matrix A

o —
- L OO0 0O+~ O
O

P ¢
e B O H O 4O OO0 O OO

P3¢

Po H 1 OO OO OO OO O

YT oo~ ~0 o000 oo

N e R R e M e Y e = e I

N Ry e N = === e

<t

b OO OO OOoO OO

™

b OO0 o000 oo

[a\]

b ooococococooco oo

—

b OO oo oo O oo

N -~

- o4 o < 0 © >~ o0 o o

6 6 b b b b b b b

S = R
L OO0 100 A —HO
e B ©OH O HO OO O OO

X

Po — OO OO OO OO

T oo ~0 0000 o

Y O~ ocococooo

v OO0 o000 oo

<t

b OO OO OO

(ap]

b Ooococoococooo oo

[a\]

b oo ococococooco oo

—

b oocoococococooco oo
N -~

™ <t 0 Ne} b~ 0

— N (o))
b b b b b b b b b

o
i

)
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Matriz de bordo

Algorithm 2: Reduction of the boundary matrix

—

Output: a reduced matrix A

for <1 ton do

Input: a boundary matrix A

5(j) do

while there exists i < j with 6(7)
L add column 7 to column j;

Yo ©

ot 02 o3 ot o® 0% o

~ N
OO OO - OO - - O
O — O O OO o oo
OO OO o oo o oo
OO - - OO OO O O
O - - OO OO O OO
—— — O OO OO OO
OO OO o oo o oo
OO OO o oo o oo
OO OO OO oo o oo
OO OO oo oo o oo
~ -
- o4 o < 0 © >~ o0 o o
B b b b b b b o) 010
~ N
OO OO - OO - - O
O — O O OO o oo
—l— O OO OO O OO
OO - - OO OO o O
O r— - OO OO OO
——O O O OO OO
OO OO o oo o oo
OO OO o oo o oo
O O OO OO o o oo
OO OO O oo o oo
~ -
— o o < 0 © >~ o0 O

(o
o

o
o
o
o
o
o
o
0_10
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Matriz de bordo

Algorithm 2: Reduction of the boundary matrix

Input: a boundary matrix A

—

Output: a reduced matrix A

for <1 ton do

X M ma
vo ©°
X X
6,00/0
X
Yo
b~
o
Ne)
o}
10
o
<
o}
(ap)
b
(@]
o}
Lo
o}
Q
o
2 ol
= " S
| Co S
<> X o
> «oxa
<= o
N g ©
s 8 -
'~ = 5
o
V O ©
- o X
St
..Tb.n...u 0
m o o
o = <
-~ o)
S o
S .
o) o}
=2 ~
- |
< b
2 — _
] S

10000\

0O 0 0 0 O

0O 0 0 0 1
0O 0 0 0 1

0O 0 0 0 0 1 1 0 0 0

O 0 0 0 0 0 1 0 0 0

0O 0 0 0 0 0 0 0 0 1

0 000O00O0O0O0 O
0 000O00O0O0O0 O
0 000O0DO0GO0O0 0 1
0 000O00O0GO0O OO0 1
\0 000 0O0O0O0 0 0

|

0_2

0_3

0_4

n © M~ o O
B © b b b

0_10

0000100000\
0 00 01 1 0010

(

1 0 0 O

0O 0 0 0 0 1

0
0
0
0

0O 0 0 0 0(1)0(C1)O0
o0 0 0 0 0 0 0 1
O 0 0 0 0 0 0 0 0
o0 0 0 0 0 0 0 0

0O 00 0 0 0 0 0 01

000000000 1
\0 00000000 0




Matriz de bordo 18/44 (8/8)

Algorithm 2: Reduction of the boundary matrix Suppose that the boundary
Input: a boundary matrix A matrix is reduced. Let j € [1,n].
Output: a reduced matrix A If 5(j) is defined, then the simplex o7 is

for <1 ton do

_ o _ . negative.
L while there exists i < j with 6(i) = 0(j) do

| add column i to column j; Otherwise, it is positive.

b
6

6X§6XX6\

6 ¢

ol 02 o3 ot o5 o5 o7 gDXOQXUm
01(0000100000\
210 00 0()1 0 0 0 O
s 10 0 0 0 01 0 0 0
10 0 0 0 0 00 0O
s 10 00 00O OO0 O0 1
510 0000 OO OO0 O
710 0 0 0 0 0 0 0 0 O
s10 00 00 0 OO0 0 1
o210 0 0 00O OO0 O0CC
o \0 00000000 0

—_
DN
w
W
(@)
(@)
~
(02¢)
Ne)
=
@)

Q
Q
)
)
)
Q
Q
)

n
+ 9
+ 9
n
|
|
|
n
n
|



Algoritmo final 19/44

Incremental computation of the homology

Input: an increasing sequence of simplicial complexes K! C --- C K" = K
Output: the Betti numbers [y(K),...04(K)
By < 0,..., 85 < 0;
for 1 +— 1 to n do
d = dim(c?);
if o’ is positive then
| Br(K") + Bp(K') + 1;
else if d > 0 then
| Bro1(K*) « Bp—1 (K1) — 1

Gauss reduction of the boundary matrix

Input: a boundary matrix A
Output: a reduced matrix A
for i1 < 1 Jo ndo
while there exists i < j with 6(i) = 0(j) do
L L add column 7 to column j;




IT - More about homology
1 - Topology of simplicial complexes



Simplexo padrao 21/44 (1/2)

In order to describe topological spaces, we will decompose them into simpler pieces.
The pieces we shall consider are the standard simplices.

The standard simplex of dimension 7 is the following subset of R" 1

A, ={x=(x1,...,Tp11) € R™ T | z1,...,xp01 >0and 1 + ... + 11 = 1}

r



Simplexo padrao 21/44 (2)2)

In order to describe topological spaces, we will decompose them into simpler pieces.
The pieces we shall consider are the standard simplices.

The standard simplex of dimension 7 is the following subset of R" 1

A, ={x=(x1,...,Tp11) € R™ T | z1,...,xp01 >0and 1 + ... + 11 = 1}

- y

Ao Aq AD)

Remark: For any collection of points a1, ..., ar € R™, their convex hull is defined as:

conv({al...ak}) = {Zlgigk tiCLi ‘ tl + ...+ tk = 1, tl, ...,tk; Z O} .

We can say that A,, is the convex hull of the vectors eq, ..., e,,11 of R®™ where

e; = (0,...,1,0,...,0) (3™ coordinate 1, the other ones 0).



Realizagao topologica 2244 (1/2)

Let us give simplicial complexes a topology.

Let K be a simplicial complex, with vertex V = {1,...,n}.
In R™, consider, for every i € [1,n], the vector e; = (0, ...,1,0,...,0) (i*" coordinate 1,

the other ones 0).
Let |K| be the subset of R™ defined as:

K| = | conv({e;.j € o})

ceK

where conv represent the convex hull of points.
Endowed with the subspace topology, (| K|, 7| k) is a topological space, that we call
the topological realization of K.

If ay,...,ar € R™, the convex hull is defined as:
Y, Y

conv({aj...ay}) = {Zlgigktiai bty =1, fy, ety > o}.



Realizagao topologica 2244 (2/2)

Let us give simplicial complexes a topology.

Let K be a simplicial complex, with vertex V = {1,...,n}.
In R™, consider, for every i € [1,n], the vector e; = (0, ...,1,0,...,0) (i*" coordinate 1,
the other ones 0).
Let |K| be the subset of R™ defined as:

K| = | conv({e;.j € o})

ceK

where conv represent the convex hull of points.
Endowed with the subspace topology, (| K|, 7| k) is a topological space, that we call
the topological realization of K.

Remark: If the simplicial complex can be drawn in the plane (or space) without crossing
itself, then its topological realization simply is the subspace topology.

Example: K = {[0],[1],[2],[3],]0,1],[1, 2], [2,0],[1,3],[2,3], [0, 1, 2]}.

1
0



riangulacoes 23 /44 (1/2)

Let X be a topological space. A triangulation of X is a simplicial complex
K such that its topological realization |K| is homeomorphic to X.

Example: The following simplicial complex is a triangulation of the circle:
0
K = {0}, (1}, [2], [0, 1], [1, 2], 2, 0]}

Example: The following simplicial complex is a triangulation of the sphere:

K = 1[0}, [1], 2], [3], [0, 1], 1,2}, 2, 3], 3, 0], [0, 2], [1, 3], 10,1, 2], [0, 1, 3}, [0, 2, 3], [1, 2, 3] }.

3
0




Let X be a topological space. A triangulation of X is a simplicial complex

K such that its topological realization |K| is homeomorphic to X.

Given a topological space, it is not always possible to triangulate it.
However, when it is, there exists many different triangulations.

Theorem (Manolescu, 2016): For any dimension n > 5 there is a compact topological
manifold which does not admit a triangulation.
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Simplexo singular 25 /44 (1/3)

Let us consider a topological space X. We want a notion of simplices.

£




Simplexo singular 25 /44 (2/3)

Let us consider a topological space X. We want a notion of simplices.

O : @‘\
I Ay

A singular n-simplex is a continuous map A, — X, where A,, is the
standard n-simplex. We denote §,, their set.

We now want a notion of boundary.



Simplexo singular 25 /44 (3/3)

Let us consider a topological space X. We want a notion of simplices.
Ay

A, I

A singular n-simplex is a continuous map A, — X, where A,, is the
standard n-simplex. We denote §,, their set.

We now want a notion of boundary.

The boundary of A,, consists in n + 1 copies of A,,_1.

We can restrict a singular n-simplex A,, — X to the boundaries, giving n + 1 singular
(n — 1)-simplices A,,_1 — X.

The boundary of a singular n-simplex A,, — X is the formal sum of the
n + 1 singular (n — 1)-simplices A,,_1 — X



Homologia singular 26/44 (1/4)

For a simplicial complex K, we have defined

n-chains EJGK(n) €, -0 where Vo € K,), €, € Z/2Z
boundary operator 0,0 = ZI |1|Co|' 7

] 8n—|—2 8n+1 8n 8n—1
chain complex i Cp 1 (K) —— Cp(K) ——— Cp 1 (K) ——— . ..
n-cycles and n-boundaries Zn(K) = Ker(0,) B, (K)=1m(0p11)

ntsimplicial homology group H,(K) = Z,(K)/B,(K)



Homologia singular 26/44 (2/4)

For a simplicial complex K, we have defined

n-chains EaeK(n) €, -0 where Vo € K,), €, € Z/2Z
boundary operator 0,0 = Z| |T|ca| T
T|l=lo|—1
] 8n+2 8n+1 8n 8n—l
chain complex i Cp 1 (K) —— Cp(K) ——— Cp 1 (K) ——— . ..
n-cycles and n-boundaries Zn(K) = Ker(0,) B, (K)=1m(0p11)

ntsimplicial homology group H,(K) = Z,(K)/B,(K)

For a topological space X, we can define

n-chains > vcs, €0 -0 Wwhere Vo €S, ¢, € Z/2Z
boundary operator 0,0 = Z| |T|ca| T
TI=lo|—1
] 8n+2 8n+1 8n an—l
chain complex i —— O 1 (X)) ——— Cp( X)) —— Cp 1 (X)) ———— ...
n-cycles and n-boundaries Zn(X) = Ker(0) B, (X) =1m(0py1)
nsingular homology group  H,(X) = Z,(X)/B,(X)




Homologia singular 26/44 (3/4)

Theorem: If X is a topological space and K a triangulation of it, then for all n > 0,
H,(X)=H,(K).

Ho(X) = Z/2Z Ho(K) =7/)2Z
H\(X) =Z/2Z Hi(K)=17/2Z



Homologia singular 26/44 (4/4)

Theorem: If X is a topological space and K a triangulation of it, then for all n > 0,
H,(X)=H,(K).

Ho(X) = Z/2Z Ho(K) =7/)2Z
H\(X) =Z/2Z Hi(K)=17/2Z
H>(X) =0 H>(X) =0

Theorem: If X and Y are homotopy equivalent topological spaces, then for all n > 0,
H,(X)=H,Y).

Corollary: If K and L are homotopy equivalent simplicial complexes, then for all n > 0,
H,(K)=H,(L).

the homology groups are invariants of homotopy classes
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Homologia é um functor 28 /44

We have seen that homology transforms topological spaces into vector spaces

H,: Top — Vect

Actually, it also transforms continous maps into linear maps

Hy,
x 1.y H,(x) N g vy
This operation preserves commutative diagrams:
gof Hn(gof)
/\ /\k
X > Y > /
; X)— H,(Y) — H,(Z
! ’ (X) gogp HeV) g He(2)




Aplicacao - na teoria 29 /44

Application (Brouwer's fixed point theorem):

Let f: B — B be a continous map, where 55 is the unit closed ball of R™. Let us show
that f has a fixed point (f(x) = x).

If not, we can define a map F': B — OB such that F restricted to OB is the identity.
To do so, define F'(x) as the first intersection between the half-line [x, f(x)) and 0B.

F(x)

Denote the inclusion i: OB — B. Then F oi: OB — OB is the identity.
By functoriality, we have commutative diagrams

Y A

id

But for i = n — 1, we have an absurdity: /\

7./27 > 0 s 7.)27.
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O problema da inferéncia homoldgicas; /44 (1/13)

Let M C R™ be a bounded subset.
Suppose that we are given a finite sample X C M.
Estimate the homology groups of M from X.



O problema da inferéncia homoldgicas; /4 (2/13)

Let M C R™ be a bounded subset.
Suppose that we are given a finite sample X C M.
Estimate the homology groups of M from X.

X M

We cannot use X directly. Its homology is disapointing:

Bo(X)=30 and [G;(X)fori>1

number of connected components /
= number of points of X



O problema da inferéncia homoldgicas; /4 (3/13)

Let M C R™ be a bounded subset.
Suppose that we are given a finite sample X C M.
Estimate the homology groups of M from X.

X M

We cannot use X directly.

Thicken X.

Definition: For every ¢t > 0, the t-thickening of the set X, denoted X7, is the set of
points of the ambient space with distance at most ¢ from X:

X'={yeR" | Tz e X, |z -yl <t}.



O problema da inferéncia homoldgicas; 44 (4/13)

Let M C R™ be a bounded subset.
Suppose that we are given a finite sample X C M.
Estimate the homology groups of M from X.

x0.05 .. P M

We cannot use X directly.

Thicken X.

Definition: For every ¢t > 0, the t-thickening of the set X, denoted X7, is the set of
points of the ambient space with distance at most ¢ from X:

X'={yeR" | Tz e X, |z -yl <t}.



O problema da inferéncia homoldgicas; /44 (5/13)

Let M C R™ be a bounded subset.
Suppose that we are given a finite sample X C M.
Estimate the homology groups of M from X.

ﬂo
\ ®ie
- :
o® .
& .
3 o
X0.1 ° 3
° x e M

We cannot use X directly.

Thicken X.

Definition: For every ¢t > 0, the t-thickening of the set X, denoted X7, is the set of
points of the ambient space with distance at most ¢ from X:

X'={yeR" | Tz e X, |z -yl <t}.



O problema da inferéncia homolégica31/44 (6/13)

Let M C R™ be a bounded subset.
Suppose that we are given a finite sample X C M.
Estimate the homology groups of M from X.

XO.2

We cannot use X directly.

\dea: Thicken X.

Definition: For every ¢t > 0, the t-thickening of the set X, denoted X7, is the set of
points of the ambient space with distance at most ¢ from X:

X'={yeR"|FreX |z -yl <t}



O problema da inferéncia homoldgicas; /44 (7/13)

Let M C R™ be a bounded subset.
Suppose that we are given a finite sample X C M.
Estimate the homology groups of M from X.

XO.3

We cannot use X directly.

\dea: Thicken X.

Definition: For every ¢t > 0, the t-thickening of the set X, denoted X7, is the set of
points of the ambient space with distance at most ¢ from X:

X'={yeR"|FreX |z -yl <t}



O problema da inferéncia homolégica31/44 (8/13)

Let M C R™ be a bounded subset.
Suppose that we are given a finite sample X C M.
Estimate the homology groups of M from X.

X0.4

We cannot use X directly.

\dea: Thicken X.

Definition: For every ¢t > 0, the t-thickening of the set X, denoted X7, is the set of
points of the ambient space with distance at most ¢ from X:

X'={yeR"|FreX |z -yl <t}



O problema da inferéncia homolégica31/44 (9/13)

Let M C R™ be a bounded subset.
Suppose that we are given a finite sample X C M.
Estimate the homology groups of M from X.

We cannot use X

\dea: Thicken X.

Definition: For every ¢t > 0, the t-thickening of the set X, denoted X7, is the set of
points of the ambient space with distance at most ¢ from X:

X'={yeR"|FreX |z -yl <t}



O problema da inferéncia homolégica31/44 (10/13)

Let M C R™ be a bounded subset.
t we are given a finite sample X C M.
omology groups of M from X.

We cannot

\dea: Thicken X.

Definition: For every ¢t > 0, the t-thickening of the set X, denoted X7, is the set of
points of the ambient space with distance at most ¢ from X:

X'={yeR"|FreX |z -yl <t}



O problema da inferéncia homolégica31/44 (11/13)

Some thickenings are homotopy equivalent to M.

- - O
Y <
o M
Hence we can recover the homology of M:

Bo(M) = Bo(X°?)
B1(M) = B1(X?)
Ba(M) = B2(X03)

2

XO'S X0.4



O problema da inferéncia homolégica31/44 (12/13)

Some thickenings are homotopy equivalent to M.

- - O
Y <
o M
Hence we can recover the homology of M:

Bo(M) = Bo(X°?)
B1(M) = B1(X?)
Ba(M) = B2(X03)

2

XO'S X0.4

Question 1: How to select a t such that Xt ~ M?

Question 2: How to compute the homology groups of X7



O problema da inferéncia homolégica31/44 (13/13)
M

/—> Hausdorff distance

N . t [
Question 1: How to select a ¢ such that X' ~ M?7 —— & Reach

Some thickenings are homotopy equivalent to M.

m
Y
o
Hence we can recover the homology of M:

Bo(M) = Bo(X°?)
B1(M) = B1(X")
Ba(M) = B2(X03)

2
X

XO'S X0.4

Question 2: How to compute the homology groups of X7



III - Homological inference
1 - Thickening parameter selection



Distancia de Hausdorff 33/44 (1/3)

Let X be any subset of R™. The function distance to X is the map

dist (-, X) : R — R
y — dist (y, X) = inf{[|ly — 2|,z € X}

A projection of y € R™ on X is a point x € X which attains this infimum.



Distancia de Hausdorff 33/44 (2/3)

Let X be any subset of R™. The function distance to X is the map

dist (-, X) : R — R
y — dist (y, X) = inf{[|ly — 2|,z € X}

A projection of y € R™ on X is a point x € X which attains this infimum.

Definition: Let Y C R"™ be another subset. The Hausdorff distance between X and Y is

dy (X,Y) = max {sup dist (y, X), sup dist (z, Y)}
yey reX

= {sup inf ||z —y|, SUP inf ||~77_y||}



Distancia de Hausdorff 33/44 (3/3)

Let X be any subset of R™. The function distance to X is the map
dist (-, X): R" — R
y — dist (y, X) = inf{||ly — z|| ,x € X}
A projection of y € R™ on X is a point x € X which attains this infimum.

Definition: Let Y C R"™ be another subset. The Hausdorff distance between X and Y is

dg (X,Y) = max {sup dist (y, X), sup dist (z, Y)}
yey xeX

= max < sup inf ||z — sup inf ||z — .
fsup inf 2~y sup inf o~ ]}

Proposition: The Hausdorff distance is equal toinf {t > 0| X CcY*and Y C X*}.




Medial axis e reach 34/44 (1/11)

The medial axis of X is the subset med (X) C R™ which consists of points y € R”
that admit at least two projections on X:

med (X) ={y € R" | 3,2’ € X,z # o', |ly — 2| = |ly — 2’| = dist (y, X)}.



Medial axis e reach 34/44 (2/11)

The medial axis of X is the subset med (X) C R™ which consists of points y € R”
that admit at least two projections on X:

med (X) ={y € R" | 3,2’ € X,z # o', |ly — 2| = |ly — 2’| = dist (y, X)}.

Examples:
The medial axis of the unit circle is the origin



Medial axis e reach 34/44 (3/11)

The medial axis of X is the subset med (X) C R™ which consists of points y € R”
that admit at least two projections on X:

med (X) ={y € R" | 3,2’ € X,z # o', |ly — 2| = |ly — 2’| = dist (y, X)}.

Examples:
The medial axis of the unit circle is the origin

The medial axis of an ellipse is a segment



Medial axis e reach 34/44 (4/11)

The medial axis of X is the subset med (X) C R™ which consists of points y € R”
that admit at least two projections on X:

med (X) ={y € R" | 3,2’ € X,z # o', |ly — 2| = |ly — 2’| = dist (y, X)}.

Examples:
The medial axis of the unit circle is the origin

The medial axis of an ellipse is a segment

The medial axis of a point is the empty set ®



Medial axis e reach 34/44 (5/11)

The medial axis of X is the subset med (X) C R™ which consists of points y € R”
that admit at least two projections on X:

med (X) ={y € R" | 3,2’ € X,z # o', |ly — 2| = |ly — 2’| = dist (y, X)}.

Examples:
The medial axis of the unit circle is the origin

The medial axis of an ellipse is a segment

The medial axis of a point is the empty set ®

The medial axis of two points is their bisector



Medial axis e reach 34/44 (6/11)

The medial axis of X is the subset med (X) C R™ which consists of points y € R”
that admit at least two projections on X:

med (X) ={y € R" | 3,2’ € X,z # o', |ly — 2| = |ly — 2’| = dist (y, X)}.

The reach of X is

reach (X) = inf {dist (y, X) | y € med (X)}
=inf{||z —y| | z € X,y € med (X)}.



Medial axis e reach 34/44 (7/11)

The medial axis of X is the subset med (X) C R™ which consists of points y € R”
that admit at least two projections on X:

med (X) ={y € R" | 3,2’ € X,z # o', |ly — 2| = |ly — 2’| = dist (y, X)}.

The reach of X is

reach (X) = inf {dist (y, X) | y € med (X)}
=inf{||z —y| | z € X,y € med (X)}.



Medial axis e reach 34/44 (8/11)

The medial axis of X is the subset med (X) C R™ which consists of points y € R”
that admit at least two projections on X:

med (X) ={y € R" | 3,2’ € X,z # o', |ly — 2| = |ly — 2’| = dist (y, X)}.

The reach of X is

reach (X) = inf {dist (y, X) | y € med (X)}
inf {||z —y| |z € X,y € med (X)}.

Proposition: For every t € [0,reach (X)), the spaces X and X' are homotopy
equivalent.



Medial axis e reach 34/44 (9/11)

The medial axis of X is the subset med (X) C R™ which consists of points y € R"”
that admit at least two projections on X:

med (X) ={y € R" | 3,2’ € X,z # o', |ly — 2| = |ly — 2’| = dist (y, X)}.

The reach of X is

reach (X) = inf {dist (y, X) | y € med (X)}
inf {||z —y|| |z € X,y € med (X)}.

=X '

Proposition: For every t € [0,reach (X)), the spaces X and X' are homotopy
equivalent.




Medial axis e reach 34/44 (10/11)

The medial axis of X is the subset med (X) C R™ which consists of points y € R"”
that admit at least two projections on X:

med (X) ={y € R" | 3,2’ € X,z # o', |ly — 2| = |ly — 2’| = dist (y, X)}.

The reach of X is

reach (X) = inf {dist (y, X) | y € med (X)}
inf {||z —y| |z € X,y € med (X)}.

Proposition: For every t € [0,reach (X)), the spaces X and X' are homotopy
equivalent.

If £ > reach (X), the sets X and X' may not be homotopy equivalent.



Medial axis e reach 34/44 (11/11)

Proposition: For every t € [0,reach (X)), the spaces X and X' are homotopy
equivalent.

Proof: For every ¢ € [0,reach (X)), the thickening X* deform retracts onto X. A
homotopy is given by the following map:

Xt x [0,1] — X
(x,t) — (1 —t)z +t - proj (z, X).

Indeed, the projection proj (x, X) is well defined (it is unique).



Selecao do parametro ¢ 35/44 (1/2)

Remember Question 1: How to select a ¢ such that Xt ~ M?

I
Y

XO.3 M

Let X and M be subsets of R". Suppose that M has positive reach, and that
du (X, M) < t=reach (M).
Then X! and M are homotopic equivalent, provided that

t € [4dy (X, M) ,reach (M) — 3dyg (X, M)).



Selecao do parametro ¢ 35/44 (2/2)

Remember Question 1: How to select a ¢ such that Xt ~ M?

I
Y

XO.3 M

Let X and M be subsets of R". Suppose that M has positive reach, and that
du (X, M) < t=reach (M).
Then X! and M are homotopic equivalent, provided that

t € [4dy (X, M) ,reach (M) — 3dyg (X, M)).

Let X and M be subsets of R", with M a submanifold, and X a finite subset of M.
Suppose that M has positive reach.
Then X! and M are homotopic equivalent, provided that

t € [2dH (X, M), \/greach (M)) :



I - Simplicial homology
1 - Reminder of algebra
2 - Homological algebra
3 - Incremental algorithm

I1 - More about homology
1 - Topology of simplicial complexes

2 - Singular homology
3 - Functoriality

IIT - Homological inference
1 - Thickening parameter selection

2 - Cech complex
3 - Rips complex



riangulacoes (fracas) 37/44 (1/2)

Let us consider Question 2: How to compute the homology groups of X*'?

We must a triangulation of X?, that is: a simplicial complex K homeomorphic to X.

Actually, we will define something weaker: a simplicial complex K that is homotopy
equivalent to X.



riangulacoes (fracas) 37/44 (2/2)

Let us consider Question 2: How to compute the homology groups of X*'?

We must a triangulation of X?, that is: a simplicial complex K homeomorphic to X.

Actually, we will define something weaker: a simplicial complex K that is homotopy
equivalent to X.

AN

Either case, we will have 3;(X) = 8;(K) for all ¢+ > 0.

weak triangulation



Nervos 38/44 (1/12)

Definition: Let X be a topological space, and U = {U;}1<;<n a cover of X, thatis, a
collection of subsets U; C X such that

) ui=x

1<i<N

The nerve of U is the simplicial complex with vertex set {1,..., N} and whose
m-simplices are the subsets {i1, ..., } C {1,..., N} such that (,_, U;, # 0. Itis
denoted N (U).

Uy




Nervos 38/44 (2/12)

Definition: Let X be a topological space, and U = {U;}1<;<n a cover of X, thatis, a
collection of subsets U; C X such that

) ui=x

1<i<N

The nerve of U is the simplicial complex with vertex set {1,..., N} and whose
m-simplices are the subsets {i1, ..., } C {1,..., N} such that (,_, U;, # 0. Itis
denoted N (U).

Uy




Nervos 38/44 (3/12)

Definition: Let X be a topological space, and U = {U;}1<;<n a cover of X, thatis, a
collection of subsets U; C X such that

) ui=x

1<i<N

The nerve of U is the simplicial complex with vertex set {1,..., N} and whose
m-simplices are the subsets {i1, ..., } C {1,..., N} such that (,_, U;, # 0. Itis
denoted N (U).




Nervos 38/44 (4/12)

Definition: Let X be a topological space, and U = {U;}1<;<n a cover of X, thatis, a
collection of subsets U; C X such that

) ui=x

1<i<N

The nerve of U is the simplicial complex with vertex set {1,..., N} and whose
m-simplices are the subsets {i1, ..., } C {1,..., N} such that (,_, U;, # 0. Itis
denoted N (U).




Nervos 38/44 (5/12)

Definition: Let X be a topological space, and U = {U;}1<;<n a cover of X, thatis, a
collection of subsets U; C X such that

) ui=x

1<i<N

The nerve of U is the simplicial complex with vertex set {1,..., N} and whose
m-simplices are the subsets {i1, ..., } C {1,..., N} such that (,_, U;, # 0. Itis
denoted N (U).

Uy

-
-
-
- -
_________
_____________________



Nervos 38/44 (6/12)

Definition: Let X be a topological space, and U = {U;}1<;<n a cover of X, thatis, a
collection of subsets U; C X such that

) ui=x

1<i<N

The nerve of U is the simplicial complex with vertex set {1,..., N} and whose
m-simplices are the subsets {i1, ..., } C {1,..., N} such that (,_, U;, # 0. Itis
denoted N (U).

-~
~
~ -
-
-
-
- )




Nervos 38/44 (7/12)

Definition: Let X be a topological space, and U = {U;}1<;<n a cover of X, thatis, a
collection of subsets U; C X such that

) ui=x

1<i<N

The nerve of U is the simplicial complex with vertex set {1,..., N} and whose
m-simplices are the subsets {i1, ..., } C {1,..., N} such that (,_, U;, # 0. Itis
denoted N (U).

Uy




Nervos 38/44 (8/12)

Definition: Let X be a topological space, and U = {U;}1<;<n a cover of X, thatis, a
collection of subsets U; C X such that

) ui=x

1<i<N

The nerve of U is the simplicial complex with vertex set {1,..., N} and whose
m-simplices are the subsets {i1, ..., } C {1,..., N} such that (,_, U;, # 0. Itis
denoted N (U).

X092 =], cx B(2,0.2) is covered by Y = {B (2,0.2) | z € X'}
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Definition: Let X be a topological space, and U = {U;}1<;<n a cover of X, thatis, a
collection of subsets U; C X such that

) ui=x

1<i<N

The nerve of U is the simplicial complex with vertex set {1,..., N} and whose
m-simplices are the subsets {i1, ..., } C {1,..., N} such that (,_, U;, # 0. Itis
denoted N (U).

3-simplex

~___

/

2-simplex

X092 =], cx B(2,0.2) is covered by Y = {B (2,0.2) | z € X'}



Nervos 38/44 (10/12)

Definition: Let X be a topological space, and U = {U;}1<;<n a cover of X, thatis, a
collection of subsets U; C X such that

) ui=x

1<i<N

The nerve of U is the simplicial complex with vertex set {1,..., N} and whose
m-simplices are the subsets {i1, ..., } C {1,..., N} such that (,_, U;, # 0. Itis
denoted N (U).

X0 =, cx B(x,0.3) is covered by U = {B(2,0.3) | z € X'}



Nervos 38/44 (11/12)

Definition: Let X be a topological space, and U = {U;}1<;<n a cover of X, thatis, a
collection of subsets U; C X such that

) ui=x

1<i<N

The nerve of U is the simplicial complex with vertex set {1,..., N} and whose
m-simplices are the subsets {i1, ..., } C {1,..., N} such that (,_, U;, # 0. Itis
denoted N (U).

6-simplex ~.

5-simplex
~
4-simplex
—»
| /
3-simplex

X0 =, cx B(x,0.3) is covered by U = {B(2,0.3) | z € X'}



Nervos 38/44 (12/12)

Definition: Let X be a topological space, and U = {U;}1<;<n a cover of X, thatis, a
collection of subsets U; C X such that

U U, = X.

1<i<N

The nerve of U is the simplicial complex with vertex set {1,..., N} and whose
m-simplices are the subsets {i1, ..., } C {1,..., N} such that (,_, U;, # 0. Itis
denoted N (U).

Nerve theorem: Consider X C R™. Suppose that each U; are balls (or more generally,
closed and convex). Then N (i) is homotopy equivalent to X.

Q

N\
N\




Complexo de Cech 39/44 (1/2)

Let X be a finite subset of R™, and ¢ > 0. Consider the collection
VP ={B(z,t),x € X}.

This is a cover of the thickening X, and each components are closed balls.
By Nerve Theorem, its nerve N (V') has the homotopy type of X*.

Definition: This nerve is denoted Cecht(X) and is called the Cech complex of X at
time ¢.




Complexo de Cech 39/44 (2/2)

Let X be a finite subset of R™, and ¢ > 0. Consider the collection
VP ={B(z,t),x € X}.

This is a cover of the thickening X, and each components are closed balls.
By Nerve Theorem, its nerve N (V') has the homotopy type of X*.

Definition: This nerve is denoted Cecht(X) and is called the Cech complex of X at
time ¢.

— The Question 2 (How to compute the homology groups of X*?) is solved.



I - Simplicial homology
1 - Reminder of algebra
2 - Homological algebra
3 - Incremental algorithm

I1 - More about homology
1 - Topology of simplicial complexes

2 - Singular homology
3 - Functoriality

IIT - Homological inference
1 - Thickening parameter selection

2 - Cech complex
3 - Rips complex



Computacio do complexo de Cech 41/44 (1/3)

Let X = {z1,...,xn} C R” be finite, let t > 0 and consider the ¢-thickening

Xt = U B(z,t).

reX

o s ot v . . .
By definition, its nerve, Cech (X), the Cech complex at time ¢, is a simplicial complex
on the vertices {1,..., N} whose simplices are the subsets {i1,...,%,,} such that

ﬂ E(ximt) 7& 0.

1<k<m



Computacio do complexo de Cech 41/44 (2/3)

Let X = {z1,...,xn} C R” be finite, let t > 0 and consider the ¢-thickening

Xt = U B(z,t).

reX

o .t y . . o
By definition, its nerve, Cech (X), the Cech complex at time ¢, is a simplicial complex
on the vertices {1,..., N} whose simplices are the subsets {i1,...,%,,} such that

ﬂ B(ﬂ?ik,t> 7& @
1<k<m
Therefore, computing the Cech complex relies on the following geometric predicate:
Given m closed balls of R"”, do they intersect?

This problem is known as the smallest circle problem.
It can can be solved in O(m) time, where m is the number of points.



Computacio do complexo de Cech 41/44 (3/3)

Let X = {z1,...,xn} C R” be finite, let t > 0 and consider the ¢-thickening

Xt = U B(z,t).

reX

o .t y . . o
By definition, its nerve, Cech (X), the Cech complex at time ¢, is a simplicial complex
on the vertices {1,..., N} whose simplices are the subsets {i1,...,%,,} such that

ﬂ B(ﬂ?ik,t> 7& @
1<k<m
Therefore, computing the Cech complex relies on the following geometric predicate:
Given m closed balls of R"”, do they intersect?

This problem is known as the smallest circle problem.
It can can be solved in O(m) time, where m is the number of points.

+ in practice, we prefer a more simple version



Complexo de clique 42 /44 (1/6)

Let G be a graph.
We call a clique of G a set of vertices v, ..., v, such that for every i, 5 € [1, m] with
i # j, the edge |v;, v;] belongs to G.




Complexo de clique 42 /44 (2/6)

Let G be a graph.
We call a clique of G a set of vertices v, ..., v, such that for every i, 5 € [1, m] with
i # j, the edge |v;, v;] belongs to G.

2-clique



Complexo de clique 42 /44 (3/6)

Let G be a graph.
We call a clique of G a set of vertices v, ..., v, such that for every i, 5 € [1, m] with
i # j, the edge |v;, v;] belongs to G.

3-clique



Complexo de clique 42 /44 (4/6)

Let G be a graph.
We call a clique of G a set of vertices v, ..., v, such that for every i, 5 € [1, m] with
i # j, the edge |v;, v;] belongs to G.

-
- - o

______

4-clique



Complexo de clique 42 /44 (5/6)

Let G be a graph.
We call a clique of G a set of vertices v, ..., v, such that for every i, 5 € [1, m] with
i # j, the edge |v;, v;] belongs to G.

Definition: Given a graph G, the corresponding clique complex is the simplicial
complex whose

e vertices are the vertices of G,

e simplices are the sets of vertices of the cliques of G.




Complexo de clique 42 /44 (6/6)

Let G be a graph.
We call a clique of G a set of vertices v, ..., v, such that for every i, 5 € [1, m] with
i # j, the edge |v;, v;] belongs to G.

Definition: Given a graph G, the corresponding clique complex is the simplicial
complex whose

e vertices are the vertices of G,

e simplices are the sets of vertices of the cliques of G.

3-simplex 2-simplex

The clique complex of a graph is a simplicial complex.



Complexo de Rips 43 /44 (1/6)

Let X = {z1,...,2ny} CR™ and t > 0.

Consider the graph G* whose vertex set is {1,..., N}, and whose edges are the pairs
(¢,7) such that ||z; — z;|| < 2t.

Alternatively, G* can be seen as the 1-skeleton of the Cech complex Cecht(X).



Complexo de Rips 43/44 (2/6)
Let X = {z1,...,2ny} CR™ and t > 0.

Consider the graph G* whose vertex set is {1,..., N}, and whose edges are the pairs
(¢,7) such that ||z; — z;|| < 2t.

Alternatively, G* can be seen as the 1-skeleton of the Cech complex Cecht(X).

X Gt Xt 4

Definition: The Rips complex of X at time ¢ is the clique complex of the graph G?.
We denote it Rips’(X).

Gt Rips’(X)



Complexo de Rips 43/44 (3/6)
Let X = {z1,...,2ny} CR™ and t > 0.

Consider the graph G* whose vertex set is {1,..., N}, and whose edges are the pairs
(¢,7) such that ||z; — z;|| < 2t.

Alternatively, G* can be seen as the 1-skeleton of the Cech complex Cecht(X).

X Gt Xt 4

Definition: The Rips complex of X at time ¢ is the clique complex of the graph G?.
We denote it Rips’(X).

Gt Rips’(X) Cech’ (X)



Complexo de Rips 43/44 (4/6)
Let X = {z1,...,2ny} CR™ and t > 0.

Consider the graph G* whose vertex set is {1,..., N}, and whose edges are the pairs
(¢,7) such that ||z; — z;|| < 2t.

Alternatively, G* can be seen as the 1-skeleton of the Cech complex Cecht(X).

X . G Xt ;

Definition: The Rips complex of X at time ¢ is the clique complex of the graph G?.

We denote it Rips’(X).

o=

Gt Rips’(X) Cech’ (X)




Complexo de Rips 43 /44 (5/6)

Proposition: For every t > 0, we have
Cecht(X) C Rips’(X) C CeCth(X).

Cech' (X) Rips'(X) Cech”™ (X)



Complexo de Rips 43 /44 (6/6)

Proposition: For every t > 0, we have

Cecht(X) C Rips’(X) C CeCth(X).

Cech' (X) Rips'(X) Cech”™ (X)

Let t > 0. The first inclusion follows from the fact that Rips’(X) is the clique
complex of Cecht(X).

To prove the second one, choose a simplex o € Ripst(X). Let us prove that

w € Cech™ (X).

Let x € o be any vertex. Note that Vy € o, we have ||z — y|| < 2t by definition of the
Rips complex. Hence

T € ﬂg(y,%).

yeo

The intersection being non-empty, we deduce o € Cech2t(X).



Conclusao

Question 1: How to select a t such that Xt ~ M?

Theorem (Partha Niyogi, Stephen Smale, and Shmuel Weinberger, 2008):
Let X and M be subsets of R™, with M a submanifold, and X a finite
subset of M. Suppose that M has positive reach.

Then Xt and M are homotopic equivalent, provided that

Theorem (Frédéric Chazal, David Cohen-Steiner, and André Lieutier, 2009):
Let X and M be subsets of R™. Suppose that M has positive reach, and that
dy (X, M) < -reach (M).

Then Xt and /\/l are homotopic equivalent, provided that

t € [4dy (X, M) ,reach (M) — 3dy (X, M)). e lde (X, M), \/greach (M)) .
o
e®® °
of e estimate ¢

o

® °

: . -

0. oo

Question 2: How to compute the homology groups of X7

com pute the nerve




Conclusao

Question 1: How to select a t such that Xt ~ M?

Theorem (Partha Niyogi, Stephen Smale, and Shmuel Weinberger, 2008):
Let X and M be subsets of R™, with M a submanifold, and X a finite
subset of M. Suppose that M has positive reach.

Then Xt and M are homotopic equivalent, provided that

Theorem (Frédéric Chazal, David Cohen-Steiner, and André Lieutier, 2009):
Let X and M be subsets of R™. Suppose that M has positive reach, and that
dy (X, M) < -reach (M).

Then Xt and /\/l are homotopic equivalent, provided that

t €|[4dy (X, M) ,reach (M) — 3dy (X, M)). e lde (X, M), \/greach (M)) .

these quantities are not known!

Question 2: How to compute the homology groups of X7

com pute the nerve




Conclusao

Question 1: How to select a t such that X* ~

Let X and M be subsets of R™. Suppose that M has positive reach, and that
dy (X, M) < -reach (M).
Then X! and M are homotopic equivalent, provided that

t €|[4dy (X, M), reach (M) — 3du (X, M)).

M7

Let X and M be subsets of R™, with M a submanifold, and X a finite
subset of M. Suppose that M has positive reach.
Then X* and M are homotopic equivalent, provided that

[2dH (X, M), \/greach (./\/l)) .

t e

these quantities are not known!
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Conclusao
Question 1: How to select a t such that Xt ~ M?

Let X and M be subsets of R”. Suppose that M has positive reach, and that  Let X and M be subsets of R", with M a submanifold, and X a finite
dg (X, M) < %reaeh (M). subset of M. Suppose that M has positive reach.
Then X* and M are homotopic equivalent, provided that Then X* and M are homotopic equivalent, provided that

t €|[4dy (X, M) ,reach (M) — 3dy (X, M)). ¢ [2dH (X, M), \/greach (./\/l)) .

these quantities are not known!
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ldea (multiscale analysis): Instead of estimating a value of ¢, we will choose all of them.



