EMAp — Summer School On Data Science — 27/02/23

From Algebraic Topology to Data Analysis

Part II/III: Homological inference

https://raphaeltinarrage.github.io

Last update: January 26, 2023

Part I/III: Topological invariants Thursday 26, 9~11am

Part II/III: Homological inference Friday 27, 9~11am

Part III/III: Persistent Homology Friday 27, 3~5pm

Lembrete de ontem

Some datasets contain topology

Invariants of homotopy classes allow to describe and understand topological spaces

Number of connected components

Euler characteristic χ

Betti numbers $\beta_0, \beta_1, \beta_2, \ldots$

X	•				O_{O}
$\beta_0(X)$	1	1	1	1	2
$\beta_1(X)$	0	1	0	2	2
$\beta_2(X)$	0	0	1	0	0

4/44 (1/5)

Today we will define a powerful invariant, **homology groups**, that already contains the number of connected components, and the Euler characteristic.

Algebraic topology

4/44 (2/5)

4/44 (3/5)

4/44 (4/5)

4/44 (5/5)

- I Simplicial homology
 - 1 Reminder of algebra
 - 2 Homological algebra
 - $\boldsymbol{3}$ Incremental algorithm
- II More about homology
 - 1 Topology of simplicial complexes
 - 2 Singular homology
 - $\boldsymbol{3}$ Functoriality
- **III** Homological inference
 - 1 Thickening parameter selection
 - 2 Čech complex
 - $\boldsymbol{3}$ Rips complex

O grupo $\mathbb{Z}/2\mathbb{Z}$

6/44

The group $\mathbb{Z}/2\mathbb{Z}$ can be seen as the set $\{0,1\}$ with the operation

0 + 0 = 00 + 1 = 11 + 0 = 11 + 1 = 0

For any $n \ge 1$, the **product group** $(\mathbb{Z}/2\mathbb{Z})^n$ is the group whose underlying set is $(\mathbb{Z}/2\mathbb{Z})^n = \{(\epsilon_1, ..., \epsilon_n), \epsilon_1, ..., \epsilon_n \in \mathbb{Z}/2\mathbb{Z}\}$

and whose operation is defined as

$$(\epsilon_1, ..., \epsilon_n) + (\epsilon'_1, ..., \epsilon'_n) = (\epsilon_1 + \epsilon'_1, ..., \epsilon_n + \epsilon'_n).$$

The group $\mathbb{Z}/2\mathbb{Z}$ can be given a **field** structure

```
0 \times 0 = 0

0 \times 1 = 0

1 \times 0 = 0

1 \times 1 = 1
```

and $(\mathbb{Z}/2\mathbb{Z})^n$ can be seen as a $\mathbb{Z}/2\mathbb{Z}$ -vector space over the field $\mathbb{Z}/2\mathbb{Z}$.

Espaços vetoriais sobre $\mathbb{Z}/2\mathbb{Z}$

7/44 (1/3)

Definition: A vector space over $\mathbb{Z}/2\mathbb{Z}$ is a set V endowed with two operations

$$V \times V \longrightarrow V \qquad \qquad \mathbb{Z}/2\mathbb{Z} \times V \longrightarrow V \\ (u, v) \longmapsto u + v \qquad \qquad (\lambda, v) \longmapsto \lambda \cdot v$$

such that

$$\begin{array}{l} \text{(associativity)} \quad \forall u, v, w \in V, \quad (u+v) + w = u + (v+w), \\ \text{(identity)} \quad \exists 0 \in V, \forall v \in V, \quad v+0 = 0 + v = v, \\ \text{(inverse)} \quad \forall v \in V, \exists w \in V, \quad u+v = v+u = 0, \\ \text{(commutativity)} \quad \forall u, v \in V, \quad u+v = v+u, \\ \text{(compatibility of multiplication)} \quad \forall \lambda, \mu \in \mathbb{Z}/2\mathbb{Z}, \forall v \in V, \lambda \cdot (\mu \cdot v) = (\lambda \times \mu) \cdot v, \\ \text{(scalar identity)} \quad \forall v \in V, 1 \cdot v = v, \\ \text{(scalar distributivity)} \quad \forall \mu, \nu \in \mathbb{Z}/2\mathbb{Z}, \forall v \in V, \; (\lambda + \nu) \cdot v = \lambda \cdot v + \nu \cdot v \\ \text{(vector distributivity)} \quad \forall \mu \in \mathbb{Z}/2\mathbb{Z}, \forall v, w \in V, \; \lambda \cdot (u+v) = \lambda \cdot v + \nu \cdot v \\ \end{array}$$

Espaços vetoriais sobre $\mathbb{Z}/2\mathbb{Z}$

7/44 (2/3)

Definition: A vector space over $\mathbb{Z}/2\mathbb{Z}$ is a set V endowed with two operations

$$V \times V \longrightarrow V \qquad \qquad \mathbb{Z}/2\mathbb{Z} \times V \longrightarrow V \\ (u, v) \longmapsto u + v \qquad \qquad (\lambda, v) \longmapsto \lambda \cdot v$$

such that

$$\begin{array}{l} \text{(associativity)} \quad \forall u, v, w \in V, \quad (u+v) + w = u + (v+w), \\ \text{(identity)} \quad \exists 0 \in V, \forall v \in V, \quad v+0 = 0 + v = v, \\ \text{(inverse)} \quad \forall v \in V, \exists w \in V, \quad u+v = v+u = 0, \\ \text{(commutativity)} \quad \forall u, v \in V, \quad u+v = v+u, \\ \text{(compatibility of multiplication)} \quad \forall \lambda, \mu \in \mathbb{Z}/2\mathbb{Z}, \forall v \in V, \lambda \cdot (\mu \cdot v) = (\lambda \times \mu) \cdot v, \\ \text{(scalar identity)} \quad \forall v \in V, 1 \cdot v = v, \\ \text{(scalar distributivity)} \quad \forall \mu, \nu \in \mathbb{Z}/2\mathbb{Z}, \forall v \in V, (\lambda + \nu) \cdot v = \lambda \cdot v + \nu \cdot v \\ \text{(vector distributivity)} \quad \forall \mu \in \mathbb{Z}/2\mathbb{Z}, \forall v, w \in V, \lambda \cdot (u+v) = \lambda \cdot v + \nu \cdot v \\ \end{array}$$

Proposition: Le (V, +) be a commutative group. It can be given a $\mathbb{Z}/2\mathbb{Z}$ -vector space structure iff $\forall v \in V, v + v = 0$.

Proposition: Let $(V, +, \cdot)$ be a finite $\mathbb{Z}/2\mathbb{Z}$ -vector space. Then there exists $n \ge 0$ such that V has cardinal 2^n , and $(V, +, \cdot)$ is isomorphic to the vector space $(\mathbb{Z}/2\mathbb{Z})^n$.

Proof: Consequence of the theory of vector spaces.

Espaços vetoriais sobre $\mathbb{Z}/2\mathbb{Z}$

7/44 (3/3)

A linear subspace of $(V, +, \cdot)$ is a subset $W \subset V$ such that

 $\forall u, v \in W, u + v \in W$ and $\forall v \in W, \forall \lambda \in \mathbb{Z}/2\mathbb{Z}, \lambda v \in W.$

We define the following equivalence relation on V: for all $u, v \in V$,

$$u \sim v \iff u - v \in W.$$

Denote by V/W the quotient set of V under this relation. For any $v \in V$, one shows that the equivalence class of v is equal to $v + W = \{v + w \mid w \in W\}$.

One defines a group structure \oplus on V/W as follows:

$$(u+W) \oplus (u'+W) = (u+u') + W.$$

Definition: The vector space $(V/W, \oplus, \cdot)$ is called the **quotient vector space**.

Proposition: We have $\dim V/W = \dim V - \dim W$.

I - Simplicial homology

- 1 Reminder of algebra
- 2 Homological algebra
- $\boldsymbol{3}$ Incremental algorithm
- II More about homology
 - 1 Topology of simplicial complexes
 - 2 Singular homology
 - 3 Functoriality
- III Homological inference
 - 1 Thickening parameter selection
 - 2 Čech complex
 - 3 Rips complex

9/44 (1/4)

Definition (reminder): Let V be a set (called the set of *vertices*). A simplicial complex over V is a set K of subsets of V (called the *simplices*) such that, for every $\sigma \in K$ and every non-empty $\tau \subset \sigma$, we have $\tau \in K$.

The dimension of a simplex $\sigma \in K$ is $\dim(\sigma) = |\sigma| - 1$.

Let K be a simplicial complex. For any $n \ge 0$, define

$$K_{(n)} = \{ \sigma \in K \mid \dim(\sigma) = n \}.$$

9/44 (2/4)

Let $n \ge 0$. The *n*-chains of K is the set $C_n(K)$ whose elements are the formal sums

$$\sum_{\sigma \in K_{(n)}} \epsilon_{\sigma} \cdot \sigma \quad \text{where} \quad \forall \sigma \in K_{(n)}, \ \epsilon_{\sigma} \in \mathbb{Z}/2\mathbb{Z}.$$

9/44 (3/4)

Let $n \ge 0$. The *n*-chains of K is the set $C_n(K)$ whose elements are the formal sums

$$\sum_{\sigma \in K_{(n)}} \epsilon_{\sigma} \cdot \sigma \quad \text{where} \quad \forall \sigma \in K_{(n)}, \ \epsilon_{\sigma} \in \mathbb{Z}/2\mathbb{Z}.$$

We can give $C_n(K)$ a group structure via

$$\sum_{\sigma \in K_{(n)}} \epsilon_{\sigma} \cdot \sigma + \sum_{\sigma \in K_{(n)}} \eta_{\sigma} \cdot \sigma = \sum_{\sigma \in K_{(n)}} (\epsilon_{\sigma} + \eta_{\sigma}) \cdot \sigma$$

Moreover, $C_n(K)$ can be given a $\mathbb{Z}/2\mathbb{Z}$ -vector space structure.

Example: The 0-chains of $K = \{[0], [1], [2], [0, 1], [0, 2]\}$ are:

9/44 (4/4)

Let $n \ge 0$. The *n*-chains of K is the set $C_n(K)$ whose elements are the formal sums

$$\sum_{\sigma \in K_{(n)}} \epsilon_{\sigma} \cdot \sigma \quad \text{where} \quad \forall \sigma \in K_{(n)}, \ \epsilon_{\sigma} \in \mathbb{Z}/2\mathbb{Z}.$$

We can give $C_n(K)$ a group structure via

$$\sum_{\sigma \in K_{(n)}} \epsilon_{\sigma} \cdot \sigma + \sum_{\sigma \in K_{(n)}} \eta_{\sigma} \cdot \sigma = \sum_{\sigma \in K_{(n)}} (\epsilon_{\sigma} + \eta_{\sigma}) \cdot \sigma.$$

Moreover, $C_n(K)$ can be given a $\mathbb{Z}/2\mathbb{Z}$ -vector space structure.

Example: In the simplicial complex $K = \{[0], [1], [2], [0, 1], [0, 2]\}$, the sum of the 0-chains [0] + [1] and [0] + [2] is [1] + [2]:

10/44 (1/5)

Let $n \ge 1$, and $\sigma = [x_0, ..., x_n] \in K_{(n)}$ a simplex of dimension n. We define its **boundary** as the following element of $C_{n-1}(K)$:

$$\partial_n \sigma = \sum_{\substack{\tau \subset \sigma \\ |\tau| = |\sigma| - 1}} \tau$$

We can extend the operator ∂_n as a linear map $\partial_n : C_n(K) \to C_{n-1}(K)$.

Example: Consider the simplicial complex $K = \{[0], [1], [2], [3], [0, 1], [0, 2], [1, 2], [1, 3], [2, 3], [0, 1, 2]\}.$ The simplex [0, 1] has the faces [0] and [1]. Hence

$$\partial_1[0,1] = [0] + [1].$$

10/44 (2/5)

Let $n \ge 1$, and $\sigma = [x_0, ..., x_n] \in K_{(n)}$ a simplex of dimension n. We define its **boundary** as the following element of $C_{n-1}(K)$:

$$\partial_n \sigma = \sum_{\substack{\tau \subset \sigma \\ |\tau| = |\sigma| - 1}} \tau$$

We can extend the operator ∂_n as a linear map $\partial_n : C_n(K) \to C_{n-1}(K)$.

Example: Consider the simplicial complex $K = \{[0], [1], [2], [3], [0, 1], [0, 2], [1, 2], [1, 3], [2, 3], [0, 1, 2]\}.$ The boundary of the 1-chain [0, 1] + [1, 2] + [2, 0] is $\partial_1 ([0, 1] + [1, 2] + [2, 0]) = \partial_1 [0, 1] + \partial_1 [1, 2] + \partial_1 [2, 0]$ = [0] + [1] + [1] + [2] + [2] + [0] = 0 $1 - 2 - \partial_1$

10/44 (3/5)

Let $n \ge 1$, and $\sigma = [x_0, ..., x_n] \in K_{(n)}$ a simplex of dimension n. We define its **boundary** as the following element of $C_{n-1}(K)$:

$$\partial_n \sigma = \sum_{\substack{\tau \subset \sigma \\ |\tau| = |\sigma| - 1}} \tau$$

We can extend the operator ∂_n as a linear map $\partial_n : C_n(K) \to C_{n-1}(K)$.

Example: Consider the simplicial complex $K = \{[0], [1], [2], [3], [0, 1], [0, 2], [1, 2], [1, 3], [2, 3], [0, 1, 2]\}.$ The simplex [0, 1, 2] has the faces [0, 1] and [1, 2] and [2, 0]. Hence

$$\partial_2[0,1,2] = [0,1] + [1,2] + [2,0].$$

Let $n \ge 1$, and $\sigma = [x_0, ..., x_n] \in K_{(n)}$ a simplex of dimension n. We define its **boundary** as the following element of $C_{n-1}(K)$:

$$\partial_n \sigma = \sum_{\substack{\tau \subset \sigma \\ |\tau| = |\sigma| - 1}} \tau$$

We can extend the operator ∂_n as a linear map $\partial_n : C_n(K) \to C_{n-1}(K)$.

Proposition: For any $n \ge 1$, for any $c \in C_n(K)$, we have $\partial_{n-1} \circ \partial_n(c) = 0$.

Proposition: For any $n \ge 1$, for any $c \in C_n(K)$, we have $\partial_{n-1} \circ \partial_n(c) = 0$.

Proof: Suppose that $n \ge 2$, the result being trivial otherwise. Since the boundary operators are linear, it is enough to prove that $\partial_{n-1} \circ \partial_n(\sigma) = 0$ for all simplex $\sigma \in K_{(n)}$. By definition, $\partial_n(\sigma) = \sum_{\substack{\tau \subset \sigma \\ |\tau| = |\sigma| - 1}} \tau$, and

$$\partial_{n-1} \circ \partial_n(\sigma) = \sum_{\substack{\tau \subset \sigma \\ |\tau| = |\sigma| - 1}} \partial_{n-1}(\tau) = \sum_{\substack{\tau \subset \sigma \\ |\tau| = |\sigma| - 1}} \sum_{\substack{\nu \subset \tau \\ |\nu| = |\tau| - 1}} \nu$$

We can write this last sum as

$$\sum_{\substack{\tau \subset \sigma \\ |\tau| = |\sigma| - 1}} \sum_{\substack{\nu \subset \tau \\ |\nu| = |\tau| - 1}} \nu = \sum_{\substack{\nu \subset \sigma \\ |\nu| = |\sigma| - 2}} \alpha_{\nu} \nu$$

where $\alpha_{\nu} = \{\tau \subset \sigma \mid |\tau| = |\sigma| - 1, \nu \subset \tau\}$. It is easy to see that for every ν such that $\dim \nu = \dim \tau - 2$, we have $\alpha_{\nu} = 2 = 0$.

11/44 (1/4)

Let $n \ge 0$. We have a sequence of vector spaces

$$\cdots \longrightarrow C_{n+1}(K) \xrightarrow{\partial n+1} C_n(K) \xrightarrow{\partial n} C_{n-1}(K) \longrightarrow \cdots$$

The maps ∂_{n+1} and ∂_n are linear maps, and we can consider their kernel and image. Definition: We define:

- The *n*-cycles: $Z_n(K) = \text{Ker}(\partial_n) = \{c \in C_n(K) \mid \partial_n(c) = 0\},\$
- The *n*-boundaries: $B_n(K) = \text{Im}(\partial_{n+1}) = \{\partial_{n+1}(c) \mid c \in C_{n+1}(K)\}.$

11/44 (2/4)

Let $n \ge 0$. We have a sequence of vector spaces

$$\cdots \longrightarrow C_{n+1}(K) \xrightarrow{\partial n+1} C_n(K) \xrightarrow{\partial n} C_{n-1}(K) \longrightarrow \cdots$$

The maps ∂_{n+1} and ∂_n are linear maps, and we can consider their kernel and image. Definition: We define:

- The *n*-cycles: $Z_n(K) = \text{Ker}(\partial_n) = \{c \in C_n(K) \mid \partial_n(c) = 0\},\$
- The *n*-boundaries: $B_n(K) = \text{Im}(\partial_{n+1}) = \{\partial_{n+1}(c) \mid c \in C_{n+1}(K)\}.$

Proposition: We have $B_n(K) \subset Z_n(K)$.

11/44 (3/4)

Let $n \ge 0$. We have a sequence of vector spaces

$$\cdots \longrightarrow C_{n+1}(K) \xrightarrow{\partial n+1} C_n(K) \xrightarrow{\partial n} C_{n-1}(K) \longrightarrow \ldots$$

The maps ∂_{n+1} and ∂_n are linear maps, and we can consider their kernel and image.

Definition: We define:

- The *n*-cycles: $Z_n(K) = \text{Ker}(\partial_n) = \{c \in C_n(K) \mid \partial_n(c) = 0\},\$
- The *n*-boundaries: $B_n(K) = \operatorname{Im}(\partial_{n+1}) = \{\partial_{n+1}(c) \mid c \in C_{n+1}(K)\}.$

Proposition: We have $B_n(K) \subset Z_n(K)$.

Definition: We say that two chains $c, c' \in C_n(K)$ are **homologous** if there exists $b \in B_n(K)$ such that c = c' + b.

- interpretation: two cycles are homologous if they represent the same 'hole'

Example:

[0,2] + [2,3] + [0,3] = [0,1] + [1,2] + [2,3] + [0,3] + [0,1] + [0,2] + [1,2].

11/44 (4/4)

Let $n \ge 0$. We have a sequence of vector spaces

$$\cdots \longrightarrow C_{n+1}(K) \xrightarrow{\partial n+1} C_n(K) \xrightarrow{\partial n} C_{n-1}(K) \longrightarrow \cdots$$

The maps ∂_{n+1} and ∂_n are linear maps, and we can consider their kernel and image. Definition: We define:

- The *n*-cycles: $Z_n(K) = \text{Ker}(\partial_n) = \{c \in C_n(K) \mid \partial_n(c) = 0\},\$
- The *n*-boundaries: $B_n(K) = \operatorname{Im}(\partial_{n+1}) = \{\partial_{n+1}(c) \mid c \in C_{n+1}(K)\}.$

Proposition: We have $B_n(K) \subset Z_n(K)$.

Proof: Let $b \in B_n(K)$ be a boundary. By definition, there exists $c \in C_{n+1}(K)$ such that $b = \partial_{n+1}(c)$. Using $\partial_n \partial_{n+1} = 0$, we get

$$\partial_n(b) = \partial_n \partial_{n+1}(c) = 0,$$

hence $b \in Z_n(K)$.

We have defined a sequence of vector spaces, connected by linear maps

$$\cdots \longrightarrow C_{n+1}(K) \longrightarrow C_n(K) \longrightarrow C_{n-1}(K) \longrightarrow \cdots$$

and for every $n \ge 0$, we have defined the cycles and the boundaries $Z_n(K)$ and $B_n(K)$. Since $B_n(K) \subset Z_n(K)$, we can see $B_n(K)$ as a linear subspace of $Z_n(K)$. Definition: The n^{th} (simplicial) homology group of K is the quotient vector space

 $H_n(K) = Z_n(K) / B_n(K).$

We have defined a sequence of vector spaces, connected by linear maps

$$\cdots \longrightarrow C_{n+1}(K) \longrightarrow C_n(K) \longrightarrow C_{n-1}(K) \longrightarrow \cdots$$

and for every $n \ge 0$, we have defined the cycles and the boundaries $Z_n(K)$ and $B_n(K)$. Since $B_n(K) \subset Z_n(K)$, we can see $B_n(K)$ as a linear subspace of $Z_n(K)$. Definition: The n^{th} (simplicial) homology group of K is the quotient vector space $H_n(K) = Z_n(K)/B_n(K)$.

Remark: A finite $\mathbb{Z}/2\mathbb{Z}$ -vector space must be isomorphic to $(\mathbb{Z}/2\mathbb{Z})^k$ for some k.

Definition: Let K be a simplicial complex and $n \ge 0$. Its n^{th} Betti number is the integer $\beta_n(K) = \dim H_n(K)$.

$$H_n(K) = (\mathbb{Z}/2\mathbb{Z})^k \quad \longrightarrow \quad \beta_n(K) = k$$

We have defined a sequence of vector spaces, connected by linear maps

$$\cdots \longrightarrow C_{n+1}(K) \longrightarrow C_n(K) \longrightarrow C_{n-1}(K) \longrightarrow \cdots$$

and for every $n \ge 0$, we have defined the cycles and the boundaries $Z_n(K)$ and $B_n(K)$. Since $B_n(K) \subset Z_n(K)$, we can see $B_n(K)$ as a linear subspace of $Z_n(K)$. Definition: The n^{th} (simplicial) homology group of K is the quotient vector space $H_n(K) = Z_n(K)/B_n(K)$.

Remark: A finite $\mathbb{Z}/2\mathbb{Z}$ -vector space must be isomorphic to $(\mathbb{Z}/2\mathbb{Z})^k$ for some k.

Definition: Let K be a simplicial complex and $n \ge 0$. Its n^{th} Betti number is the integer $\beta_n(K) = \dim H_n(K)$.

Example:

$$H_0(K) = \mathbb{Z}/2\mathbb{Z} \longrightarrow \beta_0(K) = 1$$

$$H_1(K) = \mathbb{Z}/2\mathbb{Z} \longrightarrow \beta_1(K) = 1$$

$$H_2(K) = 0 \longrightarrow \beta_2(K) = 0$$

12/44 (4/4)

X	●				\bigcirc
$H_0(X)$	$\mathbb{Z}/2\mathbb{Z}$	$\mathbb{Z}/2\mathbb{Z}$	$\mathbb{Z}/2\mathbb{Z}$	$\mathbb{Z}/2\mathbb{Z}$	$(\mathbb{Z}/2\mathbb{Z})^2$
$\beta_0(X)$	1	1	1	1	2
$H_1(X)$	0	$\mathbb{Z}/2\mathbb{Z}$	0	$(\mathbb{Z}/2\mathbb{Z})^2$	$(\mathbb{Z}/2\mathbb{Z})^2$
$\beta_1(X)$	0	1	0	2	2
$H_2(X)$	0	0	$\mathbb{Z}/2\mathbb{Z}$	0	0
$\beta_2(X)$	0	0	1	0	0

I - Simplicial homology

- 1 Reminder of algebra
- 2 Homological algebra
- $\boldsymbol{3}$ Incremental algorithm
- II More about homology
 - 1 Topology of simplicial complexes
 - 2 Singular homology
 - 3 Functoriality
- III Homological inference
 - 1 Thickening parameter selection
 - 2 Čech complex
 - 3 Rips complex

Ordenar o complexo simplicial

14/44

Let K be a simplicial complex with n simplices. Choose a total order of the simplices

$$\sigma^1 < \sigma^2 < \ldots < \sigma^n$$

such that

$$\forall \sigma, \tau \in K, \ \tau \subsetneq \sigma \implies \tau < \sigma.$$

In other words, a face of a simplex is lower than the simplex itself. For every $i \leq n$, consider the simplicial complex

$$K^i = \{\sigma^1, ..., \sigma^i\}.$$

We have $\forall i \leq n, K^{i+1} = K^i \cup \{\sigma^{i+1}\}$, and $K^n = K$. They form an inscreasing sequence of simplicial complexes

$$K^1 \subset K^2 \subset \dots \subset K^n.$$

Positividade dos simplexos

15/44 (1/8)

Let $k \ge 0$. We will compute the homology groups of K^i incrementally: $H_k(K^1), \ H_k(K^2), \ H_k(K^3), \ H_k(K^4), \ H_k(K^5), \ H_k(K^6), \ H_k(K^7), \ H_k(K^8), \ H_k(K^9), \ H_k(K^{10})$

Positividade dos simplexos

15/44 (2/8)

Let $k \ge 0$. We will compute the homology groups of K^i incrementally: $H_k(K^1), \ H_k(K^2), \ H_k(K^3), \ H_k(K^4), \ H_k(K^5), \ H_k(K^6), \ H_k(K^7), \ H_k(K^8), \ H_k(K^9), \ H_k(K^{10})$

Definition: Let $i \in [\![1, n]\!]$, and $d = \dim(\sigma^i)$. Recall that $K^i = K^{i-1} \cup \{\sigma_i\}$. The simplex σ^i is **positive** if there exists a cycle $c \in Z_d(K^i)$ that contains σ^i . In other words, there exist $c = \sum_{\sigma \in K_{(n)}^i} \epsilon_{\sigma} \cdot \sigma \in C_n(K^i)$ such that $\epsilon_{\sigma^i} = 1$ and $\partial_n(c) = 0$. Otherwise, σ^i is **negative**.

Example:

• $\sigma^1 \in K^1$ is **positive** because it is included in the cycle $c = \sigma^1$ (indeed, $\partial_0(\sigma^1) = 0$).

Positividade dos simplexos

15/44 (3/8)

Let $k \ge 0$. We will compute the homology groups of K^i incrementally: $H_k(K^1), \ H_k(K^2), \ H_k(K^3), \ H_k(K^4), \ H_k(K^5), \ H_k(K^6), \ H_k(K^7), \ H_k(K^8), \ H_k(K^9), \ H_k(K^{10})$

Definition: Let $i \in [\![1, n]\!]$, and $d = \dim(\sigma^i)$. Recall that $K^i = K^{i-1} \cup \{\sigma_i\}$. The simplex σ^i is **positive** if there exists a cycle $c \in Z_d(K^i)$ that contains σ^i . In other words, there exist $c = \sum_{\sigma \in K_{(n)}^i} \epsilon_{\sigma} \cdot \sigma \in C_n(K^i)$ such that $\epsilon_{\sigma^i} = 1$ and $\partial_n(c) = 0$. Otherwise, σ^i is **negative**.

Example:

- $\sigma^1 \in K^1$ is **positive** because it is included in the cycle $c = \sigma^1$ (indeed, $\partial_0(\sigma^1) = 0$).
- $\sigma^2 \in K^2$ is **positive** because it is included in the cycle $c = \sigma^2$ (indeed, $\partial_0(\sigma^2) = 0$).
15/44 (4/8)

Let $k \ge 0$. We will compute the homology groups of K^i incrementally: $H_k(K^1), \ H_k(K^2), \ H_k(K^3), \ H_k(K^4), \ H_k(K^5), \ H_k(K^6), \ H_k(K^7), \ H_k(K^8), \ H_k(K^9), \ H_k(K^{10})$

Definition: Let $i \in [\![1, n]\!]$, and $d = \dim(\sigma^i)$. Recall that $K^i = K^{i-1} \cup \{\sigma_i\}$. The simplex σ^i is **positive** if there exists a cycle $c \in Z_d(K^i)$ that contains σ^i . In other words, there exist $c = \sum_{\sigma \in K_{(n)}^i} \epsilon_{\sigma} \cdot \sigma \in C_n(K^i)$ such that $\epsilon_{\sigma^i} = 1$ and $\partial_n(c) = 0$. Otherwise, σ^i is **negative**.

Example:

- $\sigma^1 \in K^1$ is **positive** because it is included in the cycle $c = \sigma^1$ (indeed, $\partial_0(\sigma^1) = 0$).
- $\sigma^2 \in K^2$ is **positive** because it is included in the cycle $c = \sigma^2$ (indeed, $\partial_0(\sigma^2) = 0$).

• $\sigma^6 \in K^5$ is **negative** because it is not included in a cycle $Z_1(K^5)$. Indeed, $C_1(K^5)$ only contains 0 and σ_5 , and $\partial_1(\sigma^5) = \sigma^1 + \sigma^2 \neq 0$.

15/44 (5/8)

Let $k \ge 0$. We will compute the homology groups of K^i incrementally: $H_k(K^1), \ H_k(K^2), \ H_k(K^3), \ H_k(K^4), \ H_k(K^5), \ H_k(K^6), \ H_k(K^7), \ H_k(K^8), \ H_k(K^9), \ H_k(K^{10})$

Definition: Let $i \in [\![1, n]\!]$, and $d = \dim(\sigma^i)$. Recall that $K^i = K^{i-1} \cup \{\sigma_i\}$. The simplex σ^i is **positive** if there exists a cycle $c \in Z_d(K^i)$ that contains σ^i . In other words, there exist $c = \sum_{\sigma \in K_{(n)}^i} \epsilon_{\sigma} \cdot \sigma \in C_n(K^i)$ such that $\epsilon_{\sigma^i} = 1$ and $\partial_n(c) = 0$. Otherwise, σ^i is **negative**.

Example:

- $\sigma^1 \in K^1$ is **positive** because it is included in the cycle $c = \sigma^1$ (indeed, $\partial_0(\sigma^1) = 0$).
- $\sigma^2 \in K^2$ is **positive** because it is included in the cycle $c = \sigma^2$ (indeed, $\partial_0(\sigma^2) = 0$).

• $\sigma^6 \in K^5$ is **negative** because it is not included in a cycle $Z_1(K^5)$. Indeed, $C_1(K^5)$ only contains 0 and σ_5 , and $\partial_1(\sigma^5) = \sigma^1 + \sigma^2 \neq 0$.

• $\sigma^8 \in K^8$ is **positive** because it is included in the cycle $c = \sigma^5 + \sigma^6 + \sigma^7 + \sigma^8$ (indeed, $\partial_1(c) = 2\sigma^1 + 2\sigma^2 + 2\sigma^3 + 2\sigma^4 = 0$).

15/44 (6/8)

Definition: Let $i \in [\![1, n]\!]$, and $d = \dim(\sigma_i)$. Recall that $K^i = K^{i-1} \cup \{\sigma_i\}$. The simplex σ_i is **positive** if there exists a cycle $c \in Z_d(K^i)$ that contains σ_i . Otherwise, σ_i is **negative**.

Remark: By adding σ^i in the simplicial complex, the only groups that may change are $Z_d(K^i)$ and $B_{d-1}(K^i)$.

15/44 (7/8)

Definition: Let $i \in [\![1, n]\!]$, and $d = \dim(\sigma_i)$. Recall that $K^i = K^{i-1} \cup \{\sigma_i\}$. The simplex σ_i is **positive** if there exists a cycle $c \in Z_d(K^i)$ that contains σ_i . Otherwise, σ_i is **negative**.

Remark: By adding σ^i in the simplicial complex, the only groups that may change are $Z_d(K^i)$ and $B_{d-1}(K^i)$.

Lemma: If σ^i is positive, then $\beta_d(K^i) = \beta_d(K^{i-1}) + 1$, and for all $d' \neq d$, $\beta_{d'}(K^i) = \beta_{d'}(K^{i-1})$.

Proof: We start by proving the following fact: if $c \in Z_d(K^i)$ is a cycle that contains σ_i , then c is not homologous (in K^i) to a cycle of $c' \in Z_d(K^{i-1})$.

By contradiction: if c = c' + b with $c' \in Z_d(K^{i-1})$ and $b \in B_d(K^i)$, then $c - c' = b \in B_d(K^i)$. This is absurd because we just added σ_i : it cannot appear in a boundary of K^i .

As a consequence, $\dim Z_d(K^i) = \dim Z_d(K^{i-1}) + 1$.

We conclude by using the relation $\beta_d(K^i) = \dim Z_d(K^i) - \dim B_d(K^i)$.

15/44 (8/8)

Definition: Let $i \in [\![1, n]\!]$, and $d = \dim(\sigma_i)$. Recall that $K^i = K^{i-1} \cup \{\sigma_i\}$. The simplex σ_i is **positive** if there exists a cycle $c \in Z_d(K^i)$ that contains σ_i . Otherwise, σ_i is **negative**.

Remark: By adding σ^i in the simplicial complex, the only groups that may change are $Z_d(K^i)$ and $B_{d-1}(K^i)$.

Lemma: If σ^i is positive, then $\beta_d(K^i) = \beta_d(K^{i-1}) + 1$, and for all $d' \neq d$, $\beta_{d'}(K^i) = \beta_{d'}(K^{i-1})$.

Lemma: If σ^i is negative, then $\beta_{d-1}(K^i) = \beta_{d-1}(K^{i-1}) - 1$, and for all $d' \neq d - 1$, $\beta_{d'}(K^i) = \beta_{d'}(K^{i-1})$.

Proof: We start by proving the following fact: $\partial_d(\sigma^i)$ is not a boundary of K^{i-1} .

Otherwise, we would have $\partial_d(\sigma^i) = \partial_d(c)$ with $c \in C_d(K^{i-1})$, i.e. $\partial_d(\sigma^i + c) = 0$. Hence $\sigma^i + c$ would be a cycle of K^i that contains c, contradicting the negativity of σ^i . As a consequence, $\dim B_{d-1}(K^i) = \dim B_{d-1}(K^{i-1}) + 1$.

We conclude by using the relation $\beta_{d-1}(K^i) = \dim Z_{d-1}(K^i) - \dim B_{d-1}(K^i)$.

Algoritmo incremental

16/44 (1/2)

Lemma: If σ^i is positive, then $\beta_d(K^i) = \beta_d(K^{i-1}) + 1$, and for all $d' \neq d$, $\beta_{d'}(K^i) = \beta_{d'}(K^{i-1})$.

Lemma: If σ^i is negative, then $\beta_{d-1}(K^i) = \beta_{d-1}(K^{i-1}) - 1$, and for all $d' \neq d-1$, $\beta_{d'}(K^i) = \beta_{d'}(K^{i-1})$.

We deduce the following algorithm:

Input: an increasing sequence of simplicial complexes $K^1 \subset \cdots \subset K^n = K$ Output: the Betti numbers $\beta_0(K), \dots \beta_d(K)$ $\beta_0 \leftarrow 0, \dots, \beta_d \leftarrow 0;$ for $i \leftarrow 1$ to n do $d = \dim(\sigma^i);$ if σ^i is positive then $| \beta_k(K^i) \leftarrow \beta_k(K^i) + 1;$ else if d > 0 then $| \beta_{k-1}(K^i) \leftarrow \beta_{k-1}(K^{i-1}) - 1;$

Algoritmo incremental

16/44 (2/2)

	•	• •	• •	•	•					
	K^1	K^2	K^3	K^4	K^5	K^6	K^7	K^8	K^9	K^{10}
Dimension	0	0	0	0	1	1	1	1	1	2
Positivity	+	+	+	+	_	_	_	+	+	_
$\beta_0(K^i)$	1	2	3	4	3	2	1	1	1	1
$\beta_1(K^i)$	0	0	0	0	0	0	0	1	2	1

We deduce the following algorithm:

Input: an increasing sequence of simplicial complexes $K^1 \subset \cdots \subset K^n = K$ Output: the Betti numbers $\beta_0(K), \dots \beta_d(K)$ $\beta_0 \leftarrow 0, \dots, \beta_d \leftarrow 0;$ for $i \leftarrow 1$ to n do $d = \dim(\sigma^i);$ if σ^i is positive then $| \beta_k(K^i) \leftarrow \beta_k(K^i) + 1;$ else if d > 0 then $| \beta_{k-1}(K^i) \leftarrow \beta_{k-1}(K^{i-1}) - 1;$

Característica de Euler

17/44 (1/2)

Reminder: the Euler characteristic of a simplicial complex K is

$$\chi(K) = \sum_{0 \le i \le n} (-1)^i \cdot (\text{number of simplices of dimension } i).$$

Proposition: The Euler characteristic is also equal to

$$\chi(K) = \sum_{0 \le i \le n} (-1)^i \cdot \beta_i(K).$$

Característica de Euler

17/44 (2/2)

Proposition: The Euler characteristic of K is equal to

$$\chi(K) = \sum_{0 \le i \le n} (-1)^i \cdot \beta_i(K).$$

Proof: Pick an ordering $K^1 \subset \cdots \subset K^n = K$ of K, with $K^i = K^{i-1} \cup \{\sigma^i\}$ for all $2 \leq i \leq n$.

By induction, let us show that, for all $1 \le m \le n$,

 $\sum_{0 \le i \le m} (-1)^i \cdot \beta_i(K^m) = \sum_{0 \le i \le m} (-1)^i \cdot (\text{number of simplices of dimension } i \text{ of } K^m).$

For m = 1, σ^m is a 0-simplex, and the equality reads 1 = 1.

Now, suppose that the equality is true for $1 \le m < n$, and consider the simplex σ^{m+1} . Let $d = \dim \sigma^{m+1}$. The right-hand side of the Equation is increased by $(-1)^d$.

If σ^{m+1} is positive, then $\beta_d(K^{m+1}) = \beta_d(K^m) + 1$, hence the left-hand side of the Equation is increased by $(-1)^d$.

Otherwise, it is negative, and $\beta_{d-1}(K^{m+1}) = \beta_{d-1}(K^m) - 1$, hence the left-hand side of the Equation is increased by $-(-1)^{d-1} = (-1)^d$.

18/44 (1/8)

The only thing missing to apply the incremental algorithm is to determine whether a simplex is positive or negative.

Let K be a simplicial complex, and $\sigma^1 < \sigma^2 < \cdots < \sigma^n$ and ordering of its simplices.

Define the **boundary matrix** of K, denoted Δ , as follows: Δ is a $n \times n$ matrix, whose (i, j)-entry (i^{th} row, j^{th} column is)

$$\Delta_{i,j} = 1 \text{ if } \sigma^i \text{ is a face of } \sigma^j \text{ and } |\sigma^i| = |\sigma^j| - 1$$

$$0 \text{ else.}$$

$$\sigma^1 \sigma^2 \sigma^3 \sigma^4 \sigma^5 \sigma^6 \sigma^7 \sigma^8 \sigma^9 \sigma^{10}$$

$$\sigma^1 \sigma^5 \sigma^6 \sigma^7 \sigma^8 \sigma^9 \sigma^{10}$$

$$\sigma^1 \sigma^7 \sigma^6 \sigma^6 \sigma^7 \sigma^8 \sigma^9 \sigma^{10}$$

$$\sigma^1 \sigma^7 \sigma^7 \sigma^3 \sigma^7 \sigma^8 \sigma^7 \sigma^8 \sigma^9 \sigma^{10}$$

$$\sigma^1 \sigma^2 \sigma^3 \sigma^4 \sigma^5 \sigma^6 \sigma^7 \sigma^8 \sigma^9 \sigma^{10}$$

$$\sigma^1 \sigma^2 \sigma^3 \sigma^4 \sigma^7 \sigma^8 \sigma^9 \sigma^{10}$$

$$\sigma^1 \sigma^2 \sigma^3 \sigma^8 \sigma^1 \sigma^8 \sigma^9 \sigma^{10}$$

$$\sigma^1 \sigma^2 \sigma^3 \sigma^8 \sigma^1 \sigma^1 \sigma^8 \sigma^9 \sigma^{10}$$

 σ^8

18/44 (2/8)

By adding columns one to the others, we create chains. If we were able to reduce a column to zero, then we found a cycle.

																						۲ × °
																					6 ×	0
	σ^1	σ^2	σ^3	σ^4	σ^5	σ^6	σ^7	σ^8	σ^9	σ^{10}			σ^1	σ^2	σ^3	σ^4	σ^5	σ^6	σ^7	چ × ک	σ^9	σ^{10}
σ^1	$\left(0 \right)$	0	0	0	1	0	0	1	0	0		σ^1	(0)	0	0	0	1	0	0	0	0	0
σ^2	0	0	0	0	1	(1)	0	0	1	0		σ^2	0	0	0	0	1	1	0	0	1	0
σ^3	0	0	0	0	0	(1)	1	0	0	0		σ^3	0	0	0	0	0	1	1	0	0	0
σ^4	0	0	0	0	0	0	1	1	1	0		σ^4	0	0	0	0	0	0	1	0	1	0
σ^5	0	0	0	0	0	0	0	0	0	1		σ^5	0	0	0	0	0	0	0	0	0	1
σ^6	0	0	0	0	0	0	0	0	0	0		σ^6	0	0	0	0	0	0	0	0	0	0
σ^7	0	0	0	0	0	0	0	0	0	0		σ^7	0	0	0	0	0	0	0	0	0	0
σ^8	0	0	0	0	0	0	0	0	0	1		σ^8	0	0	0	0	0	0	0	0	0	1
σ^9	0	0	0	0	0	0	0	0	0	1		σ^9	0	0	0	0	0	0	0	0	0	1
σ^{10}	$\setminus 0$	0	0	0	0	0	0	0	0	0/		σ^{10}	$\setminus 0$	0	0	0	0	0	0	0	0	0/
$\partial_1(\sigma^6)$) = c	σ^2 –	$+\sigma^3$	}							$\partial_1($	$\sigma^5 + \sigma$	$\sigma^{6} +$	$-\sigma^7$	+ a	$\sigma^8)$	= 0	-				

The process of reducing columns to zero is called **Gauss reduction**. For any $j \in [\![1, n]\!]$, define $\delta(j) = \max\{i \in [\![1, n]\!] \mid \Delta_{i,j} \neq 0\}.$

If $\Delta_{i,j} = 0$ for all j, then $\delta(j)$ is undefined.

We say that the boundary matrix Δ is *reduced* if the map δ is injective on its domain of definition.

Algorithm 2: Reduction of the boundary matrixInput: a boundary matrix Δ Output: a reduced matrix $\widetilde{\Delta}$ for $j \leftarrow 1$ to n dowhile there exists i < j with $\delta(i) = \delta(j)$ doadd column i to column j;

	σ^1	σ^2	σ^3	σ^4	σ^5	σ^6	σ^7	σ^8	σ^9	σ^{10}
σ^1	(0)	0	0	0	1	0	0	1	0	0
σ^2	0	0	0	0	1	1	0	0	1	0
σ^3	0	0	0	0	0	1	1	0	0	0
σ^4	0	0	0	0	0	0	(1)	(1)	1	0
σ^5	0	0	0	0	0	0	0	0	0	1
σ^6	0	0	0	0	0	0	0	0	0	0
σ^7	0	0	0	0	0	0	0	0	0	0
σ^8	0	0	0	0	0	0	0	0	0	1
σ^9	0	0	0	0	0	0	0	0	0	1
σ^{10}	$\setminus 0$	0	0	0	0	0	0	0	0	0/

									70	
	σ^1	σ^2	σ^3	σ^4	σ^5	σ^6	σ^7	ő	σ^9	σ^{10}
σ^1	(0)	0	0	0	1	0	0	1	0	0
σ^2	0	0	0	0	1	1	0	0	1	0
σ^3	0	0	0	0	0	1	1	1	0	0
σ^4	0	0	0	0	0	0	1	0	1	0
σ^5	0	0	0	0	0	0	0	0	0	1
σ^6	0	0	0	0	0	0	0	0	0	0
σ^7	0	0	0	0	0	0	0	0	0	0
σ^8	0	0	0	0	0	0	0	0	0	1
σ^9	0	0	0	0	0	0	0	0	0	1
σ^{10}	$\setminus 0$	0	0	0	0	0	0	0	0	0/

 σ^{10}

Algorithm 2: Reduction of the boundary matrixInput: a boundary matrix Δ Output: a reduced matrix $\widetilde{\Delta}$ for $j \leftarrow 1$ to n dowhile there exists i < j with $\delta(i) = \delta(j)$ doadd column i to column j;

Al	gorit	gorithm 2: Reduction of the boundary matrix													
Ι	Input: a boundary matrix $\Delta_{\widetilde{\sim}}$														
(Output: a reduced matrix Δ														
f	for $j \leftarrow j$	$\leftarrow 1$	to <i>i</i>	i do)										
	w	hile	ther	re ex	sists	i < j	j wi	th δ	(i) =	$= \delta(j$) do				
	$\ \ \ \ \ \ \ \ \ \ \ \ \ $														
										8 0					
								,	, X , Ø						
	σ^1	σ^2	σ^3	σ^4	σ^5	σ^6	σ^7	ۍ × ک	σ^9	σ^{10}			σ^1	σ^2	σ^3
σ^1	(0)	0	0	0	1	0	0	1	0	0		σ^1	$\int 0$	0	0
σ^2	0	0	0	0	(1)	1	0	(1)	1	0		σ^2	0	0	0
σ^3	0	0	0	0	0	1	1	0	0	0		σ^3	0	0	0
σ^4	0	0	0	0	0	0	1	0	1	0		σ^4	0	0	0
σ^5	0	0	0	0	0	0	0	0	0	1		σ^5	0	0	0
σ^6	0	0	0	0	0	0	0	0	0	0		σ^6	0	0	0
σ^7	0	0	0	0	0	0	0	0	0	0		σ^7	0	0	0
σ^8	0	0	0	0	0	0	0	0	0	1		σ^8	0	0	0
σ^9	0	0	0	0	0	0	0	0	0	1		σ^9	0	0	0
σ^{10}	$\setminus 0$	0	0	0	0	0	0	0	0	0/	1	σ^{10}	$\int 0$	0	0

18/44 (6/8)

 σ^4 σ^5 σ^6 σ^7

18/44 (7/8)

A	Algorithm 2: Reduction of the boundary matrix																					
	Input: a boundary matrix $\Delta_{\widetilde{\sim}}$																					
	Output: a reduced matrix $\widetilde{\Delta}$																					
	for .	$j \leftarrow$	1 to	$n \mathbf{d}$	lo				- ()	_												
	V	vhil	e th	ere e	exist	si < to c	$\langle j v$	vith	$\delta(i)$.	$=\delta($	(j) do)										
			uu c	orun	111 1		oiun	III J	,	·	ş											X
										°×,)										₆ ×	o xo
	-		0		_		_	ۍ ا	× 0 ×	1.0			σ^1	σ^2	σ^3	σ^4	σ^5	σ^6	σ^7	ج، ×	< 0 0	$\times \frac{\delta}{\sigma^{10}}$
	σ^1	σ^2	σ^3	σ^4	σ^5	σ^6	σ^7	ď	σ^9	σ^{10}			0	0	0	0	0	0	0	0	0	0
σ^1	(0)	0	0	0	1	0	0	0	0	0		σ^1	$\int 0$	0	0	0	1	0	0	0	0	0
σ^2	0	0	0	0	1	1	0	0	1	0		σ^2	0	0	0	0	1	1	0	0	0	0
σ^3	0	0	0	0	0	1	1	0	0	0		σ^3	0	0	0	0	0	1	1	0	0	0
σ^4	0	0	0	0	0	0	(1)	0	(1)	0		σ^4	0	0	0	0	0	0	1	0	0	0
σ^5	0	0	0	0	0	0	$\overline{0}$	0	$\underbrace{0}$	1		σ^5	0	0	0	0	0	0	0	0	0	1
σ^6	0	0	0	0	0	0	0	0	0	0		σ^6	0	0	0	0	0	0	0	0	0	0
σ^7	0	0	0	0	0	0	0	0	0	0		σ^7	0	0	0	0	0	0	0	0	0	0
σ^8	0	0	0	0	0	0	0	0	0	1		σ^8	0	0	0	0	0	0	0	0	0	1
σ^9	0	0	0	0	0	0	0	0	0	1		9		Ũ	Ũ	Ũ	Û	Ũ	Ũ	Ũ	Ũ	1
σ^{10}	$\setminus 0$	0	0	0	0	0	0	0	0	0/		σ°		0		0	0	0	0	0	0	
	·								1	,	σ	r^{10}	$\backslash 0$	U	U	U	U	U	U	U	U	0/

Algorithm 2: Reduction of the boundary matrix	Lemma: Suppose that the boundary							
Input: a boundary matrix $\Delta_{\widetilde{\sim}}$	matrix is reduced. Let $j \in \llbracket 1, n rbracket$.							
Output: a reduced matrix Δ	If $\delta(j)$ is defined, then the simplex σ^j is							
for $j \leftarrow 1$ to n do	negative.							
while there exists $i < j$ with $\delta(i) = \delta(j)$ do	Otherwise it is positive							
\lfloor add column <i>i</i> to column j;								
	- 1× ⁶							
	$6 \times 6 \times 6$							
1 2 3 4 5	$6 7 5 \times 6 \times 6 10$							
$\sigma^{1} \sigma^{2} \sigma^{3} \sigma^{4} \sigma^{3} \sigma$	$\sigma' \sigma \sigma' \sigma \sigma' \sigma$							
$\sigma^{1} \left(\begin{array}{cccccccccc} 0 & 0 & 0 & 0 & 1 & 0 \end{array} \right)$	$0 \ 0 \ 0 \ 0$							
σ^2 0 0 0 0 1 1	$0 \ 0 \ 0 \ 0$							
σ^3 0 0 0 0 0 1								
σ^4 0 0 0 0 0 0	(1) 0 0 0							
σ^{5} 0 0 0 0 0 0	$ \overbrace{0}^{\circ} 0 0 0 1 $							
$\sigma' = \begin{bmatrix} 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 \end{bmatrix}$								
$\sigma^8 $ 0 0 0 0 0 0	$\begin{array}{cccc} 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 1 \end{array}$							
$\sigma^9 0 0 0 0 0 0$								
σ^{10} $igl(0 \ \ \ \ \ 0 \$	$0 \ 0 \ 0 \ 0 /$							
$\sigma^1 \ \sigma^2 \ \sigma^3 \ \sigma^4 \ \sigma^5 \ \sigma^6$	$\sigma^7 \sigma^8 \sigma^9 \sigma^{10}$							
+ + + +	- + + -							

Algoritmo final

19/44

Incremental computation of the homology

Input: an increasing sequence of simplicial complexes $K^1 \subset \cdots \subset K^n = K$ Output: the Betti numbers $\beta_0(K), \dots \beta_d(K)$ $\beta_0 \leftarrow 0, \dots, \beta_d \leftarrow 0;$ for $i \leftarrow 1$ to n do $d = \dim(\sigma^i);$ if σ^i is positive then $| \beta_k(K^i) \leftarrow \beta_k(K^i) + 1;$ else if d > 0 then $| \beta_{k-1}(K^i) \leftarrow \beta_{k-1}(K^{i-1}) - 1;$

Gauss reduction of the boundary matrix

Input: a boundary matrix Δ Output: a reduced matrix $\widetilde{\Delta}$ for $i \leftarrow 1 \ j \triangleright n \ do$ while there exists i < j with $\delta(i) = \delta(j) \ do$ add column i to column j;

- I Simplicial homology
 - 1 Reminder of algebra
 - 2 Homological algebra
 - $\boldsymbol{3}$ Incremental algorithm
- II More about homology
 - 1 Topology of simplicial complexes
 - 2 Singular homology
 - 3 Functoriality
- III Homological inference
 - 1 Thickening parameter selection
 - 2 Čech complex
 - 3 Rips complex

Simplexo padrão

21/44 (1/2)

In order to describe topological spaces, we will decompose them into simpler pieces. The pieces we shall consider are the standard simplices.

The standard simplex of dimension n is the following subset of \mathbb{R}^{n+1}

Simplexo padrão

21/44 (2/2)

In order to describe topological spaces, we will decompose them into simpler pieces. The pieces we shall consider are the standard simplices.

The standard simplex of dimension n is the following subset of \mathbb{R}^{n+1}

Remark: For any collection of points $a_1, ..., a_k \in \mathbb{R}^n$, their convex hull is defined as:

$$\operatorname{conv}(\{a_1...a_k\}) = \left\{ \sum_{1 \le i \le k} t_i a_i \mid t_1 + \ldots + t_k = 1, \ t_1, \ldots, t_k \ge 0 \right\}.$$

We can say that Δ_n is the convex hull of the vectors $e_1, ..., e_{n+1}$ of \mathbb{R}^{n+1} , where $e_i = (0, ..., 1, 0, ..., 0)$ (*i*th coordinate 1, the other ones 0).

Realização topológica

22/44(1/2)

Let us give simplicial complexes a topology.

Definition: Let K be a simplicial complex, with vertex $V = \{1, ..., n\}$. In \mathbb{R}^n , consider, for every $i \in [\![1, n]\!]$, the vector $e_i = (0, ..., 1, 0, ..., 0)$ (i^{th} coordinate 1, the other ones 0).

Let |K| be the subset of \mathbb{R}^n defined as:

$$|K| = \bigcup_{\sigma \in K} \operatorname{conv} \left(\{ e_j, j \in \sigma \} \right)$$

where conv represent the convex hull of points.

Endowed with the subspace topology, $(|K|, \mathcal{T}_{||K|})$ is a topological space, that we call the *topological realization of* K.

If $a_1, ..., a_k \in \mathbb{R}^n$, the convex hull is defined as:

$$\operatorname{conv}(\{a_1...a_k\}) = \left\{ \sum_{1 \le i \le k} t_i a_i \mid t_1 + \ldots + t_k = 1, \ t_1, \ldots, t_k \ge 0 \right\}.$$

Realização topológica

22/44(2/2)

Let us give simplicial complexes a topology.

Definition: Let K be a simplicial complex, with vertex $V = \{1, ..., n\}$. In \mathbb{R}^n , consider, for every $i \in [\![1, n]\!]$, the vector $e_i = (0, ..., 1, 0, ..., 0)$ (i^{th} coordinate 1, the other ones 0).

Let |K| be the subset of \mathbb{R}^n defined as:

$$|K| = \bigcup_{\sigma \in K} \operatorname{conv} \left(\{ e_j, j \in \sigma \} \right)$$

where conv represent the convex hull of points.

Endowed with the subspace topology, $(|K|, \mathcal{T}_{||K|})$ is a topological space, that we call the *topological realization of* K.

Remark: If the simplicial complex can be drawn in the plane (or space) without crossing itself, then its topological realization simply is the subspace topology.

Example: $K = \{[0], [1], [2], [3], [0, 1], [1, 2], [2, 0], [1, 3], [2, 3], [0, 1, 2]\}.$

Triangulações

23/44 (1/2)

Definition: Let X be a topological space. A triangulation of X is a simplicial complex K such that its topological realization |K| is homeomorphic to X.

Example: The following simplicial complex is a triangulation of the circle:

 $K = \{[0], [1], [2], [0, 1], [1, 2], [2, 0]\}$

Example: The following simplicial complex is a triangulation of the sphere:

 $K = \{[0], [1], [2], [3], [0, 1], [1, 2], [2, 3], [3, 0], [0, 2], [1, 3], [0, 1, 2], [0, 1, 3], [0, 2, 3], [1, 2, 3]\}.$

Triangulações

23/44 (2/2)

Definition: Let X be a topological space. A triangulation of X is a simplicial complex K such that its topological realization |K| is homeomorphic to X.

Given a topological space, it is not always possible to triangulate it. However, when it is, there exists many different triangulations.

Theorem (Manolescu, 2016): For any dimension $n \ge 5$ there is a compact topological manifold which does not admit a triangulation.

- I Simplicial homology
 - 1 Reminder of algebra
 - 2 Homological algebra
 - $\boldsymbol{3}$ Incremental algorithm

II - More about homology

- 1 Topology of simplicial complexes
- 2 Singular homology
- 3 Functoriality

III - Homological inference

- 1 Thickening parameter selection
- 2 Čech complex
- 3 Rips complex

Simplexo singular

Let us consider a **topological space** X. We want a notion of **simplices**.

Simplexo singular

Let us consider a **topological space** X. We want a notion of **simplices**.

Definition: A singular *n*-simplex is a continuous map $\Delta_n \to X$, where Δ_n is the standard *n*-simplex. We denote S_n their set.

We now want a notion of **boundary**.

Simplexo singular

Let us consider a **topological space** X. We want a notion of **simplices**.

Definition: A singular *n*-simplex is a continuous map $\Delta_n \to X$, where Δ_n is the standard *n*-simplex. We denote S_n their set.

We now want a notion of **boundary**.

The boundary of Δ_n consists in n+1 copies of Δ_{n-1} .

We can restrict a singular *n*-simplex $\Delta_n \to X$ to the boundaries, giving n+1 singular (n-1)-simplices $\Delta_{n-1} \to X$.

Definition: The **boundary** of a singular *n*-simplex $\Delta_n \to X$ is the formal sum of the n+1 singular (n-1)-simplices $\Delta_{n-1} \to X$

26/44 (1/4)

26/44 (2/4)

For a simplicial complex
$$K$$
, we have defined
 n -chains $\sum_{\sigma \in K_{(n)}} \epsilon_{\sigma} \cdot \sigma$ where $\forall \sigma \in K_{(n)}, \ \epsilon_{\sigma} \in \mathbb{Z}/2\mathbb{Z}$
boundary operator $\partial_n \sigma = \sum_{\substack{\tau \subseteq \sigma \\ |\tau| = |\sigma| = 1}}^{\tau \subseteq \sigma} \tau$
chain complex $\dots \xrightarrow{\partial_{n+2}} C_{n+1}(K) \xrightarrow{\partial_{n+1}} C_n(K) \xrightarrow{\partial_n} C_{n-1}(K) \xrightarrow{\partial_{n-1}} \dots$
 n -cycles and n -boundaries $Z_n(K) = \operatorname{Ker}(\partial_n)$ $B_n(K) = \operatorname{Im}(\partial_{n+1})$
 n^{th} simplicial homology group $H_n(K) = Z_n(K)/B_n(K)$
For a topological space X , we can define
 n -chains $\sum_{\sigma \in S_n} \epsilon_{\sigma} \cdot \sigma$ where $\forall \sigma \in S_n, \ \epsilon_{\sigma} \in \mathbb{Z}/2\mathbb{Z}$
boundary operator $\partial_n \sigma = \sum_{\substack{\tau \subseteq \sigma \\ |\tau| \equiv |\sigma| = 1}}^{\tau \subseteq \sigma} \tau$
chain complex $\dots \xrightarrow{\partial_{n+2}} C_{n+1}(X) \xrightarrow{\partial_{n+1}} C_n(X) \xrightarrow{\partial_n} C_{n-1}(X) \xrightarrow{\partial_{n-1}} \dots$
 n -cycles and n -boundaries $Z_n(X) = \operatorname{Ker}(\partial_n)$ $B_n(X) = \operatorname{Im}(\partial_{n+1})$
 n^{th} singular homology group $H_n(X) = Z_n(X)/B_n(X)$

Theorem: If X is a topological space and K a triangulation of it, then for all $n \ge 0$, $H_n(X) = H_n(K)$.

26/44 (3/4)

$$H_0(X) = \mathbb{Z}/2\mathbb{Z}$$
$$H_1(X) = \mathbb{Z}/2\mathbb{Z}$$
$$H_2(X) = 0$$

 $H_0(K) = \mathbb{Z}/2\mathbb{Z}$ $H_1(K) = \mathbb{Z}/2\mathbb{Z}$ $H_2(X) = 0$

26/44 (4/4)

Theorem: If X is a topological space and K a triangulation of it, then for all $n \ge 0$, $H_n(X) = H_n(K)$.

Theorem: If X and Y are homotopy equivalent topological spaces, then for all $n \ge 0$, $H_n(X) = H_n(Y)$.

Corollary: If K and L are homotopy equivalent simplicial complexes, then for all $n \ge 0$, $H_n(K) = H_n(L)$.

the homology groups are **invariants** of homotopy classes

- I Simplicial homology
 - 1 Reminder of algebra
 - 2 Homological algebra
 - $\boldsymbol{3}$ Incremental algorithm

II - More about homology

- 1 Topology of simplicial complexes
- 2 Singular homology
- $\boldsymbol{3}$ Functoriality

III - Homological inference

- 1 Thickening parameter selection
- 2 Čech complex
- 3 Rips complex

Homologia é um functor

We have seen that homology transforms topological spaces into vector spaces

$$H_i \colon \text{Top} \longrightarrow \text{Vect}$$
$$X \longmapsto H_i(X)$$

Actually, it also transforms continous maps into linear maps

$$X \xrightarrow{f} Y \qquad \qquad H_n(X) \xrightarrow{H_n(f)} H_n(Y)$$

This operation preserves **commutative diagrams**:

 $H_n(g \circ f) = H_n(g) \circ H_n(f)$

Aplicação - na teoria

29/44

Application (Brouwer's fixed point theorem):

Let $f: \mathcal{B} \to \mathcal{B}$ be a continuous map, where \mathcal{B} is the unit closed ball of \mathbb{R}^n . Let us show that f has a fixed point (f(x) = x).

If not, we can define a map $F: \mathcal{B} \to \partial \mathcal{B}$ such that F restricted to $\partial \mathcal{B}$ is the identity. To do so, define F(x) as the first intersection between the half-line [x, f(x)) and $\partial \mathcal{B}$.

Denote the inclusion $i: \partial \mathcal{B} \to \mathcal{B}$. Then $F \circ i: \partial \mathcal{B} \to \partial \mathcal{B}$ is the identity. By functoriality, we have commutative diagrams

But for i = n - 1, we have an absurdity:

- I Simplicial homology
 - 1 Reminder of algebra
 - 2 Homological algebra
 - $\boldsymbol{3}$ Incremental algorithm
- II More about homology
 - 1 Topology of simplicial complexes
 - 2 Singular homology
 - 3 Functoriality

III - Homological inference

- 1 Thickening parameter selection
- 2 Čech complex
- 3 Rips complex

O problema da inferência homológica_{31/44} (1/13)

O problema da inferência homológica_{31/44} (2/13)

We cannot use X directly. Its homology is disapointing:

 $\beta_0(X)=30 \quad \text{ and } \quad \beta_i(X) \text{ for } i\geq 1$ number of connected components / = number of points of X

O problema da inferência homológica_{31/44} (3/13)

We cannot use X directly.

Idea: Thicken X.

$$X^{t} = \{ y \in \mathbb{R}^{n} \mid \exists x \in X, \|x - y\| \le t \}.$$

O problema da inferência homológica_{31/44} (4/13)

We cannot use X directly.

Idea: Thicken X.

$$X^{t} = \{ y \in \mathbb{R}^{n} \mid \exists x \in X, \|x - y\| \le t \}.$$

O problema da inferência homológica_{31/44} (5/13)

Let $\mathcal{M} \subset \mathbb{R}^n$ be a bounded subset. Suppose that we are given a finite sample $X \subset \mathcal{M}$. Estimate the homology groups of \mathcal{M} from X. $X^{0.1}$ \mathcal{M}

We cannot use X directly.

Idea: Thicken X.

$$X^{t} = \{ y \in \mathbb{R}^{n} \mid \exists x \in X, \|x - y\| \le t \}.$$

O problema da inferência homológica_{31/44} (6/13)

Let $\mathcal{M} \subset \mathbb{R}^n$ be a bounded subset. Suppose that we are given a finite sample $X \subset \mathcal{M}$. Estimate the homology groups of \mathcal{M} from X. $X^{0.2}$ \mathcal{M}

We cannot use X directly.

Idea: Thicken X.

$$X^{t} = \{ y \in \mathbb{R}^{n} \mid \exists x \in X, \|x - y\| \le t \}.$$

O problema da inferência homológica_{31/44} (7/13)

We cannot use X directly.

Idea: Thicken X.

$$X^{t} = \{ y \in \mathbb{R}^{n} \mid \exists x \in X, \|x - y\| \le t \}.$$

O problema da inferência homológica_{31/44} (8/13)

We cannot use X directly.

Idea: Thicken X.

$$X^{t} = \{ y \in \mathbb{R}^{n} \mid \exists x \in X, \|x - y\| \le t \}.$$

O problema da inferência homológica_{31/44} (9/13)

We cannot use X directly.

Idea: Thicken X.

$$X^{t} = \{ y \in \mathbb{R}^{n} \mid \exists x \in X, \|x - y\| \le t \}.$$

O problema da inferência homológica_{31/44} (10/13)

 \mathcal{M}

Let $\mathcal{M} \subset \mathbb{R}^n$ be a bounded subset. Suppose that we are given a finite sample $X \subset \mathcal{M}$.

Idea: Thicken X.

 $\mathbf{V}0.9$

$$X^{t} = \{ y \in \mathbb{R}^{n} \mid \exists x \in X, \|x - y\| \le t \}.$$

O problema da inferência homológica_{31/44} (11/13)

Some thickenings are homotopy equivalent to \mathcal{M} .

Hence we can recover the homology of \mathcal{M} :

$$\beta_0(\mathcal{M}) = \beta_0(X^{0.3})$$
$$\beta_1(\mathcal{M}) = \beta_1(X^{0.3})$$
$$\beta_2(\mathcal{M}) = \beta_2(X^{0.3})$$

. . .

O problema da inferência homológica_{31/44} (12/13)

Some thickenings are homotopy equivalent to \mathcal{M} .

Hence we can recover the homology of \mathcal{M} :

$$\beta_0(\mathcal{M}) = \beta_0(X^{0.3})$$

$$\beta_1(\mathcal{M}) = \beta_1(X^{0.3})$$

$$\beta_2(\mathcal{M}) = \beta_2(X^{0.3})$$

. .

Question 1: How to select a t such that $X^t \approx \mathcal{M}$?

Question 2: How to compute the homology groups of X^t ?

O problema da inferência homológica_{31/44} (13/13)

Some thickenings are homotopy equivalent to \mathcal{M} .

Hence we can recover the homology of \mathcal{M} :

Question 2: How to compute the homology groups of X^t ?

- I Simplicial homology
 - 1 Reminder of algebra
 - 2 Homological algebra
 - $\boldsymbol{3}$ Incremental algorithm
- II More about homology
 - 1 Topology of simplicial complexes
 - 2 Singular homology
 - 3 Functoriality
- **III Homological inference**
 - 1 Thickening parameter selection
 - 2 Čech complex
 - 3 Rips complex

Distância de Hausdorff

33/44 (1/3)

Let X be any subset of \mathbb{R}^n . The function **distance to** X is the map

dist
$$(\cdot, X) : \mathbb{R}^n \longrightarrow \mathbb{R}$$

 $y \longmapsto \operatorname{dist}(y, X) = \inf\{ \|y - x\|, x \in X \}$

A **projection** of $y \in \mathbb{R}^n$ on X is a point $x \in X$ which attains this infimum.

Distância de Hausdorff

33/44 (2/3)

Let X be any subset of \mathbb{R}^n . The function **distance to** X is the map

dist
$$(\cdot, X) : \mathbb{R}^n \longrightarrow \mathbb{R}$$

 $y \longmapsto \operatorname{dist}(y, X) = \inf\{ \|y - x\|, x \in X \}$

A **projection** of $y \in \mathbb{R}^n$ on X is a point $x \in X$ which attains this infimum.

Definition: Let $Y \subset \mathbb{R}^n$ be another subset. The **Hausdorff distance** between X and Y is

$$d_{\mathrm{H}}(X,Y) = \max\left\{\sup_{y\in Y}\operatorname{dist}(y,X), \sup_{x\in X}\operatorname{dist}(x,Y)\right\}$$
$$= \max\left\{\sup_{y\in Y}\inf_{x\in X}\|x-y\|, \sup_{x\in X}\inf_{y\in Y}\|x-y\|\right\}$$

Distância de Hausdorff

Let X be any subset of \mathbb{R}^n . The function **distance to** X is the map

dist
$$(\cdot, X) : \mathbb{R}^n \longrightarrow \mathbb{R}$$

 $y \longmapsto \operatorname{dist}(y, X) = \inf\{ \|y - x\|, x \in X \}$

A **projection** of $y \in \mathbb{R}^n$ on X is a point $x \in X$ which attains this infimum.

Definition: Let $Y \subset \mathbb{R}^n$ be another subset. The **Hausdorff distance** between X and Y is

$$d_{\mathrm{H}}(X,Y) = \max\left\{\sup_{y\in Y}\operatorname{dist}(y,X), \sup_{x\in X}\operatorname{dist}(x,Y)\right\}$$
$$= \max\left\{\sup_{y\in Y}\inf_{x\in X}\|x-y\|, \sup_{x\in X}\inf_{y\in Y}\|x-y\|\right\}$$

Proposition: The Hausdorff distance is equal to $\inf \{t \ge 0 \mid X \subset Y^t \text{ and } Y \subset X^t\}$.

33/44 (3/3)

34/44 (1/11)

The **medial axis** of X is the subset $med(X) \subset \mathbb{R}^n$ which consists of points $y \in \mathbb{R}^n$ that admit at least two projections on X:

$$med(X) = \{ y \in \mathbb{R}^n \mid \exists x, x' \in X, x \neq x', \|y - x\| = \|y - x'\| = dist(y, X) \}.$$

34/44 (2/11)

The **medial axis** of X is the subset $med(X) \subset \mathbb{R}^n$ which consists of points $y \in \mathbb{R}^n$ that admit at least two projections on X:

 $med(X) = \{ y \in \mathbb{R}^n \mid \exists x, x' \in X, x \neq x', \|y - x\| = \|y - x'\| = dist(y, X) \}.$

Examples:

The medial axis of the unit circle is the origin

34/44 (3/11)

The **medial axis** of X is the subset $med(X) \subset \mathbb{R}^n$ which consists of points $y \in \mathbb{R}^n$ that admit at least two projections on X:

 $med(X) = \{ y \in \mathbb{R}^n \mid \exists x, x' \in X, x \neq x', \|y - x\| = \|y - x'\| = dist(y, X) \}.$

Examples:

The medial axis of the unit circle is the origin

The medial axis of an ellipse is a segment

The **medial axis** of X is the subset $med(X) \subset \mathbb{R}^n$ which consists of points $y \in \mathbb{R}^n$ that admit at least two projections on X:

 $med(X) = \{ y \in \mathbb{R}^n \mid \exists x, x' \in X, x \neq x', \|y - x\| = \|y - x'\| = dist(y, X) \}.$

Examples:

The medial axis of the unit circle is the origin

The medial axis of an ellipse is a segment

34/44 (4/11)

The medial axis of a point is the empty set

34/44 (5/11)

The **medial axis** of X is the subset $med(X) \subset \mathbb{R}^n$ which consists of points $y \in \mathbb{R}^n$ that admit at least two projections on X:

 $med(X) = \{ y \in \mathbb{R}^n \mid \exists x, x' \in X, x \neq x', \|y - x\| = \|y - x'\| = dist(y, X) \}.$

Examples:

The medial axis of the unit circle is the origin

The medial axis of an ellipse is a segment

The medial axis of a point is the empty set

The medial axis of two points is their bisector

34/44 (6/11)

The **medial axis** of X is the subset $med(X) \subset \mathbb{R}^n$ which consists of points $y \in \mathbb{R}^n$ that admit at least two projections on X:

$$med(X) = \{ y \in \mathbb{R}^n \mid \exists x, x' \in X, x \neq x', \|y - x\| = \|y - x'\| = dist(y, X) \}.$$

The **reach** of X is

reach
$$(X)$$
 = inf {dist $(y, X) | y \in \text{med}(X)$ }
= inf { $||x - y|| | x \in X, y \in \text{med}(X)$ }.

34/44 (7/11)

The **medial axis** of X is the subset $med(X) \subset \mathbb{R}^n$ which consists of points $y \in \mathbb{R}^n$ that admit at least two projections on X:

$$med(X) = \{ y \in \mathbb{R}^n \mid \exists x, x' \in X, x \neq x', \|y - x\| = \|y - x'\| = dist(y, X) \}.$$

The **reach** of X is

reach
$$(X) = \inf \{ \text{dist}(y, X) \mid y \in \text{med}(X) \}$$

= $\inf \{ \|x - y\| \mid x \in X, y \in \text{med}(X) \}$

34/44 (8/11)

The **medial axis** of X is the subset $med(X) \subset \mathbb{R}^n$ which consists of points $y \in \mathbb{R}^n$ that admit at least two projections on X:

$$med(X) = \{ y \in \mathbb{R}^n \mid \exists x, x' \in X, x \neq x', \|y - x\| = \|y - x'\| = dist(y, X) \}.$$

The **reach** of X is

reach
$$(X) = \inf \{ \text{dist}(y, X) \mid y \in \text{med}(X) \}$$

= $\inf \{ \|x - y\| \mid x \in X, y \in \text{med}(X) \}$

Proposition: For every $t \in [0, \operatorname{reach}(X))$, the spaces X and X^t are homotopy equivalent.

34/44 (9/11)

The **medial axis** of X is the subset $med(X) \subset \mathbb{R}^n$ which consists of points $y \in \mathbb{R}^n$ that admit at least two projections on X:

$$med(X) = \{ y \in \mathbb{R}^n \mid \exists x, x' \in X, x \neq x', \|y - x\| = \|y - x'\| = dist(y, X) \}.$$

The **reach** of X is

reach
$$(X) = \inf \{ \operatorname{dist}(y, X) \mid y \in \operatorname{med}(X) \}$$

= $\inf \{ \|x - y\| \mid x \in X, y \in \operatorname{med}(X) \}.$

Proposition: For every $t \in [0, \operatorname{reach}(X))$, the spaces X and X^t are homotopy equivalent.

34/44 (10/11)

The **medial axis** of X is the subset $med(X) \subset \mathbb{R}^n$ which consists of points $y \in \mathbb{R}^n$ that admit at least two projections on X:

$$med(X) = \{ y \in \mathbb{R}^n \mid \exists x, x' \in X, x \neq x', \|y - x\| = \|y - x'\| = dist(y, X) \}.$$

The **reach** of X is

$$\operatorname{reach} (X) = \inf \left\{ \operatorname{dist} (y, X) \mid y \in \operatorname{med} (X) \right\}$$
$$= \inf \left\{ \|x - y\| \mid x \in X, y \in \operatorname{med} (X) \right\}$$

Proposition: For every $t \in [0, \operatorname{reach}(X))$, the spaces X and X^t are homotopy equivalent.

If $t \ge \operatorname{reach}(X)$, the sets X and X^t may not be homotopy equivalent.

Proposition: For every $t \in [0, reach(X))$, the spaces X and X^t are homotopy equivalent.

Proof: For every $t \in [0, \operatorname{reach}(X))$, the thickening X^t deform retracts onto X. A homotopy is given by the following map:

$$\begin{aligned} X^t \times [0,1] &\longrightarrow X^t \\ (x,t) &\longmapsto (1-t)x + t \cdot \operatorname{proj}(x,X) \,. \end{aligned}$$

Indeed, the projection proj(x, X) is well defined (it is unique).

Seleção do parâmetro t

35/44 (1/2)

Remember Question 1: How to select a t such that $X^t \approx \mathcal{M}$?

Theorem (Frédéric Chazal, David Cohen-Steiner, and André Lieutier, 2009): Let X and \mathcal{M} be subsets of \mathbb{R}^n . Suppose that \mathcal{M} has positive reach, and that $d_H(X, \mathcal{M}) \leq \frac{1}{17} \operatorname{reach}(\mathcal{M})$. Then X^t and \mathcal{M} are homotopic equivalent, provided that

Then X^t and \mathcal{M} are homotopic equivalent, provided that

$$t \in [4d_{\mathrm{H}}(X, \mathcal{M}), \mathrm{reach}(\mathcal{M}) - 3d_{\mathrm{H}}(X, \mathcal{M})).$$

Seleção do parâmetro t

35/44 (2/2)

Remember Question 1: How to select a t such that $X^t \approx \mathcal{M}$?

Theorem (Frédéric Chazal, David Cohen-Steiner, and André Lieutier, 2009): Let X and \mathcal{M} be subsets of \mathbb{R}^n . Suppose that \mathcal{M} has positive reach, and that $d_H(X, \mathcal{M}) \leq \frac{1}{17} \operatorname{reach}(\mathcal{M})$. Then X^t and \mathcal{M} are homotopic equivalent, provided that

Then X^t and \mathcal{M} are homotopic equivalent, provided that

 $t \in [4d_{\mathrm{H}}(X, \mathcal{M}), \operatorname{reach}(\mathcal{M}) - 3d_{\mathrm{H}}(X, \mathcal{M})).$

Theorem (Partha Niyogi, Stephen Smale, and Shmuel Weinberger, 2008): Let X and \mathcal{M} be subsets of \mathbb{R}^n , with \mathcal{M} a submanifold, and X a finite subset of \mathcal{M} . Suppose that \mathcal{M} has positive reach.

Then X^t and \mathcal{M} are homotopic equivalent, provided that

$$t \in \left[2d_{\mathrm{H}}(X, \mathcal{M}), \sqrt{\frac{3}{5}} \mathrm{reach}(\mathcal{M}) \right)$$

- I Simplicial homology
 - 1 Reminder of algebra
 - 2 Homological algebra
 - $\boldsymbol{3}$ Incremental algorithm
- II More about homology
 - 1 Topology of simplicial complexes
 - 2 Singular homology
 - 3 Functoriality
- **III Homological inference**
 - 1 Thickening parameter selection
 - 2 Čech complex
 - 3 Rips complex

Triangulações (fracas)

37/44 (1/2)

Let us consider Question 2: How to compute the homology groups of X^t ?

We must a triangulation of X^t , that is: a simplicial complex K homeomorphic to X.

Actually, we will define something weaker: a simplicial complex K that is homotopy equivalent to X.

Triangulações (fracas)

37/44 (2/2)

Let us consider Question 2: How to compute the homology groups of X^t ?

We must a triangulation of X^t , that is: a simplicial complex K homeomorphic to X.

Actually, we will define something weaker: a simplicial complex K that is homotopy equivalent to X.

weak triangulation

Either case, we will have $\beta_i(X) = \beta_i(K)$ for all $i \ge 0$.

Nervos

38/44 (1/12)

Definition: Let X be a topological space, and $\mathcal{U} = \{U_i\}_{1 \le i \le N}$ a cover of X, that is, a collection of subsets $U_i \subset X$ such that

$$\bigcup_{1 \le i \le N} U_i = X.$$

The **nerve** of \mathcal{U} is the simplicial complex with vertex set $\{1, ..., N\}$ and whose m-simplices are the subsets $\{i_1, ..., i_m\} \subset \{1, ..., N\}$ such that $\bigcap_{k=0}^m U_{i_k} \neq \emptyset$. It is denoted $\mathcal{N}(\mathcal{U})$.

Nervos

38/44 (2/12)

Definition: Let X be a topological space, and $\mathcal{U} = \{U_i\}_{1 \le i \le N}$ a cover of X, that is, a collection of subsets $U_i \subset X$ such that

 $\bigcup_{1 \le i \le N} U_i = X.$

The **nerve** of \mathcal{U} is the simplicial complex with vertex set $\{1, ..., N\}$ and whose m-simplices are the subsets $\{i_1, ..., i_m\} \subset \{1, ..., N\}$ such that $\bigcap_{k=0}^m U_{i_k} \neq \emptyset$. It is denoted $\mathcal{N}(\mathcal{U})$.

38/44 (3/12)

Definition: Let X be a topological space, and $\mathcal{U} = \{U_i\}_{1 \le i \le N}$ a cover of X, that is, a collection of subsets $U_i \subset X$ such that

$$\bigcup_{1 \le i \le N} U_i = X.$$

38/44 (4/12)

Definition: Let X be a topological space, and $\mathcal{U} = \{U_i\}_{1 \le i \le N}$ a cover of X, that is, a collection of subsets $U_i \subset X$ such that

 $\bigcup_{1 \le i \le N} U_i = X.$

38/44 (5/12)

Definition: Let X be a topological space, and $\mathcal{U} = \{U_i\}_{1 \le i \le N}$ a cover of X, that is, a collection of subsets $U_i \subset X$ such that

 $\bigcup_{1 \le i \le N} U_i = X.$

38/44 (6/12)

Definition: Let X be a topological space, and $\mathcal{U} = \{U_i\}_{1 \le i \le N}$ a cover of X, that is, a collection of subsets $U_i \subset X$ such that

$$\bigcup_{1 \le i \le N} U_i = X.$$

38/44 (7/12)

Definition: Let X be a topological space, and $\mathcal{U} = \{U_i\}_{1 \le i \le N}$ a cover of X, that is, a collection of subsets $U_i \subset X$ such that

38/44 (8/12)

Definition: Let X be a topological space, and $\mathcal{U} = \{U_i\}_{1 \le i \le N}$ a cover of X, that is, a collection of subsets $U_i \subset X$ such that

The **nerve** of \mathcal{U} is the simplicial complex with vertex set $\{1, ..., N\}$ and whose m-simplices are the subsets $\{i_1, ..., i_m\} \subset \{1, ..., N\}$ such that $\bigcap_{k=0}^m U_{i_k} \neq \emptyset$. It is denoted $\mathcal{N}(\mathcal{U})$.

 $X^{0.2} = \bigcup_{x \in X} \overline{\mathcal{B}}\left(x, 0.2\right) \text{ is covered by } \mathcal{U} = \left\{\overline{\mathcal{B}}\left(x, 0.2\right) \mid x \in X\right\}$

38/44 (9/12)

Definition: Let X be a topological space, and $\mathcal{U} = \{U_i\}_{1 \le i \le N}$ a cover of X, that is, a collection of subsets $U_i \subset X$ such that

The **nerve** of \mathcal{U} is the simplicial complex with vertex set $\{1, ..., N\}$ and whose m-simplices are the subsets $\{i_1, ..., i_m\} \subset \{1, ..., N\}$ such that $\bigcap_{k=0}^m U_{i_k} \neq \emptyset$. It is denoted $\mathcal{N}(\mathcal{U})$.

 $X^{0.2} = \bigcup_{x \in X} \overline{\mathcal{B}}(x, 0.2) \text{ is covered by } \mathcal{U} = \left\{ \overline{\mathcal{B}}(x, 0.2) \mid x \in X \right\}$

38/44 (10/12)

Definition: Let X be a topological space, and $\mathcal{U} = \{U_i\}_{1 \le i \le N}$ a cover of X, that is, a collection of subsets $U_i \subset X$ such that

The **nerve** of \mathcal{U} is the simplicial complex with vertex set $\{1, ..., N\}$ and whose m-simplices are the subsets $\{i_1, ..., i_m\} \subset \{1, ..., N\}$ such that $\bigcap_{k=0}^m U_{i_k} \neq \emptyset$. It is denoted $\mathcal{N}(\mathcal{U})$.

 $X^{0.3} = \bigcup_{x \in X} \overline{\mathcal{B}}(x, 0.3) \text{ is covered by } \mathcal{U} = \left\{ \overline{\mathcal{B}}(x, 0.3) \mid x \in X \right\}$

38/44 (11/12)

Definition: Let X be a topological space, and $\mathcal{U} = \{U_i\}_{1 \le i \le N}$ a cover of X, that is, a collection of subsets $U_i \subset X$ such that

 $\bigcup_{1 \le i \le N} U_i = X.$

38/44 (12/12)

Definition: Let X be a topological space, and $\mathcal{U} = \{U_i\}_{1 \le i \le N}$ a cover of X, that is, a collection of subsets $U_i \subset X$ such that

$$\bigcup_{1 \le i \le N} U_i = X.$$

The **nerve** of \mathcal{U} is the simplicial complex with vertex set $\{1, ..., N\}$ and whose m-simplices are the subsets $\{i_1, ..., i_m\} \subset \{1, ..., N\}$ such that $\bigcap_{k=0}^m U_{i_k} \neq \emptyset$. It is denoted $\mathcal{N}(\mathcal{U})$.

Nerve theorem: Consider $X \subset \mathbb{R}^n$. Suppose that each U_i are balls (or more generally, closed and convex). Then $\mathcal{N}(\mathcal{U})$ is homotopy equivalent to X.

Complexo de Čech

39/44 (1/2)

Let X be a finite subset of \mathbb{R}^n , and $t \ge 0$. Consider the collection

$$\mathcal{V}^{t} = \left\{ \overline{\mathcal{B}}(x,t), x \in X \right\}.$$

This is a cover of the thickening X^t , and each components are closed balls. By Nerve Theorem, its nerve $\mathcal{N}(\mathcal{V}^t)$ has the homotopy type of X^t .

Definition: This nerve is denoted $\operatorname{\check{Cech}}^{t}(X)$ and is called the $\operatorname{\check{Cech}}^{t}$ complex of X at time t.

Complexo de Čech

39/44 (2/2)

Let X be a finite subset of \mathbb{R}^n , and $t \ge 0$. Consider the collection

$$\mathcal{V}^{t} = \left\{ \overline{\mathcal{B}}\left(x,t\right), x \in X \right\}.$$

This is a cover of the thickening X^t , and each components are closed balls. By Nerve Theorem, its nerve $\mathcal{N}(\mathcal{V}^t)$ has the homotopy type of X^t .

Definition: This nerve is denoted $\check{\operatorname{Cech}}^t(X)$ and is called the $\check{\operatorname{Cech}}$ complex of X at time t.

• The Question 2 (How to compute the homology groups of X^t ?) is solved.

- I Simplicial homology
 - 1 Reminder of algebra
 - 2 Homological algebra
 - $\boldsymbol{3}$ Incremental algorithm
- II More about homology
 - 1 Topology of simplicial complexes
 - 2 Singular homology
 - 3 Functoriality

III - Homological inference

- 1 Thickening parameter selection
- 2 Čech complex
- $\boldsymbol{3}$ Rips complex

Computação do complexo de Čech 41/44 (1/3)

Let $X = \{x_1, \ldots, x_N\} \subset \mathbb{R}^n$ be finite, let $t \ge 0$ and consider the *t*-thickening

$$X^{t} = \bigcup_{x \in X} \overline{\mathcal{B}}(x, t) \,.$$

By definition, its nerve, $\operatorname{\check{Cech}}^t(X)$, the $\operatorname{\check{Cech}}^t$ complex at time t, is a simplicial complex on the vertices $\{1, \ldots, N\}$ whose simplices are the subsets $\{i_1, \ldots, i_m\}$ such that

$$\bigcap_{1 \le k \le m} \overline{\mathcal{B}}\left(x_{i_k}, t\right) \neq \emptyset.$$

Computação do complexo de Čech 41/44 (2/3)

Let $X = \{x_1, \ldots, x_N\} \subset \mathbb{R}^n$ be finite, let $t \ge 0$ and consider the *t*-thickening

$$X^{t} = \bigcup_{x \in X} \overline{\mathcal{B}}(x, t) \,.$$

By definition, its nerve, $\operatorname{\check{Cech}}^t(X)$, the $\operatorname{\check{Cech}}^t$ complex at time t, is a simplicial complex on the vertices $\{1, \ldots, N\}$ whose simplices are the subsets $\{i_1, \ldots, i_m\}$ such that

$$\bigcap_{\leq k \leq m} \overline{\mathcal{B}}\left(x_{i_k}, t\right) \neq \emptyset.$$

Therefore, computing the Čech complex relies on the following geometric predicate:

Given m closed balls of \mathbb{R}^n , do they intersect?

This problem is known as the *smallest circle problem*. It can can be solved in O(m) time, where m is the number of points.

1

Computação do complexo de Čech 41/44 (3/3)

Let $X = \{x_1, \ldots, x_N\} \subset \mathbb{R}^n$ be finite, let $t \ge 0$ and consider the *t*-thickening

$$X^{t} = \bigcup_{x \in X} \overline{\mathcal{B}}(x, t) \,.$$

By definition, its nerve, $\operatorname{\check{Cech}}^t(X)$, the $\operatorname{\check{Cech}}^t$ complex at time t, is a simplicial complex on the vertices $\{1, \ldots, N\}$ whose simplices are the subsets $\{i_1, \ldots, i_m\}$ such that

$$\bigcap_{1 \le k \le m} \overline{\mathcal{B}}\left(x_{i_k}, t\right) \neq \emptyset.$$

Therefore, computing the Čech complex relies on the following geometric predicate:

Given m closed balls of \mathbb{R}^n , do they intersect?

This problem is known as the *smallest circle problem*. It can can be solved in O(m) time, where m is the number of points.

42/44 (1/6)

Let G be a graph. We call a **clique** of G a set of vertices $v_1, ..., v_m$ such that for every $i, j \in [\![1, m]\!]$ with $i \neq j$, the edge $[v_i, v_j]$ belongs to G.

42/44 (2/6)

Let G be a graph.

We call a **clique** of G a set of vertices $v_1, ..., v_m$ such that for every $i, j \in [\![1, m]\!]$ with $i \neq j$, the edge $[v_i, v_j]$ belongs to G.

42/44 (3/6)

Let G be a graph.

We call a **clique** of G a set of vertices $v_1, ..., v_m$ such that for every $i, j \in [\![1, m]\!]$ with $i \neq j$, the edge $[v_i, v_j]$ belongs to G.

42/44 (4/6)

Let G be a graph.

We call a **clique** of G a set of vertices $v_1, ..., v_m$ such that for every $i, j \in [\![1, m]\!]$ with $i \neq j$, the edge $[v_i, v_j]$ belongs to G.

42/44 (5/6)

Let G be a graph. We call a **clique** of G a set of vertices $v_1, ..., v_m$ such that for every $i, j \in [\![1, m]\!]$ with $i \neq j$, the edge $[v_i, v_j]$ belongs to G.

Definition: Given a graph G, the corresponding **clique complex** is the simplicial complex whose

- vertices are the vertices of G,
- simplices are the sets of vertices of the cliques of G.

42/44 (6/6)

Let G be a graph. We call a **clique** of G a set of vertices $v_1, ..., v_m$ such that for every $i, j \in [\![1, m]\!]$ with $i \neq j$, the edge $[v_i, v_j]$ belongs to G.

Definition: Given a graph G, the corresponding **clique complex** is the simplicial complex whose

- vertices are the vertices of G,
- simplices are the sets of vertices of the cliques of G.

Observation: The clique complex of a graph is a simplicial complex.

43/44 (1/6)

Let $X = \{x_1, \ldots, x_N\} \subset \mathbb{R}^n$ and $t \ge 0$.

Consider the graph G^t whose vertex set is $\{1, \ldots, N\}$, and whose edges are the pairs (i, j) such that $||x_i - x_j|| \le 2t$.

Alternatively, G^t can be seen as the 1-skeleton of the Čech complex $\operatorname{\check{C}ech}^t(X)$.

43/44 (2/6)

Let $X = \{x_1, \ldots, x_N\} \subset \mathbb{R}^n$ and $t \ge 0$.

Consider the graph G^t whose vertex set is $\{1, \ldots, N\}$, and whose edges are the pairs (i, j) such that $||x_i - x_j|| \le 2t$.

Alternatively, G^t can be seen as the 1-skeleton of the Čech complex $\operatorname{\check{C}ech}^t(X)$.

Definition: The **Rips complex** of X at time t is the clique complex of the graph G^t . We denote it $\operatorname{Rips}^t(X)$.

Let $X = \{x_1, \ldots, x_N\} \subset \mathbb{R}^n$ and $t \ge 0$.

Consider the graph G^t whose vertex set is $\{1, \ldots, N\}$, and whose edges are the pairs (i, j) such that $||x_i - x_j|| \le 2t$.

Alternatively, G^t can be seen as the 1-skeleton of the Čech complex $\operatorname{\check{C}ech}^t(X)$.

Definition: The **Rips complex** of X at time t is the clique complex of the graph G^t . We denote it $\operatorname{Rips}^t(X)$.

43/44 (3/6)

43/44 (4/6)

Let $X = \{x_1, \ldots, x_N\} \subset \mathbb{R}^n$ and $t \ge 0$.

Consider the graph G^t whose vertex set is $\{1, \ldots, N\}$, and whose edges are the pairs (i, j) such that $||x_i - x_j|| \le 2t$.

Alternatively, G^t can be seen as the 1-skeleton of the Čech complex $\operatorname{\check{C}ech}^t(X)$.

Definition: The **Rips complex** of X at time t is the clique complex of the graph G^t . We denote it $\operatorname{Rips}^t(X)$.

43/44 (5/6)

43/44 (6/6)

Proof: Let $t \ge 0$. The first inclusion follows from the fact that $\operatorname{Rips}^{t}(X)$ is the clique complex of $\operatorname{\check{Cech}}^{t}(X)$.

To prove the second one, choose a simplex $\sigma \in \operatorname{Rips}^{t}(X)$. Let us prove that $\omega \in \operatorname{\check{Cech}}^{2t}(X)$.

Let $x \in \sigma$ be any vertex. Note that $\forall y \in \sigma$, we have $||x - y|| \le 2t$ by definition of the Rips complex. Hence

$$x \in \bigcap_{y \in \sigma} \overline{\mathcal{B}}(y, 2t) \,.$$

The intersection being non-empty, we deduce $\sigma \in \operatorname{\check{C}ech}^{2t}(X)$.

Question 1: How to select a t such that $X^t \approx \mathcal{M}$?

Theorem (Frédéric Chazal, David Cohen-Steiner, and André Lieutier, 2009): Let X and \mathcal{M} be subsets of \mathbb{R}^n . Suppose that \mathcal{M} has positive reach, and that $d_{\mathrm{H}}(X, \mathcal{M}) \leq \frac{1}{17} \mathrm{reach}(\mathcal{M})$.

Then X^t and \mathcal{M} are homotopic equivalent, provided that

Theorem (Partha Niyogi, Stephen Smale, and Shmuel Weinberger, 2008): Let X and \mathcal{M} be subsets of \mathbb{R}^n , with \mathcal{M} a submanifold, and X a finite subset of \mathcal{M} . Suppose that \mathcal{M} has positive reach. Then X^t and \mathcal{M} are homotopic equivalent, provided that

$$t \in [4d_{\mathrm{H}}(X, \mathcal{M}), \mathrm{reach}(\mathcal{M}) - 3d_{\mathrm{H}}(X, \mathcal{M})).$$

 $t \in \left[2d_{\mathrm{H}}(X, \mathcal{M}), \sqrt{\frac{3}{5}} \mathrm{reach}(\mathcal{M}) \right).$

estimate t

Question 2: How to compute the homology groups of X^t ?

Question 1: How to select a t such that $X^t \approx \mathcal{M}$?

Theorem (Frédéric Chazal, David Cohen-Steiner, and André Lieutier, 2009): Let X and \mathcal{M} be subsets of \mathbb{R}^n . Suppose that \mathcal{M} has positive reach, and that $d_H(X, \mathcal{M}) \leq \frac{1}{17} \operatorname{reach}(\mathcal{M})$. Then X^t and \mathcal{M} are homotonic equivalent, provided that

Then X^t and \mathcal{M} are homotopic equivalent, provided that

Theorem (Partha Niyogi, Stephen Smale, and Shmuel Weinberger, 2008): Let X and \mathcal{M} be subsets of \mathbb{R}^n , with \mathcal{M} a submanifold, and X a finite subset of \mathcal{M} . Suppose that \mathcal{M} has positive reach.

Then X^t and ${\mathcal M}$ are homotopic equivalent, provided that

Question 2: How to compute the homology groups of X^t ?

Question 1: How to select a t such that $X^t \approx \mathcal{M}$?

Theorem (Frédéric Chazal, David Cohen-Steiner, and André Lieutier, 2009): Let X and \mathcal{M} be subsets of \mathbb{R}^n . Suppose that \mathcal{M} has positive reach, and that $d_H(X, \mathcal{M}) \leq \frac{1}{17} \operatorname{reach}(\mathcal{M})$. Then X^t and \mathcal{M} are homotopic equivalent, provided that Theorem (Partha Niyogi, Stephen Smale, and Shmuel Weinberger, 2008): Let X and \mathcal{M} be subsets of \mathbb{R}^n , with \mathcal{M} a submanifold, and X a finite subset of \mathcal{M} . Suppose that \mathcal{M} has positive reach.

Then X^t and \mathcal{M} are homotopic equivalent, provided that

Question 1: How to select a t such that $X^t \approx \mathcal{M}$?

Theorem (Frédéric Chazal, David Cohen-Steiner, and André Lieutier, 2009): Let X and \mathcal{M} be subsets of \mathbb{R}^n . Suppose that \mathcal{M} has positive reach, and that $d_H(X, \mathcal{M}) \leq \frac{1}{17} \operatorname{reach}(\mathcal{M})$. Then X^t and \mathcal{M} are homotopic equivalent, provided that Theorem (Partha Niyogi, Stephen Smale, and Shmuel Weinberger, 2008): Let X and \mathcal{M} be subsets of \mathbb{R}^n , with \mathcal{M} a submanifold, and X a finite subset of \mathcal{M} . Suppose that \mathcal{M} has positive reach.

Then X^t and \mathcal{M} are homotopic equivalent, provided that

Idea (multiscale analysis): Instead of estimating a value of t, we will choose all of them.