EMAp - Summer School On Data Science - 27/02/23

From Algebraic Topology
 to Data Analysis

Part II/III: Homological inference

https://raphaeltinarrage.github.io

Part I/III: Topological invariants

Thursday 26, 9~11am
Part II/III: Homological inference Friday 27, 9~11am

Part III/III: Persistent Homology

Friday 27, 3~5pm

Lembrete de ontem

Some datasets contain topology

Invariants of homotopy classes allow to describe and understand topological spaces

Number of connected components Euler characteristic χ
Betti numbers $\beta_{0}, \beta_{1}, \beta_{2}, \ldots$

	1	1	1

Cardápio

Today we will define a powerful invariant, homology groups, that already contains the number of connected components, and the Euler characteristic.

Algebraic topology

Cardápio

Today we will define a powerful invariant, homology groups, that already contains the number of connected components, and the Euler characteristic.

Cardápio

Today we will define a powerful invariant, homology groups, that already contains the number of connected components, and the Euler characteristic.

Cardápio

Today we will define a powerful invariant, homology groups, that already contains the number of connected components, and the Euler characteristic.

Cardápio

Today we will define a powerful invariant, homology groups, that already contains the number of connected components, and the Euler characteristic.

I - Simplicial homology
1 - Reminder of algebra
2 - Homological algebra
3 - Incremental algorithm
II - More about homology
1 - Topology of simplicial complexes
2 - Singular homology
3 - Functoriality
III - Homological inference
1 - Thickening parameter selection
2 - Čech complex
3 - Rips complex

O grupo $\mathbb{Z} / 2 \mathbb{Z}$

The group $\mathbb{Z} / 2 \mathbb{Z}$ can be seen as the set $\{0,1\}$ with the operation

$$
\begin{aligned}
& 0+0=0 \\
& 0+1=1 \\
& 1+0=1 \\
& 1+1=0
\end{aligned}
$$

For any $n \geq 1$, the product group $(\mathbb{Z} / 2 \mathbb{Z})^{n}$ is the group whose underlying set is

$$
(\mathbb{Z} / 2 \mathbb{Z})^{n}=\left\{\left(\epsilon_{1}, \ldots, \epsilon_{n}\right), \epsilon_{1}, \ldots, \epsilon_{n} \in \mathbb{Z} / 2 \mathbb{Z}\right\}
$$

and whose operation is defined as

$$
\left(\epsilon_{1}, \ldots, \epsilon_{n}\right)+\left(\epsilon_{1}^{\prime}, \ldots, \epsilon_{n}^{\prime}\right)=\left(\epsilon_{1}+\epsilon_{1}^{\prime}, \ldots, \epsilon_{n}+\epsilon_{n}^{\prime}\right)
$$

The group $\mathbb{Z} / 2 \mathbb{Z}$ can be given a field structure

$$
\begin{aligned}
& 0 \times 0=0 \\
& 0 \times 1=0 \\
& 1 \times 0=0 \\
& 1 \times 1=1
\end{aligned}
$$

and $(\mathbb{Z} / 2 \mathbb{Z})^{n}$ can be seen as a $\mathbb{Z} / 2 \mathbb{Z}$-vector space over the field $\mathbb{Z} / 2 \mathbb{Z}$.

Espaços vetoriais sobre $\mathbb{Z} / 2 \mathbb{Z}$

Definition: A vector space over $\mathbb{Z} / 2 \mathbb{Z}$ is a set V endowed with two operations

$$
\begin{array}{rlrl}
V \times V & \longrightarrow V & \mathbb{Z} / 2 \mathbb{Z} \times V & \longrightarrow V \\
(u, v) & \longmapsto u+v & (\lambda, v) & \longmapsto \lambda \cdot v
\end{array}
$$

such that

$$
\begin{gathered}
\text { (associativity) } \forall u, v, w \in V, \quad(u+v)+w=u+(v+w), \\
\text { (identity) } \exists 0 \in V, \forall v \in V, \quad v+0=0+v=v, \\
\text { (inverse) } \forall v \in V, \exists w \in V, u+v=v+u=0, \\
\text { (commutativity) } \forall u, v \in V, u+v=v+u,
\end{gathered}
$$

(compatibility of multiplication) $\forall \lambda, \mu \in \mathbb{Z} / 2 \mathbb{Z}, \forall v \in V, \lambda \cdot(\mu \cdot v)=(\lambda \times \mu) \cdot v$,
(scalar identity) $\forall v \in V, 1 \cdot v=v$,
(scalar distributivity) $\forall \mu, \nu \in \mathbb{Z} / 2 \mathbb{Z}, \forall v \in V,(\lambda+\nu) \cdot v=\lambda \cdot v+\nu \cdot v$,
(vector distributivity) $\forall \mu \in \mathbb{Z} / 2 \mathbb{Z}, \forall v, w \in V, \lambda \cdot(u+v)=\lambda \cdot v+\nu \cdot v$.

Espaços vetoriais sobre $\mathbb{Z} / 2 \mathbb{Z}$

Definition: A vector space over $\mathbb{Z} / 2 \mathbb{Z}$ is a set V endowed with two operations

$$
\begin{array}{rlrl}
V \times V & \longrightarrow V & \mathbb{Z} / 2 \mathbb{Z} \times V & \longrightarrow V \\
(u, v) & \longmapsto u+v & (\lambda, v) & \longmapsto \lambda \cdot v
\end{array}
$$

such that

$$
\begin{gathered}
\text { (associativity) } \forall u, v, w \in V, \quad(u+v)+w=u+(v+w), \\
\text { (identity) } \exists 0 \in V, \forall v \in V, \quad v+0=0+v=v, \\
\text { (inverse) } \forall v \in V, \exists w \in V, u+v=v+u=0, \\
\text { (commutativity) } \forall u, v \in V, \quad u+v=v+u,
\end{gathered}
$$

(compatibility of multiplication) $\forall \lambda, \mu \in \mathbb{Z} / 2 \mathbb{Z}, \forall v \in V, \lambda \cdot(\mu \cdot v)=(\lambda \times \mu) \cdot v$,
(scalar identity) $\forall v \in V, 1 \cdot v=v$,
(scalar distributivity) $\forall \mu, \nu \in \mathbb{Z} / 2 \mathbb{Z}, \forall v \in V,(\lambda+\nu) \cdot v=\lambda \cdot v+\nu \cdot v$,
(vector distributivity) $\forall \mu \in \mathbb{Z} / 2 \mathbb{Z}, \forall v, w \in V, \lambda \cdot(u+v)=\lambda \cdot v+\nu \cdot v$.

Proposition: Le $(V,+)$ be a commutative group.
It can be given a $\mathbb{Z} / 2 \mathbb{Z}$-vector space structure iff $\forall v \in V, v+v=0$.
Proposition: Let $(V,+, \cdot)$ be a finite $\mathbb{Z} / 2 \mathbb{Z}$-vector space. Then there exists $n \geq 0$ such that V has cardinal 2^{n}, and $(V,+, \cdot)$ is isomorphic to the vector space $(\mathbb{Z} / 2 \mathbb{Z})^{n}$.

Proof: Consequence of the theory of vector spaces.

Espaços vetoriais sobre $\mathbb{Z} / 2 \mathbb{Z}$

A linear subspace of $(V,+, \cdot)$ is a subset $W \subset V$ such that

$$
\forall u, v \in W, u+v \in W \quad \text { and } \quad \forall v \in W, \forall \lambda \in \mathbb{Z} / 2 \mathbb{Z}, \lambda v \in W
$$

We define the following equivalence relation on V : for all $u, v \in V$,

$$
u \sim v \Longleftrightarrow u-v \in W
$$

Denote by V / W the quotient set of V under this relation. For any $v \in V$, one shows that the equivalence class of v is equal to $v+W=\{v+w \mid w \in W\}$.

One defines a group structure \oplus on V / W as follows:

$$
(u+W) \oplus\left(u^{\prime}+W\right)=\left(u+u^{\prime}\right)+W
$$

Definition: The vector space $(V / W, \oplus, \cdot)$ is called the quotient vector space.

Proposition: We have $\operatorname{dim} V / W=\operatorname{dim} V-\operatorname{dim} W$.

I - Simplicial homology

1 - Reminder of algebra
2 - Homological algebra
3 - Incremental algorithm
II - More about homology
1 - Topology of simplicial complexes
2 - Singular homology
3 - Functoriality
III - Homological inference
1 - Thickening parameter selection
2 - Čech complex
3 - Rips complex

Cadeias

Definition (reminder): Let V be a set (called the set of vertices). A simplicial complex over V is a set K of subsets of V (called the simplices) such that, for every $\sigma \in K$ and every non-empty $\tau \subset \sigma$, we have $\tau \in K$.
The dimension of a simplex $\sigma \in K$ is $\operatorname{dim}(\sigma)=|\sigma|-1$.

Let K be a simplicial complex. For any $n \geq 0$, define

$$
K_{(n)}=\{\sigma \in K \mid \operatorname{dim}(\sigma)=n\} .
$$

$K_{(2)}$

Cadeias

Let $n \geq 0$. The n-chains of K is the set $C_{n}(K)$ whose elements are the formal sums

$$
\sum_{\sigma \in K_{(n)}} \epsilon_{\sigma} \cdot \sigma \quad \text { where } \quad \forall \sigma \in K_{(n)}, \quad \epsilon_{\sigma} \in \mathbb{Z} / 2 \mathbb{Z}
$$

Example: The 0 -chains of $K=\{[0],[1],[2],[0,1],[0,2]\}$ are:

[2]

and the 1-chains

Cadeias

Let $n \geq 0$. The n-chains of K is the set $C_{n}(K)$ whose elements are the formal sums

$$
\sum_{\sigma \in K_{(n)}} \epsilon_{\sigma} \cdot \sigma \quad \text { where } \quad \forall \sigma \in K_{(n)}, \quad \epsilon_{\sigma} \in \mathbb{Z} / 2 \mathbb{Z}
$$

We can give $C_{n}(K)$ a group structure via

$$
\sum_{\sigma \in K_{(n)}} \epsilon_{\sigma} \cdot \sigma+\sum_{\sigma \in K_{(n)}} \eta_{\sigma} \cdot \sigma=\sum_{\sigma \in K_{(n)}}\left(\epsilon_{\sigma}+\eta_{\sigma}\right) \cdot \sigma
$$

Moreover, $C_{n}(K)$ can be given a $\mathbb{Z} / 2 \mathbb{Z}$-vector space structure.
Example: The 0 -chains of $K=\{[0],[1],[2],[0,1],[0,2]\}$ are:

0

[1]

[2]

$[0]+[1]$

$[1]+[2][0]+[1]+[2]$
and the 1-chains

1
$[0,1]$
$\$$
$[0,2]$

$[0,1]+[0,2]$

Cadeias

Let $n \geq 0$. The n-chains of K is the set $C_{n}(K)$ whose elements are the formal sums

$$
\sum_{\sigma \in K_{(n)}} \epsilon_{\sigma} \cdot \sigma \quad \text { where } \quad \forall \sigma \in K_{(n)}, \epsilon_{\sigma} \in \mathbb{Z} / 2 \mathbb{Z}
$$

We can give $C_{n}(K)$ a group structure via

$$
\sum_{\sigma \in K_{(n)}} \epsilon_{\sigma} \cdot \sigma+\sum_{\sigma \in K_{(n)}} \eta_{\sigma} \cdot \sigma=\sum_{\sigma \in K_{(n)}}\left(\epsilon_{\sigma}+\eta_{\sigma}\right) \cdot \sigma
$$

Moreover, $C_{n}(K)$ can be given a $\mathbb{Z} / 2 \mathbb{Z}$-vector space structure.

Example: In the simplicial complex $K=\{[0],[1],[2],[0,1],[0,2]\}$, the sum of the 0 -chains $[0]+[1]$ and $[0]+[2]$ is $[1]+[2]$:

$$
([0]+[1])+([0]+[2])=[0]+[0]+[1]+[2]=[1]+[2] .
$$

Operador bordo

Let $n \geq 1$, and $\sigma=\left[x_{0}, \ldots, x_{n}\right] \in K_{(n)}$ a simplex of dimension n. We define its boundary as the following element of $C_{n-1}(K)$:

$$
\partial_{n} \sigma=\sum_{\substack{\tau \subset \sigma \\|\tau|=|\sigma|-1}} \tau
$$

We can extend the operator ∂_{n} as a linear map $\partial_{n}: C_{n}(K) \rightarrow C_{n-1}(K)$.

Example: Consider the simplicial complex

$$
K=\{[0],[1],[2],[3],[0,1],[0,2],[1,2],[1,3],[2,3],[0,1,2]\} .
$$

The simplex $[0,1]$ has the faces $[0]$ and [1]. Hence

$$
\partial_{1}[0,1]=[0]+[1] .
$$

Operador bordo

Let $n \geq 1$, and $\sigma=\left[x_{0}, \ldots, x_{n}\right] \in K_{(n)}$ a simplex of dimension n. We define its boundary as the following element of $C_{n-1}(K)$:

$$
\partial_{n} \sigma=\sum_{\substack{\tau \subset \sigma \\|\tau|=|\sigma|-1}} \tau
$$

We can extend the operator ∂_{n} as a linear map $\partial_{n}: C_{n}(K) \rightarrow C_{n-1}(K)$.

Example: Consider the simplicial complex

$$
K=\{[0],[1],[2],[3],[0,1],[0,2],[1,2],[1,3],[2,3],[0,1,2]\} .
$$

The boundary of the 1 -chain $[0,1]+[1,2]+[2,0]$ is

$$
\begin{aligned}
\partial_{1}([0,1]+[1,2]+[2,0]) & =\partial_{1}[0,1]+\partial_{1}[1,2]+\partial_{1}[2,0] \\
& =[0]+[1]+[1]+[2]+[2]+[0]=0
\end{aligned}
$$

Operador bordo

Let $n \geq 1$, and $\sigma=\left[x_{0}, \ldots, x_{n}\right] \in K_{(n)}$ a simplex of dimension n. We define its boundary as the following element of $C_{n-1}(K)$:

$$
\partial_{n} \sigma=\sum_{\substack{\tau \subset \sigma \\|\tau|=|\sigma|-1}} \tau
$$

We can extend the operator ∂_{n} as a linear map $\partial_{n}: C_{n}(K) \rightarrow C_{n-1}(K)$.

Example: Consider the simplicial complex

$$
K=\{[0],[1],[2],[3],[0,1],[0,2],[1,2],[1,3],[2,3],[0,1,2]\} .
$$

The simplex $[0,1,2]$ has the faces $[0,1]$ and $[1,2]$ and $[2,0]$. Hence

$$
\partial_{2}[0,1,2]=[0,1]+[1,2]+[2,0] .
$$

Operador bordo

Let $n \geq 1$, and $\sigma=\left[x_{0}, \ldots, x_{n}\right] \in K_{(n)}$ a simplex of dimension n. We define its boundary as the following element of $C_{n-1}(K)$:

$$
\partial_{n} \sigma=\sum_{\substack{\tau \subset \sigma \\|\tau|=|\sigma|-1}} \tau
$$

We can extend the operator ∂_{n} as a linear map $\partial_{n}: C_{n}(K) \rightarrow C_{n-1}(K)$.

Proposition: For any $n \geq 1$, for any $c \in C_{n}(K)$, we have $\partial_{n-1} \circ \partial_{n}(c)=0$.

Operador bordo

Proposition: For any $n \geq 1$, for any $c \in C_{n}(K)$, we have $\partial_{n-1} \circ \partial_{n}(c)=0$.
Proof: Suppose that $n \geq 2$, the result being trivial otherwise.
Since the boundary operators are linear, it is enough to prove that $\partial_{n-1} \circ \partial_{n}(\sigma)=0$ for all simplex $\sigma \in K_{(n)}$.
By definition, $\partial_{n}(\sigma)=\sum_{\substack{\tau|=|\sigma|-1}}^{\tau \subset \sigma} \tau$, and

$$
\partial_{n-1} \circ \partial_{n}(\sigma)=\sum_{\substack{\tau \subset \sigma \\|\tau|=|\sigma|-1}} \partial_{n-1}(\tau)=\sum_{\substack{\tau \subset \sigma \\|\tau|=|\sigma|-1}} \sum_{\substack{\nu \subset \tau \\|\nu|=|\tau|-1}} \nu
$$

We can write this last sum as

$$
\sum_{\substack{\tau \subset \sigma \\|\tau|=|\sigma|-1}} \sum_{\substack{\nu \subset \tau \\|\nu|=|\tau|-1}} \nu=\sum_{\substack{\nu \subset \sigma \\|\nu|=|\sigma|-2}} \alpha_{\nu} \nu
$$

where $\alpha_{\nu}=\{\tau \subset \sigma| | \tau|=|\sigma|-1, \nu \subset \tau\}$.
It is easy to see that for every ν such that $\operatorname{dim} \nu=\operatorname{dim} \tau-2$, we have $\alpha_{\nu}=2=0$.

Ciclos e bordos

Let $n \geq 0$. We have a sequence of vector spaces

$$
\cdots \longrightarrow C_{n+1}(K) \xrightarrow{\partial n+1} C_{n}(K) \xrightarrow{\partial n} C_{n-1}(K) \longrightarrow \ldots
$$

The maps ∂_{n+1} and ∂_{n} are linear maps, and we can consider their kernel and image.

Definition: We define:

- The n-cycles:

$$
Z_{n}(K)=\operatorname{Ker}\left(\partial_{n}\right)=\left\{c \in C_{n}(K) \mid \partial_{n}(c)=0\right\}
$$

- The n-boundaries: $B_{n}(K)=\operatorname{Im}\left(\partial_{n+1}\right)=\left\{\partial_{n+1}(c) \mid c \in C_{n+1}(K)\right\}$.

Example: Consider the simplicial complex
The 1-cycles are:

0

$[0,2]+[2,3]+[0,3]$

$0,1]+[1,2]+[2,3]+[0,3]$.

The 1-boundaries are:

0

$[0,1]+[1,2]+[0,2]$

Ciclos e bordos

Let $n \geq 0$. We have a sequence of vector spaces

$$
\cdots \longrightarrow C_{n+1}(K) \xrightarrow{\partial n+1} C_{n}(K) \xrightarrow{\partial n} C_{n-1}(K) \longrightarrow \ldots
$$

The maps ∂_{n+1} and ∂_{n} are linear maps, and we can consider their kernel and image.
Definition: We define:

- The n-cycles: $\quad Z_{n}(K)=\operatorname{Ker}\left(\partial_{n}\right)=\left\{c \in C_{n}(K) \mid \partial_{n}(c)=0\right\}$,
- The n-boundaries: $B_{n}(K)=\operatorname{Im}\left(\partial_{n+1}\right)=\left\{\partial_{n+1}(c) \mid c \in C_{n+1}(K)\right\}$.

Proposition: We have $B_{n}(K) \subset Z_{n}(K)$.

Example: Consider the simplicial complex
The 1-cycles are:

0
$[0,2]+[2,3]+[0,3]$

$0,1]+[1,2]+[2,3]+[0,3]$.

The 1-boundaries are:

0

$[0,1]+[1,2]+[0,2]$

Ciclos e bordos

Let $n \geq 0$. We have a sequence of vector spaces

$$
\cdots \longrightarrow C_{n+1}(K) \xrightarrow{\partial n+1} C_{n}(K) \xrightarrow{\partial n} C_{n-1}(K) \longrightarrow \ldots
$$

The maps ∂_{n+1} and ∂_{n} are linear maps, and we can consider their kernel and image.
Definition: We define:

- The n-cycles: $\quad Z_{n}(K)=\operatorname{Ker}\left(\partial_{n}\right)=\left\{c \in C_{n}(K) \mid \partial_{n}(c)=0\right\}$,
- The n-boundaries: $B_{n}(K)=\operatorname{Im}\left(\partial_{n+1}\right)=\left\{\partial_{n+1}(c) \mid c \in C_{n+1}(K)\right\}$.

Proposition: We have $B_{n}(K) \subset Z_{n}(K)$.
Definition: We say that two chains $c, c^{\prime} \in C_{n}(K)$ are homologous if there exists $b \in B_{n}(K)$ such that $c=c^{\prime}+b$.
\longrightarrow interpretation: two cycles are homologous if they represent the same 'hole'

Example:

$$
[0,2]+[2,3]+[0,3]=[0,1]+[1,2]+[2,3]+[0,3]+[0,1]+[0,2]+[1,2] .
$$

Ciclos e bordos

Let $n \geq 0$. We have a sequence of vector spaces

$$
\cdots \longrightarrow C_{n+1}(K) \xrightarrow{\partial n+1} C_{n}(K) \xrightarrow{\partial n} C_{n-1}(K) \longrightarrow \ldots
$$

The maps ∂_{n+1} and ∂_{n} are linear maps, and we can consider their kernel and image.
Definition: We define:

- The n-cycles: $\quad Z_{n}(K)=\operatorname{Ker}\left(\partial_{n}\right)=\left\{c \in C_{n}(K) \mid \partial_{n}(c)=0\right\}$,
- The n-boundaries: $B_{n}(K)=\operatorname{Im}\left(\partial_{n+1}\right)=\left\{\partial_{n+1}(c) \mid c \in C_{n+1}(K)\right\}$.

Proposition: We have $B_{n}(K) \subset Z_{n}(K)$.

Proof: Let $b \in B_{n}(K)$ be a boundary. By definition, there exists $c \in C_{n+1}(K)$ such that $b=\partial_{n+1}(c)$. Using $\partial_{n} \partial_{n+1}=0$, we get

$$
\partial_{n}(b)=\partial_{n} \partial_{n+1}(c)=0,
$$

hence $b \in Z_{n}(K)$.

Grupos de homologia

We have defined a sequence of vector spaces, connected by linear maps

$$
\cdots \longrightarrow C_{n+1}(K) \longrightarrow C_{n}(K) \longrightarrow C_{n-1}(K) \longrightarrow \cdots
$$

and for every $n \geq 0$, we have defined the cycles and the boundaries $Z_{n}(K)$ and $B_{n}(K)$.
Since $B_{n}(K) \subset Z_{n}(K)$, we can see $B_{n}(K)$ as a linear subspace of $Z_{n}(K)$.
Definition: The $n^{\text {th }}$ (simplicial) homology group of K is the quotient vector space

$$
H_{n}(K)=Z_{n}(K) / B_{n}(K)
$$

Grupos de homologia

We have defined a sequence of vector spaces, connected by linear maps

$$
\cdots \longrightarrow C_{n+1}(K) \longrightarrow C_{n}(K) \longrightarrow C_{n-1}(K) \longrightarrow \cdots
$$

and for every $n \geq 0$, we have defined the cycles and the boundaries $Z_{n}(K)$ and $B_{n}(K)$.
Since $B_{n}(K) \subset Z_{n}(K)$, we can see $B_{n}(K)$ as a linear subspace of $Z_{n}(K)$.
Definition: The $n^{\text {th }}$ (simplicial) homology group of K is the quotient vector space

$$
H_{n}(K)=Z_{n}(K) / B_{n}(K)
$$

Remark: A finite $\mathbb{Z} / 2 \mathbb{Z}$-vector space must be isomorphic to $(\mathbb{Z} / 2 \mathbb{Z})^{k}$ for some k.

Definition: Let K be a simplicial complex and $n \geq 0$. Its $n^{\text {th }}$ Betti number is the integer $\beta_{n}(K)=\operatorname{dim} H_{n}(K)$.

$$
H_{n}(K)=(\mathbb{Z} / 2 \mathbb{Z})^{k} \longrightarrow \beta_{n}(K)=k
$$

Grupos de homologia

We have defined a sequence of vector spaces, connected by linear maps

$$
\cdots \longrightarrow C_{n+1}(K) \longrightarrow C_{n}(K) \longrightarrow C_{n-1}(K) \longrightarrow \cdots
$$

and for every $n \geq 0$, we have defined the cycles and the boundaries $Z_{n}(K)$ and $B_{n}(K)$.
Since $B_{n}(K) \subset Z_{n}(K)$, we can see $B_{n}(K)$ as a linear subspace of $Z_{n}(K)$.
Definition: The $n^{\text {th }}$ (simplicial) homology group of K is the quotient vector space

$$
H_{n}(K)=Z_{n}(K) / B_{n}(K)
$$

Remark: A finite $\mathbb{Z} / 2 \mathbb{Z}$-vector space must be isomorphic to $(\mathbb{Z} / 2 \mathbb{Z})^{k}$ for some k.

Definition: Let K be a simplicial complex and $n \geq 0$. Its $n^{\text {th }}$ Betti number is the integer $\beta_{n}(K)=\operatorname{dim} H_{n}(K)$.

Example:

$$
\begin{aligned}
& H_{0}(K)=\mathbb{Z} / 2 \mathbb{Z} \\
& H_{1}(K)=\mathbb{Z} / 2 \mathbb{Z} \\
& H_{2}(K)=0
\end{aligned}
$$

$$
\begin{array}{ll}
\longrightarrow & \beta_{0}(K)=1 \\
\longrightarrow & \beta_{1}(K)=1 \\
\longrightarrow & \beta_{2}(K)=0
\end{array}
$$

Grupos de homologia
12/44 (4/4)

		$\mathbb{Z} / 2 \mathbb{Z}$	$\mathbb{Z} / 2 \mathbb{Z}$	$\mathbb{Z} / 2 \mathbb{Z}$	$(\mathbb{Z} / 2 \mathbb{Z})^{2}$
$H_{0}(X)$	$\mathbb{Z} / 2 \mathbb{Z}$	1	1	2	
$\beta_{0}(X)$	1	1	0	$(\mathbb{Z} / 2 \mathbb{Z})^{2}$	$(\mathbb{Z} / 2 \mathbb{Z})^{2}$
$H_{1}(X)$	0	$\mathbb{Z} / 2 \mathbb{Z}$	0	2	2
$\beta_{1}(X)$	0	1	$\mathbb{Z} / 2 \mathbb{Z}$	0	0
$H_{2}(X)$	0	1	0	0	
$\beta_{2}(X)$	0	0	1		

I - Simplicial homology

1 - Reminder of algebra
2 - Homological algebra
3 - Incremental algorithm
II - More about homology
1 - Topology of simplicial complexes
2 - Singular homology
3 - Functoriality
III - Homological inference
1 - Thickening parameter selection
2 - Čech complex
3 - Rips complex

Ordenar o complexo simplicial

Let K be a simplicial complex with n simplices. Choose a total order of the simplices

$$
\sigma^{1}<\sigma^{2}<\ldots<\sigma^{n}
$$

such that

$$
\forall \sigma, \tau \in K, \tau \subsetneq \sigma \Longrightarrow \tau<\sigma
$$

In other words, a face of a simplex is lower than the simplex itself.
For every $i \leq n$, consider the simplicial complex

$$
K^{i}=\left\{\sigma^{1}, \ldots, \sigma^{i}\right\}
$$

We have $\forall i \leq n, K^{i+1}=K^{i} \cup\left\{\sigma^{i+1}\right\}$, and $K^{n}=K$. They form an inscreasing sequence of simplicial complexes

$$
K^{1} \subset K^{2} \subset \ldots \subset K^{n}
$$

Positividade dos simplexos

Let $k \geq 0$. We will compute the homology groups of K^{i} incrementally: $H_{k}\left(K^{1}\right), H_{k}\left(K^{2}\right), H_{k}\left(K^{3}\right), H_{k}\left(K^{4}\right), H_{k}\left(K^{5}\right), H_{k}\left(K^{6}\right), H_{k}\left(K^{7}\right), H_{k}\left(K^{8}\right), H_{k}\left(K^{9}\right), H_{k}\left(K^{10}\right)$

Positividade dos simplexos

Let $k \geq 0$. We will compute the homology groups of K^{i} incrementally: $H_{k}\left(K^{1}\right), H_{k}\left(K^{2}\right), H_{k}\left(K^{3}\right), H_{k}\left(K^{4}\right), H_{k}\left(K^{5}\right), H_{k}\left(K^{6}\right), H_{k}\left(K^{7}\right), H_{k}\left(K^{8}\right), H_{k}\left(K^{9}\right), H_{k}\left(K^{10}\right)$

Definition: Let $i \in \llbracket 1, n \rrbracket$, and $d=\operatorname{dim}\left(\sigma^{i}\right)$. Recall that $K^{i}=K^{i-1} \cup\left\{\sigma_{i}\right\}$.
The simplex σ^{i} is positive if there exists a cycle $c \in Z_{d}\left(K^{i}\right)$ that contains σ^{i}.
In other words, there exist $c=\sum_{\sigma \in K_{(n)}^{i}} \epsilon_{\sigma} \cdot \sigma \in C_{n}\left(K^{i}\right)$ such that $\epsilon_{\sigma^{i}}=1$ and
$\partial_{n}(c)=0$. Otherwise, σ^{i} is negative.

Example:

- $\sigma^{1} \in K^{1}$ is positive because it is included in the cycle $c=\sigma^{1}$ (indeed, $\partial_{0}\left(\sigma^{1}\right)=0$).

Positividade dos simplexos

Let $k \geq 0$. We will compute the homology groups of K^{i} incrementally: $H_{k}\left(K^{1}\right), H_{k}\left(K^{2}\right), H_{k}\left(K^{3}\right), H_{k}\left(K^{4}\right), H_{k}\left(K^{5}\right), H_{k}\left(K^{6}\right), H_{k}\left(K^{7}\right), H_{k}\left(K^{8}\right), H_{k}\left(K^{9}\right), H_{k}\left(K^{10}\right)$

Definition: Let $i \in \llbracket 1, n \rrbracket$, and $d=\operatorname{dim}\left(\sigma^{i}\right)$. Recall that $K^{i}=K^{i-1} \cup\left\{\sigma_{i}\right\}$.
The simplex σ^{i} is positive if there exists a cycle $c \in Z_{d}\left(K^{i}\right)$ that contains σ^{i}. In other words, there exist $c=\sum_{\sigma \in K_{(n)}^{i}} \epsilon_{\sigma} \cdot \sigma \in C_{n}\left(K^{i}\right)$ such that $\epsilon_{\sigma^{i}}=1$ and $\partial_{n}(c)=0$. Otherwise, σ^{i} is negative.

Example:

- $\sigma^{1} \in K^{1}$ is positive because it is included in the cycle $c=\sigma^{1}$ (indeed, $\partial_{0}\left(\sigma^{1}\right)=0$).
- $\sigma^{2} \in K^{2}$ is positive because it is included in the cycle $c=\sigma^{2}$ (indeed, $\partial_{0}\left(\sigma^{2}\right)=0$).

Positividade dos simplexos

Let $k \geq 0$. We will compute the homology groups of K^{i} incrementally: $H_{k}\left(K^{1}\right), H_{k}\left(K^{2}\right), H_{k}\left(K^{3}\right), H_{k}\left(K^{4}\right), H_{k}\left(K^{5}\right), H_{k}\left(K^{6}\right), H_{k}\left(K^{7}\right), H_{k}\left(K^{8}\right), H_{k}\left(K^{9}\right), H_{k}\left(K^{10}\right)$

Definition: Let $i \in \llbracket 1, n \rrbracket$, and $d=\operatorname{dim}\left(\sigma^{i}\right)$. Recall that $K^{i}=K^{i-1} \cup\left\{\sigma_{i}\right\}$.
The simplex σ^{i} is positive if there exists a cycle $c \in Z_{d}\left(K^{i}\right)$ that contains σ^{i}. In other words, there exist $c=\sum_{\sigma \in K_{(n)}^{i}} \epsilon_{\sigma} \cdot \sigma \in C_{n}\left(K^{i}\right)$ such that $\epsilon_{\sigma^{i}}=1$ and $\partial_{n}(c)=0$. Otherwise, σ^{i} is negative.

Example:

- $\sigma^{1} \in K^{1}$ is positive because it is included in the cycle $c=\sigma^{1}$ (indeed, $\partial_{0}\left(\sigma^{1}\right)=0$).
- $\sigma^{2} \in K^{2}$ is positive because it is included in the cycle $c=\sigma^{2}$ (indeed, $\partial_{0}\left(\sigma^{2}\right)=0$).
- $\sigma^{6} \in K^{5}$ is negative because it is not included in a cycle $Z_{1}\left(K^{5}\right)$. Indeed, $C_{1}\left(K^{5}\right)$ only contains 0 and σ_{5}, and $\partial_{1}\left(\sigma^{5}\right)=\sigma^{1}+\sigma^{2} \neq 0$.

Positividade dos simplexos

Let $k \geq 0$. We will compute the homology groups of K^{i} incrementally: $H_{k}\left(K^{1}\right), H_{k}\left(K^{2}\right), H_{k}\left(K^{3}\right), H_{k}\left(K^{4}\right), H_{k}\left(K^{5}\right), H_{k}\left(K^{6}\right), H_{k}\left(K^{7}\right), H_{k}\left(K^{8}\right), H_{k}\left(K^{9}\right), H_{k}\left(K^{10}\right)$

Definition: Let $i \in \llbracket 1, n \rrbracket$, and $d=\operatorname{dim}\left(\sigma^{i}\right)$. Recall that $K^{i}=K^{i-1} \cup\left\{\sigma_{i}\right\}$.
The simplex σ^{i} is positive if there exists a cycle $c \in Z_{d}\left(K^{i}\right)$ that contains σ^{i}. In other words, there exist $c=\sum_{\sigma \in K_{(n)}^{i}} \epsilon_{\sigma} \cdot \sigma \in C_{n}\left(K^{i}\right)$ such that $\epsilon_{\sigma^{i}}=1$ and $\partial_{n}(c)=0$. Otherwise, σ^{i} is negative.

Example:

- $\sigma^{1} \in K^{1}$ is positive because it is included in the cycle $c=\sigma^{1}$ (indeed, $\partial_{0}\left(\sigma^{1}\right)=0$).
- $\sigma^{2} \in K^{2}$ is positive because it is included in the cycle $c=\sigma^{2}$ (indeed, $\partial_{0}\left(\sigma^{2}\right)=0$).
- $\sigma^{6} \in K^{5}$ is negative because it is not included in a cycle $Z_{1}\left(K^{5}\right)$. Indeed, $C_{1}\left(K^{5}\right)$ only contains 0 and σ_{5}, and $\partial_{1}\left(\sigma^{5}\right)=\sigma^{1}+\sigma^{2} \neq 0$.
- $\sigma^{8} \in K^{8}$ is positive because it is included in the cycle $c=\sigma^{5}+\sigma^{6}+\sigma^{7}+\sigma^{8}$ (indeed, $\partial_{1}(c)=2 \sigma^{1}+2 \sigma^{2}+2 \sigma^{3}+2 \sigma^{4}=0$).

Positividade dos simplexos

Definition: Let $i \in \llbracket 1, n \rrbracket$, and $d=\operatorname{dim}\left(\sigma_{i}\right)$. Recall that $K^{i}=K^{i-1} \cup\left\{\sigma_{i}\right\}$. The simplex σ_{i} is positive if there exists a cycle $c \in Z_{d}\left(K^{i}\right)$ that contains σ_{i}. Otherwise, σ_{i} is negative.

Remark: By adding σ^{i} in the simplicial complex, the only groups that may change are $Z_{d}\left(K^{i}\right)$ and $B_{d-1}\left(K^{i}\right)$.

Positividade dos simplexos

Definition: Let $i \in \llbracket 1, n \rrbracket$, and $d=\operatorname{dim}\left(\sigma_{i}\right)$. Recall that $K^{i}=K^{i-1} \cup\left\{\sigma_{i}\right\}$.
The simplex σ_{i} is positive if there exists a cycle $c \in Z_{d}\left(K^{i}\right)$ that contains σ_{i}. Otherwise, σ_{i} is negative.

Remark: By adding σ^{i} in the simplicial complex, the only groups that may change are $Z_{d}\left(K^{i}\right)$ and $B_{d-1}\left(K^{i}\right)$.

Lemma: If σ^{i} is positive, then $\beta_{d}\left(K^{i}\right)=\beta_{d}\left(K^{i-1}\right)+1$, and for all $d^{\prime} \neq d, \beta_{d^{\prime}}\left(K^{i}\right)=\beta_{d^{\prime}}\left(K^{i-1}\right)$.

Proof: We start by proving the following fact: if $c \in Z_{d}\left(K^{i}\right)$ is a cycle that contains σ_{i}, then c is not homologous (in K^{i}) to a cycle of $c^{\prime} \in Z_{d}\left(K^{i-1}\right)$.

By contradiction: if $c=c^{\prime}+b$ with $c^{\prime} \in Z_{d}\left(K^{i-1}\right)$ and $b \in B_{d}\left(K^{i}\right)$, then $c-c^{\prime}=b \in B_{d}\left(K^{i}\right)$. This is absurd because we just added σ_{i} : it cannot appear in a boundary of K^{i}.
As a consequence, $\operatorname{dim} Z_{d}\left(K^{i}\right)=\operatorname{dim} Z_{d}\left(K^{i-1}\right)+1$.
We conclude by using the relation $\beta_{d}\left(K^{i}\right)=\operatorname{dim} Z_{d}\left(K^{i}\right)-\operatorname{dim} B_{d}\left(K^{i}\right)$.

Positividade dos simplexos

Definition: Let $i \in \llbracket 1, n \rrbracket$, and $d=\operatorname{dim}\left(\sigma_{i}\right)$. Recall that $K^{i}=K^{i-1} \cup\left\{\sigma_{i}\right\}$.
The simplex σ_{i} is positive if there exists a cycle $c \in Z_{d}\left(K^{i}\right)$ that contains σ_{i}. Otherwise, σ_{i} is negative.

Remark: By adding σ^{i} in the simplicial complex, the only groups that may change are $Z_{d}\left(K^{i}\right)$ and $B_{d-1}\left(K^{i}\right)$.

Lemma: If σ^{i} is positive, then $\beta_{d}\left(K^{i}\right)=\beta_{d}\left(K^{i-1}\right)+1$, and for all $d^{\prime} \neq d, \beta_{d^{\prime}}\left(K^{i}\right)=\beta_{d^{\prime}}\left(K^{i-1}\right)$.

Lemma: If σ^{i} is negative, then $\beta_{d-1}\left(K^{i}\right)=\beta_{d-1}\left(K^{i-1}\right)-1$, and for all $d^{\prime} \neq d-1, \beta_{d^{\prime}}\left(K^{i}\right)=\beta_{d^{\prime}}\left(K^{i-1}\right)$.

Proof: We start by proving the following fact: $\partial_{d}\left(\sigma^{i}\right)$ is not a boundary of K^{i-1}.
Otherwise, we would have $\partial_{d}\left(\sigma^{i}\right)=\partial_{d}(c)$ with $c \in C_{d}\left(K^{i-1}\right)$, i.e. $\partial_{d}\left(\sigma^{i}+c\right)=0$. Hence $\sigma^{i}+c$ would be a cycle of K^{i} that contains c, contradicting the negativity of σ^{i}.

As a consequence, $\operatorname{dim} B_{d-1}\left(K^{i}\right)=\operatorname{dim} B_{d-1}\left(K^{i-1}\right)+1$.
We conclude by using the relation $\beta_{d-1}\left(K^{i}\right)=\operatorname{dim} Z_{d-1}\left(K^{i}\right)-\operatorname{dim} B_{d-1}\left(K^{i}\right)$.

Algoritmo incremental

Lemma: If σ^{i} is positive, then $\beta_{d}\left(K^{i}\right)=\beta_{d}\left(K^{i-1}\right)+1$, and for all $d^{\prime} \neq d, \beta_{d^{\prime}}\left(K^{i}\right)=\beta_{d^{\prime}}\left(K^{i-1}\right)$.

Lemma: If σ^{i} is negative, then $\beta_{d-1}\left(K^{i}\right)=\beta_{d-1}\left(K^{i-1}\right)-1$, and for all $d^{\prime} \neq d-1, \beta_{d^{\prime}}\left(K^{i}\right)=\beta_{d^{\prime}}\left(K^{i-1}\right)$.

We deduce the following algorithm:

```
Input: an increasing sequence of simplicial complexes \(K^{1} \subset \cdots \subset K^{n}=K\)
Output: the Betti numbers \(\beta_{0}(K), \ldots \beta_{d}(K)\)
\(\beta_{0} \leftarrow 0, \ldots, \beta_{d} \leftarrow 0 ;\)
for \(i \leftarrow 1\) to \(n\) do
    \(d=\operatorname{dim}\left(\sigma^{i}\right) ;\)
    if \(\sigma^{i}\) is positive then
        \(\beta_{k}\left(K^{i}\right) \leftarrow \beta_{k}\left(K^{i}\right)+1 ;\)
    else if \(d>0\) then
        \(\beta_{k-1}\left(K^{i}\right) \leftarrow \beta_{k-1}\left(K^{i-1}\right)-1 ;\)
```


Algoritmo incremental

	K^{1}	K^{2}	K^{3}	K^{4}	K^{5}	K^{6}	K^{7}	K^{8}	K^{9}	K
Dimension	0	0	0	0	1	1	1	1	1	2
Positivity	+	+	+	+	-	-	-	+	+	-
$\beta_{0}\left(K^{i}\right)$	1	2	3	4	3	2	1	1	1	1
$\beta_{1}\left(K^{i}\right)$	0	0	0	0	0	0	0	1	2	1

We deduce the following algorithm:

```
Input: an increasing sequence of simplicial complexes \(K^{1} \subset \cdots \subset K^{n}=K\)
Output: the Betti numbers \(\beta_{0}(K), \ldots \beta_{d}(K)\)
\(\beta_{0} \leftarrow 0, \ldots, \beta_{d} \leftarrow 0 ;\)
for \(i \leftarrow 1\) to \(n\) do
    \(d=\operatorname{dim}\left(\sigma^{i}\right) ;\)
    if \(\sigma^{i}\) is positive then
        \(\beta_{k}\left(K^{i}\right) \leftarrow \beta_{k}\left(K^{i}\right)+1 ;\)
    else if \(d>0\) then
        \(\beta_{k-1}\left(K^{i}\right) \leftarrow \beta_{k-1}\left(K^{i-1}\right)-1 ;\)
```


Característica de Euler

Reminder: the Euler characteristic of a simplicial complex K is

$$
\chi(K)=\sum_{0 \leq i \leq n}(-1)^{i} \cdot(\text { number of simplices of dimension } i) .
$$

Proposition: The Euler characteristic is also equal to

$$
\chi(K)=\sum_{0 \leq i \leq n}(-1)^{i} \cdot \beta_{i}(K)
$$

Característica de Euler

Proposition: The Euler characteristic of K is equal to

$$
\chi(K)=\sum_{0 \leq i \leq n}(-1)^{i} \cdot \beta_{i}(K) .
$$

Proof: Pick an ordering $K^{1} \subset \cdots \subset K^{n}=K$ of K, with $K^{i}=K^{i-1} \cup\left\{\sigma^{i}\right\}$ for all $2 \leq i \leq n$.

By induction, let us show that, for all $1 \leq m \leq n$,

$$
\sum_{0 \leq i \leq m}(-1)^{i} \cdot \beta_{i}\left(K^{m}\right)=\sum_{0 \leq i \leq m}(-1)^{i} \cdot\left(\text { number of simplices of dimension } i \text { of } K^{m}\right)
$$

For $m=1, \sigma^{m}$ is a 0 -simplex, and the equality reads $1=1$.
Now, suppose that the equality is true for $1 \leq m<n$, and consider the simplex σ^{m+1}. Let $d=\operatorname{dim} \sigma^{m+1}$. The right-hand side of the Equation is increased by $(-1)^{d}$.
If σ^{m+1} is positive, then $\beta_{d}\left(K^{m+1}\right)=\beta_{d}\left(K^{m}\right)+1$, hence the left-hand side of the Equation is increased by $(-1)^{d}$.

Otherwise, it is negative, and $\beta_{d-1}\left(K^{m+1}\right)=\beta_{d-1}\left(K^{m}\right)-1$, hence the left-hand side of the Equation is increased by $-(-1)^{d-1}=(-1)^{d}$.

Matriz de bordo

The only thing missing to apply the incremental algorithm is to determine whether a simplex is positive or negative.

Let K be a simplicial complex, and $\sigma^{1}<\sigma^{2}<\cdots<\sigma^{n}$ and ordering of its simplices.
Define the boundary matrix of K, denoted Δ, as follows: Δ is a $n \times n$ matrix, whose (i, j)-entry ($i^{\text {th }}$ row, $j^{\text {th }}$ column is)

$$
\begin{aligned}
\Delta_{i, j}= & 1 \text { if } \sigma^{i} \text { is a face of } \sigma^{j} \text { and }\left|\sigma^{i}\right|=\left|\sigma^{j}\right|-1 \\
& 0 \text { else. }
\end{aligned}
$$

σ^{1}
σ^{2}
σ^{3}
σ^{4}
σ^{5}
σ^{6}
σ^{7}
σ^{8}
σ^{9}
$\sigma^{10}$$\left(\begin{array}{cccccccccc}\sigma^{1} & \sigma^{2} & \sigma^{3} & \sigma^{4} & \sigma^{5} & \sigma^{6} & \sigma^{7} & \sigma^{8} & \sigma^{9} & \sigma^{10} \\ 0 & 0 & 0 & 0 & 1 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 1 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 & 1 & 0 & 0 & 1 \\ 1 & 1 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0\end{array}\right)$

Matriz de bordo

By adding columns one to the others, we create chains. If we were able to reduce a column to zero, then we found a cycle.

$$
\partial_{1}\left(\sigma^{6}\right)=\sigma^{2}+\sigma^{3}
$$

\qquad

$$
\partial_{1}\left(\sigma^{5}+\sigma^{6}+\sigma^{7}+\sigma^{8}\right)=0
$$

$$
\begin{aligned}
& \begin{array}{llllllllll}
\sigma^{1} & \sigma^{2} & \sigma^{3} & \sigma^{4} & \sigma^{5} & \sigma^{6} & \sigma^{7} & \sigma^{8} & \sigma^{9} & \sigma^{10}
\end{array} \\
& \left.\begin{array}{c}
\sigma^{1} \\
\sigma^{2} \\
\sigma^{3} \\
\sigma^{4} \\
\sigma^{5} \\
\sigma^{6} \\
\sigma^{7} \\
\sigma^{8} \\
\sigma^{9} \\
\sigma^{10}
\end{array} \begin{array}{ccccc|c|cccc}
0 & 0 & 0 & 0 & 1 & 0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & 1 & 0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 1 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0
\end{array}\right)
\end{aligned}
$$

Matriz de bordo

The process of reducing columns to zero is called Gauss reduction.
For any $j \in \llbracket 1, n \rrbracket$, define

$$
\delta(j)=\max \left\{i \in \llbracket 1, n \rrbracket \mid \Delta_{i, j} \neq 0\right\} .
$$

If $\Delta_{i, j}=0$ for all j, then $\delta(j)$ is undefined.
We say that the boundary matrix Δ is reduced if the map δ is injective on its domain of definition.

$$
\begin{aligned}
& \begin{array}{c}
\sigma^{1} \\
\sigma^{2} \\
\sigma^{3} \\
\sigma^{4} \\
\sigma^{5} \\
\sigma^{6} \\
\sigma^{7} \\
\sigma^{8} \\
\sigma^{9} \\
\sigma^{10}
\end{array}\left(\begin{array}{llllllllll}
0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 1 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0
\end{array}\right)
\end{aligned}
$$

Matriz de bordo

Algorithm 2: Reduction of the boundary matrix
Input: a boundary matrix Δ
Output: a reduced matrix $\widetilde{\Delta}$
for $j \leftarrow 1$ to n do
while there exists $i<j$ with $\delta(i)=\delta(j)$ do
add column i to column j ;
σ^{1}
σ^{2}
σ^{3}
σ^{4}
σ^{5}
σ^{6}
σ^{1}
σ^{7}
σ^{8}
σ^{2}
σ^{2}
σ^{9}
σ^{9}
$\sigma^{10}$$\left(\begin{array}{lllllllll}\sigma^{4} & \sigma^{5} & \sigma^{6} & \sigma^{7} & \sigma^{8} & \sigma^{9} & \sigma^{10} \\ 0 & 0 & 0 & 0 & 1 & 0 & 1 & 1 & 0 \\ 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 1 & 1 & 1 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0\end{array}\right)$

Matriz de bordo

Algorithm 2: Reduction of the boundary matrix
Input: a boundary matrix Δ
Output: a reduced matrix $\widetilde{\Delta}$
for $j \leftarrow 1$ to n do
while there exists $i<j$ with $\delta(i)=\delta(j)$ do
add column i to column j ;

$$
\begin{aligned}
& \sigma^{1} \\
& \sigma^{1} \\
& \sigma^{2} \\
& \sigma^{2} \\
& \sigma^{3} \\
& \sigma^{4} \\
& \sigma^{3} \\
& \sigma^{5} \\
& \sigma^{6} \\
& \sigma^{6} \\
& \sigma^{4} \\
& \sigma^{7} \\
& \sigma^{8} \\
& 0
\end{aligned} \sigma^{5}
$$

$$
\begin{array}{llllllllll}
\sigma^{1} & \sigma^{2} & \sigma^{3} & \sigma^{4} & \sigma^{5} & \sigma^{6} & \sigma^{7} & \delta_{0}^{8} \times \sigma^{\hat{0}} \\
\sigma^{9}
\end{array} \sigma^{10}
$$

$$
\begin{gathered}
\sigma^{1} \\
\sigma^{2} \\
\sigma^{3} \\
\sigma^{4} \\
\sigma^{5} \\
\sigma^{6} \\
\sigma^{7} \\
\sigma^{8} \\
\sigma^{9} \\
\sigma^{10}
\end{gathered}
$$

Matriz de bordo

Algorithm 2: Reduction of the boundary matrix
Input: a boundary matrix Δ
Output: a reduced matrix $\widetilde{\Delta}$
for $j \leftarrow 1$ to n do
while there exists $i<j$ with $\delta(i)=\delta(j)$ do add column i to column j ;
$\overline{y c}$

Matriz de bordo

[^0]
Matriz de bordo

Algorithm 2: Reduction of the boundary matrix
Input: a boundary matrix Δ
Output: a reduced matrix $\widetilde{\Delta}$
for $j \leftarrow 1$ to n do
while there exists $i<j$ with $\delta(i)=\delta(j)$ do add column i to column j ;

$$
\begin{aligned}
& \begin{array}{c}
\sigma^{1} \\
\sigma^{2} \\
\sigma^{3} \\
\sigma^{4} \\
\sigma^{5} \\
\sigma^{6} \\
\sigma^{7} \\
\sigma^{8} \\
\sigma^{9} \\
\sigma^{10}
\end{array}\left(\begin{array}{llllllllll}
0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 1 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0
\end{array}\right) \\
& \sigma^{1} \sigma^{2} \quad \sigma^{3} \quad \sigma^{4}\left(\sigma^{5}\right)\left(\sigma^{6}\right)\left(\sigma^{7}\right) \sigma^{8} \sigma^{9} \sigma^{10} \\
& +\quad+\quad+\quad-\quad-\quad+\quad+
\end{aligned}
$$

Algoritmo final

Incremental computation of the homology

```
Input: an increasing sequence of simplicial complexes \(K^{1} \subset \cdots \subset K^{n}=K\)
Output: the Betti numbers \(\beta_{0}(K), \ldots \beta_{d}(K)\)
\(\beta_{0} \leftarrow 0, \ldots, \beta_{d} \leftarrow 0 ;\)
for \(i \leftarrow 1\) to \(n\) do
    \(d=\operatorname{dim}\left(\sigma^{i}\right) ;\)
    if \(\sigma^{i}\) is positive then
        \(\beta_{k}\left(K^{i}\right) \leftarrow \beta_{k}\left(K^{i}\right)+1 ;\)
    else if \(d>0\) then
        \(\beta_{k-1}\left(K^{i}\right) \leftarrow \beta_{k-1}\left(K^{i-1}\right)-1 ;\)
```

Gauss reduction of the boundary matrix

```
Input: a boundary matrix \(\Delta\)
Output: a reduced matrix \(\widetilde{\Delta}\)
for \(i \leftarrow 1 j\) o \(n\) do
        while there exists \(i<j\) with \(\delta(i)=\delta(j)\) do
            add column \(i\) to column j ;
```


I - Simplicial homology

1 - Reminder of algebra
2 - Homological algebra
3 - Incremental algorithm
II - More about homology
1 - Topology of simplicial complexes
2 - Singular homology
3 - Functoriality
III - Homological inference
1 - Thickening parameter selection
2 - Čech complex
3 - Rips complex

Simplexo padrão

In order to describe topological spaces, we will decompose them into simpler pieces. The pieces we shall consider are the standard simplices.

The standard simplex of dimension n is the following subset of \mathbb{R}^{n+1}

$$
\Delta_{n}=\left\{x=\left(x_{1}, \ldots, x_{n+1}\right) \in \mathbb{R}^{n+1} \mid x_{1}, \ldots, x_{n+1} \geq 0 \text { and } x_{1}+\ldots+x_{n+1}=1\right\}
$$

Δ_{0}
Δ_{1}
Δ_{2}

Simplexo padrão

In order to describe topological spaces, we will decompose them into simpler pieces. The pieces we shall consider are the standard simplices.

The standard simplex of dimension n is the following subset of \mathbb{R}^{n+1}

$$
\Delta_{n}=\left\{x=\left(x_{1}, \ldots, x_{n+1}\right) \in \mathbb{R}^{n+1} \mid x_{1}, \ldots, x_{n+1} \geq 0 \text { and } x_{1}+\ldots+x_{n+1}=1\right\}
$$

Δ_{1}

Remark: For any collection of points $a_{1}, \ldots, a_{k} \in \mathbb{R}^{n}$, their convex hull is defined as:

$$
\operatorname{conv}\left(\left\{a_{1} \ldots a_{k}\right\}\right)=\left\{\sum_{1 \leq i \leq k} t_{i} a_{i} \mid t_{1}+\ldots+t_{k}=1, \quad t_{1}, \ldots, t_{k} \geq 0\right\}
$$

We can say that Δ_{n} is the convex hull of the vectors e_{1}, \ldots, e_{n+1} of \mathbb{R}^{n+1}, where

$$
e_{i}=(0, \ldots, 1,0, \ldots, 0) \quad\left(i^{\text {th }} \text { coordinate } 1, \text { the other ones } 0\right)
$$

Realização topológica

Let us give simplicial complexes a topology.
Definition: Let K be a simplicial complex, with vertex $V=\{1, \ldots, n\}$.
In \mathbb{R}^{n}, consider, for every $i \in \llbracket 1, n \rrbracket$, the vector $e_{i}=(0, \ldots, 1,0, \ldots, 0)\left(i^{\text {th }}\right.$ coordinate 1 , the other ones 0).
Let $|K|$ be the subset of \mathbb{R}^{n} defined as:

$$
|K|=\bigcup_{\sigma \in K} \operatorname{conv}\left(\left\{e_{j}, j \in \sigma\right\}\right)
$$

where conv represent the convex hull of points.
Endowed with the subspace topology, $\left(|K|, \mathcal{T}_{||K|}\right)$ is a topological space, that we call the topological realization of K.

If $a_{1}, \ldots, a_{k} \in \mathbb{R}^{n}$, the convex hull is defined as:

$$
\operatorname{conv}\left(\left\{a_{1} \ldots a_{k}\right\}\right)=\left\{\sum_{1 \leq i \leq k} t_{i} a_{i} \mid t_{1}+\ldots+t_{k}=1, \quad t_{1}, \ldots, t_{k} \geq 0\right\}
$$

Realização topológica

Let us give simplicial complexes a topology.
Definition: Let K be a simplicial complex, with vertex $V=\{1, \ldots, n\}$.
In \mathbb{R}^{n}, consider, for every $i \in \llbracket 1, n \rrbracket$, the vector $e_{i}=(0, \ldots, 1,0, \ldots, 0)\left(i^{\text {th }}\right.$ coordinate 1 , the other ones 0).
Let $|K|$ be the subset of \mathbb{R}^{n} defined as:

$$
|K|=\bigcup_{\sigma \in K} \operatorname{conv}\left(\left\{e_{j}, j \in \sigma\right\}\right)
$$

where conv represent the convex hull of points.
Endowed with the subspace topology, $\left(|K|, \mathcal{T}_{||K|}\right)$ is a topological space, that we call the topological realization of K.

Remark: If the simplicial complex can be drawn in the plane (or space) without crossing itself, then its topological realization simply is the subspace topology.

Example: $\quad K=\{[0],[1],[2],[3],[0,1],[1,2],[2,0],[1,3],[2,3],[0,1,2]\}$.

Triangulações

Definition: Let X be a topological space. A triangulation of X is a simplicial complex K such that its topological realization $|K|$ is homeomorphic to X.

Example: The following simplicial complex is a triangulation of the circle:

$$
K=\{[0],[1],[2],[0,1],[1,2],[2,0]\}
$$

Example: The following simplicial complex is a triangulation of the sphere:
$K=\{[0],[1],[2],[3],[0,1],[1,2],[2,3],[3,0],[0,2],[1,3],[0,1,2],[0,1,3],[0,2,3],[1,2,3]\}$.

Triangulações

Definition: Let X be a topological space. A triangulation of X is a simplicial complex K such that its topological realization $|K|$ is homeomorphic to X.

Given a topological space, it is not always possible to triangulate it. However, when it is, there exists many different triangulations.

Theorem (Manolescu, 2016): For any dimension $n \geq 5$ there is a compact topological manifold which does not admit a triangulation.

I - Simplicial homology

1 - Reminder of algebra
2 - Homological algebra
3 - Incremental algorithm
II - More about homology
1 - Topology of simplicial complexes
2 - Singular homology
3 - Functoriality
III - Homological inference
1 - Thickening parameter selection
2 - Čech complex
3 - Rips complex

Simplexo singular

Let us consider a topological space X. We want a notion of simplices.

Simplexo singular

Let us consider a topological space X. We want a notion of simplices.

Definition: A singular n-simplex is a continuous map $\Delta_{n} \rightarrow X$, where Δ_{n} is the standard n-simplex. We denote S_{n} their set.

We now want a notion of boundary.

Simplexo singular

Let us consider a topological space X. We want a notion of simplices.

Definition: A singular n-simplex is a continuous map $\Delta_{n} \rightarrow X$, where Δ_{n} is the standard n-simplex. We denote S_{n} their set.

We now want a notion of boundary.
The boundary of Δ_{n} consists in $n+1$ copies of Δ_{n-1}.
We can restrict a singular n-simplex $\Delta_{n} \rightarrow X$ to the boundaries, giving $n+1$ singular ($n-1$)-simplices $\Delta_{n-1} \rightarrow X$.

Definition: The boundary of a singular n-simplex $\Delta_{n} \rightarrow X$ is the formal sum of the $n+1$ singular $(n-1)$-simplices $\Delta_{n-1} \rightarrow X$

Homologia singular

For a simplicial complex K, we have defined n-chains

$$
\sum_{\sigma \in K_{(n)}} \epsilon_{\sigma} \cdot \sigma \quad \text { where } \quad \forall \sigma \in K_{(n)}, \epsilon_{\sigma} \in \mathbb{Z} / 2 \mathbb{Z}
$$

boundary operator chain complex

$$
\partial_{n} \sigma=\sum_{\substack{\tau|\tau \subset \sigma\\| \tau|\sigma|-1}} \tau
$$

$$
\ldots \xrightarrow{\partial_{n+2}} C_{n+1}(K) \xrightarrow{\partial_{n+1}} C_{n}(K) \xrightarrow{\partial_{n}} C_{n-1}(K) \xrightarrow{\partial_{n-1}} \ldots
$$

$$
n \text {-cycles and } n \text {-boundaries } \quad Z_{n}(K)=\operatorname{Ker}\left(\partial_{n}\right) \quad B_{n}(K)=\operatorname{Im}\left(\partial_{n+1}\right)
$$

$n^{\text {th }}$ simplicial homology group $\quad H_{n}(K)=Z_{n}(K) / B_{n}(K)$

Homologia singular

For a simplicial complex K, we have defined
n-chains

$$
\sum_{\sigma \in K_{(n)}} \epsilon_{\sigma} \cdot \sigma \quad \text { where } \quad \forall \sigma \in K_{(n)}, \epsilon_{\sigma} \in \mathbb{Z} / 2 \mathbb{Z}
$$

boundary operator chain complex

$$
\ldots \xrightarrow{\partial_{n+2}} C_{n+1}(K) \xrightarrow{\partial_{n+1}} C_{n}(K) \xrightarrow{\partial_{n}} C_{n-1}(K) \xrightarrow{\partial_{n-1}} \ldots
$$

$$
n \text {-cycles and } n \text {-boundaries } \quad Z_{n}(K)=\operatorname{Ker}\left(\partial_{n}\right) \quad B_{n}(K)=\operatorname{Im}\left(\partial_{n+1}\right)
$$

$n^{\text {th }}$ simplicial homology group $\quad H_{n}(K)=Z_{n}(K) / B_{n}(K)$
For a topological space X, we can define
n-chains $\quad \sum_{\sigma \in S_{n}} \epsilon_{\sigma} \cdot \sigma \quad$ where $\quad \forall \sigma \in S_{n}, \epsilon_{\sigma} \in \mathbb{Z} / 2 \mathbb{Z}$
boundary operator
chain complex

$$
\partial_{n} \sigma=\sum_{\substack{\tau|\tau \subset \sigma\\| \tau \mid-1}} \tau
$$

$$
\ldots \xrightarrow{\partial_{n+2}} C_{n+1}(X) \xrightarrow{\partial_{n+1}} C_{n}(X) \xrightarrow{\partial_{n}} C_{n-1}(X) \xrightarrow{\partial_{n-1}} \ldots
$$

n-cycles and n-boundaries

$$
Z_{n}(X)=\operatorname{Ker}\left(\partial_{n}\right)
$$

$$
B_{n}(X)=\operatorname{Im}\left(\partial_{n+1}\right)
$$

$n^{\text {th }}$ singular homology group
$H_{n}(X)=Z_{n}(X) / B_{n}(X)$

Homologia singular

Theorem: If X is a topological space and K a triangulation of it, then for all $n \geq 0$, $H_{n}(X)=H_{n}(K)$.

$$
\begin{aligned}
& H_{0}(X)=\mathbb{Z} / 2 \mathbb{Z} \\
& H_{1}(X)=\mathbb{Z} / 2 \mathbb{Z} \\
& H_{2}(X)=0
\end{aligned}
$$

$$
\begin{aligned}
H_{0}(K) & =\mathbb{Z} / 2 \mathbb{Z} \\
H_{1}(K) & =\mathbb{Z} / 2 \mathbb{Z} \\
H_{2}(X) & =0
\end{aligned}
$$

Homologia singular

Theorem: If X is a topological space and K a triangulation of it, then for all $n \geq 0$, $H_{n}(X)=H_{n}(K)$.

$$
\begin{aligned}
& H_{0}(X)=\mathbb{Z} / 2 \mathbb{Z} \\
& H_{1}(X)=\mathbb{Z} / 2 \mathbb{Z} \\
& H_{2}(X)=0
\end{aligned}
$$

$$
\begin{aligned}
H_{0}(K) & =\mathbb{Z} / 2 \mathbb{Z} \\
H_{1}(K) & =\mathbb{Z} / 2 \mathbb{Z} \\
H_{2}(X) & =0
\end{aligned}
$$

Theorem: If X and Y are homotopy equivalent topological spaces, then for all $n \geq 0$, $H_{n}(X)=H_{n}(Y)$.

Corollary: If K and L are homotopy equivalent simplicial complexes, then for all $n \geq 0$, $H_{n}(K)=H_{n}(L)$.

I - Simplicial homology

1 - Reminder of algebra
2 - Homological algebra
3 - Incremental algorithm
II - More about homology
1 - Topology of simplicial complexes
2 - Singular homology
3 - Functoriality
III - Homological inference
1 - Thickening parameter selection
2 - Čech complex
3 - Rips complex

Homologia é um functor

We have seen that homology transforms topological spaces into vector spaces

$$
\begin{aligned}
H_{i}: \text { Top } & \longrightarrow \text { Vect } \\
X & \longmapsto H_{i}(X)
\end{aligned}
$$

Actually, it also transforms continous maps into linear maps

$$
X \xrightarrow{f} Y \quad H_{n}(X) \xrightarrow{H_{n}(f)} H_{n}(Y)
$$

This operation preserves commutative diagrams:

$$
H_{n}(g \circ f)=H_{n}(g) \circ H_{n}(f)
$$

Aplicação - na teoria

Application (Brouwer's fixed point theorem):
Let $f: \mathcal{B} \rightarrow \mathcal{B}$ be a continous map, where \mathcal{B} is the unit closed ball of \mathbb{R}^{n}. Let us show that f has a fixed point $(f(x)=x)$.

If not, we can define a map $F: \mathcal{B} \rightarrow \partial \mathcal{B}$ such that F restricted to $\partial \mathcal{B}$ is the identity. To do so, define $F(x)$ as the first intersection between the half-line $[x, f(x))$ and $\partial \mathcal{B}$.

Denote the inclusion $i: \partial \mathcal{B} \rightarrow \mathcal{B}$. Then $F \circ i: \partial \mathcal{B} \rightarrow \partial \mathcal{B}$ is the identity. By functoriality, we have commutative diagrams

But for $i=n-1$, we have an absurdity:

I - Simplicial homology

1 - Reminder of algebra
2 - Homological algebra
3 - Incremental algorithm
II - More about homology
1 - Topology of simplicial complexes
2 - Singular homology
3 - Functoriality
III - Homological inference
1 - Thickening parameter selection
2 - Čech complex
3 - Rips complex

O problema da inferência homológica $31 / 44(1 / 13)$

Let $\mathcal{M} \subset \mathbb{R}^{n}$ be a bounded subset.
Suppose that we are given a finite sample $X \subset \mathcal{M}$.
Estimate the homology groups of \mathcal{M} from X.

O problema da inferência homológica $31 / 44(2 / 13)$

Let $\mathcal{M} \subset \mathbb{R}^{n}$ be a bounded subset.
Suppose that we are given a finite sample $X \subset \mathcal{M}$.
Estimate the homology groups of \mathcal{M} from X.

We cannot use X directly. Its homology is disapointing:

O problema da inferência homológica $31 / 44(3 / 13)$

Let $\mathcal{M} \subset \mathbb{R}^{n}$ be a bounded subset.
Suppose that we are given a finite sample $X \subset \mathcal{M}$.
Estimate the homology groups of \mathcal{M} from X.

We cannot use X directly.

Idea: Thicken X.

Definition: For every $t \geq 0$, the t-thickening of the set X, denoted X^{t}, is the set of points of the ambient space with distance at most t from X :

$$
X^{t}=\left\{y \in \mathbb{R}^{n} \mid \exists x \in X,\|x-y\| \leq t\right\}
$$

O problema da inferência homológica $31 / 44(4 / 13)$

Let $\mathcal{M} \subset \mathbb{R}^{n}$ be a bounded subset.
Suppose that we are given a finite sample $X \subset \mathcal{M}$.
Estimate the homology groups of \mathcal{M} from X.

We cannot use X directly.

Idea: Thicken X.

Definition: For every $t \geq 0$, the t-thickening of the set X, denoted X^{t}, is the set of points of the ambient space with distance at most t from X :

$$
X^{t}=\left\{y \in \mathbb{R}^{n} \mid \exists x \in X,\|x-y\| \leq t\right\}
$$

O problema da inferência homológica $31 / 44(5 / 13)$

Let $\mathcal{M} \subset \mathbb{R}^{n}$ be a bounded subset.
Suppose that we are given a finite sample $X \subset \mathcal{M}$.
Estimate the homology groups of \mathcal{M} from X.

We cannot use X directly.

Idea: Thicken X.

Definition: For every $t \geq 0$, the t-thickening of the set X, denoted X^{t}, is the set of points of the ambient space with distance at most t from X :

$$
X^{t}=\left\{y \in \mathbb{R}^{n} \mid \exists x \in X,\|x-y\| \leq t\right\}
$$

O problema da inferência homológica $31 / 44(6 / 13)$

Let $\mathcal{M} \subset \mathbb{R}^{n}$ be a bounded subset.
Suppose that we are given a finite sample $X \subset \mathcal{M}$.
Estimate the homology groups of \mathcal{M} from X.

We cannot use X directly.

Idea: Thicken X.

Definition: For every $t \geq 0$, the t-thickening of the set X, denoted X^{t}, is the set of points of the ambient space with distance at most t from X :

$$
X^{t}=\left\{y \in \mathbb{R}^{n} \mid \exists x \in X,\|x-y\| \leq t\right\}
$$

O problema da inferência homológica $31 / 44(7 / 13)$

Let $\mathcal{M} \subset \mathbb{R}^{n}$ be a bounded subset.
Suppose that we are given a finite sample $X \subset \mathcal{M}$.
Estimate the homology groups of \mathcal{M} from X.

We cannot use X directly.

Idea: Thicken X.

Definition: For every $t \geq 0$, the t-thickening of the set X, denoted X^{t}, is the set of points of the ambient space with distance at most t from X :

$$
X^{t}=\left\{y \in \mathbb{R}^{n} \mid \exists x \in X,\|x-y\| \leq t\right\}
$$

O problema da inferência homológica $31 / 44(8 / 13)$

Let $\mathcal{M} \subset \mathbb{R}^{n}$ be a bounded subset.
Suppose that we are given a finite sample $X \subset \mathcal{M}$.
Estimate the homology groups of \mathcal{M} from X.

\mathcal{M}

We cannot use X directly.

Idea: Thicken X.

Definition: For every $t \geq 0$, the t-thickening of the set X, denoted X^{t}, is the set of points of the ambient space with distance at most t from X :

$$
X^{t}=\left\{y \in \mathbb{R}^{n} \mid \exists x \in X,\|x-y\| \leq t\right\}
$$

O problema da inferência homológica $31 / 44(9 / 13)$

Let $\mathcal{M} \subset \mathbb{R}^{n}$ be a bounded subset.
Suppose that we are given a finite sample $X \subset \mathcal{M}$.
Estimate the homology groups of \mathcal{M} from X.

We cannot use X directly.

Idea: Thicken X.

Definition: For every $t \geq 0$, the t-thickening of the set X, denoted X^{t}, is the set of points of the ambient space with distance at most t from X :

$$
X^{t}=\left\{y \in \mathbb{R}^{n} \mid \exists x \in X,\|x-y\| \leq t\right\}
$$

O problema da inferência homológica $31 / 44(10 / 13)$

Let $\mathcal{M} \subset \mathbb{R}^{n}$ be a bounded subset.

Idea: Thicken X.

Definition: For every $t \geq 0$, the t-thickening of the set X, denoted X^{t}, is the set of points of the ambient space with distance at most t from X :

$$
X^{t}=\left\{y \in \mathbb{R}^{n} \mid \exists x \in X,\|x-y\| \leq t\right\}
$$

O problema da inferência homológica ${ }_{31 / 44}(11 / 13)$

Some thickenings are homotopy equivalent to \mathcal{M}.

Hence we can recover the homology of \mathcal{M} :

$$
\begin{aligned}
& \beta_{0}(\mathcal{M})=\beta_{0}\left(X^{0.3}\right) \\
& \beta_{1}(\mathcal{M})=\beta_{1}\left(X^{0.3}\right) \\
& \beta_{2}(\mathcal{M})=\beta_{2}\left(X^{0.3}\right)
\end{aligned}
$$

O problema da inferência homológica ${ }_{31 / 44}(12 / 13)$

Some thickenings are homotopy equivalent to \mathcal{M}.

Hence we can recover the homology of \mathcal{M} :

$$
\begin{aligned}
& \beta_{0}(\mathcal{M})=\beta_{0}\left(X^{0.3}\right) \\
& \beta_{1}(\mathcal{M})=\beta_{1}\left(X^{0.3}\right) \\
& \beta_{2}(\mathcal{M})=\beta_{2}\left(X^{0.3}\right)
\end{aligned}
$$

Question 1: How to select a t such that $X^{t} \approx \mathcal{M}$?
Question 2: How to compute the homology groups of X^{t} ?

O problema da inferência homológica ${ }_{31 / 44}(13 / 13)$

Some thickenings are homotopy equivalent to \mathcal{M}.

M

Hence we can recover the homology of \mathcal{M} :

$$
\begin{aligned}
& \beta_{0}(\mathcal{M})=\beta_{0}\left(X^{0.3}\right) \\
& \beta_{1}(\mathcal{M})=\beta_{1}\left(X^{0.3}\right) \\
& \beta_{2}(\mathcal{M})=\beta_{2}\left(X^{0.3}\right)
\end{aligned}
$$

Question 1: How to select a t such that $X^{t} \approx \mathcal{M}$?

Question 2: How to compute the homology groups of X^{t} ?

I - Simplicial homology

1 - Reminder of algebra
2 - Homological algebra
3 - Incremental algorithm
II - More about homology
1 - Topology of simplicial complexes
2 - Singular homology
3 - Functoriality
III - Homological inference
1 - Thickening parameter selection
2 - Čech complex
3 - Rips complex

Distância de Hausdorff

Let X be any subset of \mathbb{R}^{n}. The function distance to X is the map

$$
\begin{aligned}
\operatorname{dist}(\cdot, X): \mathbb{R}^{n} & \longrightarrow \mathbb{R} \\
y & \longmapsto \operatorname{dist}(y, X)=\inf \{\|y-x\|, x \in X\}
\end{aligned}
$$

A projection of $y \in \mathbb{R}^{n}$ on X is a point $x \in X$ which attains this infimum.

Distância de Hausdorff

Let X be any subset of \mathbb{R}^{n}. The function distance to X is the map

$$
\begin{aligned}
\operatorname{dist}(\cdot, X): \mathbb{R}^{n} & \longrightarrow \mathbb{R} \\
y & \longmapsto \operatorname{dist}(y, X)=\inf \{\|y-x\|, x \in X\}
\end{aligned}
$$

A projection of $y \in \mathbb{R}^{n}$ on X is a point $x \in X$ which attains this infimum.
Definition: Let $Y \subset \mathbb{R}^{n}$ be another subset. The Hausdorff distance between X and Y is

$$
\begin{aligned}
\mathrm{d}_{\mathrm{H}}(X, Y) & =\max \left\{\sup _{y \in Y} \operatorname{dist}(y, X), \sup _{x \in X} \operatorname{dist}(x, Y)\right\} \\
& =\max \left\{\sup _{y \in Y} \inf _{x \in X}\|x-y\|, \sup _{x \in X} \inf _{y \in Y}\|x-y\|\right\} .
\end{aligned}
$$

Distância de Hausdorff

Let X be any subset of \mathbb{R}^{n}. The function distance to X is the map

$$
\begin{aligned}
\operatorname{dist}(\cdot, X): \mathbb{R}^{n} & \longrightarrow \mathbb{R} \\
y & \longmapsto \operatorname{dist}(y, X)=\inf \{\|y-x\|, x \in X\}
\end{aligned}
$$

A projection of $y \in \mathbb{R}^{n}$ on X is a point $x \in X$ which attains this infimum.
Definition: Let $Y \subset \mathbb{R}^{n}$ be another subset. The Hausdorff distance between X and Y is

$$
\begin{aligned}
\mathrm{d}_{\mathrm{H}}(X, Y) & =\max \left\{\sup _{y \in Y} \operatorname{dist}(y, X), \sup _{x \in X} \operatorname{dist}(x, Y)\right\} \\
& =\max \left\{\sup _{y \in Y} \inf _{x \in X}\|x-y\|, \sup _{x \in X} \inf _{y \in Y}\|x-y\|\right\} .
\end{aligned}
$$

Proposition: The Hausdorff distance is equal to $\inf \left\{t \geq 0 \mid X \subset Y^{t}\right.$ and $\left.Y \subset X^{t}\right\}$.

Medial axis e reach

The medial axis of X is the subset $\operatorname{med}(X) \subset \mathbb{R}^{n}$ which consists of points $y \in \mathbb{R}^{n}$ that admit at least two projections on X :

$$
\operatorname{med}(X)=\left\{y \in \mathbb{R}^{n} \mid \exists x, x^{\prime} \in X, x \neq x^{\prime},\|y-x\|=\left\|y-x^{\prime}\right\|=\operatorname{dist}(y, X)\right\}
$$

Medial axis e reach

The medial axis of X is the subset $\operatorname{med}(X) \subset \mathbb{R}^{n}$ which consists of points $y \in \mathbb{R}^{n}$ that admit at least two projections on X :

$$
\operatorname{med}(X)=\left\{y \in \mathbb{R}^{n} \mid \exists x, x^{\prime} \in X, x \neq x^{\prime},\|y-x\|=\left\|y-x^{\prime}\right\|=\operatorname{dist}(y, X)\right\}
$$

Examples:

The medial axis of the unit circle is the origin

Medial axis e reach

The medial axis of X is the subset med $(X) \subset \mathbb{R}^{n}$ which consists of points $y \in \mathbb{R}^{n}$ that admit at least two projections on X :

$$
\operatorname{med}(X)=\left\{y \in \mathbb{R}^{n} \mid \exists x, x^{\prime} \in X, x \neq x^{\prime},\|y-x\|=\left\|y-x^{\prime}\right\|=\operatorname{dist}(y, X)\right\}
$$

Examples:

The medial axis of the unit circle is the origin

The medial axis of an ellipse is a segment

Medial axis e reach

The medial axis of X is the subset $\operatorname{med}(X) \subset \mathbb{R}^{n}$ which consists of points $y \in \mathbb{R}^{n}$ that admit at least two projections on X :

$$
\operatorname{med}(X)=\left\{y \in \mathbb{R}^{n} \mid \exists x, x^{\prime} \in X, x \neq x^{\prime},\|y-x\|=\left\|y-x^{\prime}\right\|=\operatorname{dist}(y, X)\right\}
$$

Examples:

The medial axis of the unit circle is the origin

The medial axis of an ellipse is a segment

The medial axis of a point is the empty set

Medial axis e reach

The medial axis of X is the subset $\operatorname{med}(X) \subset \mathbb{R}^{n}$ which consists of points $y \in \mathbb{R}^{n}$ that admit at least two projections on X :

$$
\operatorname{med}(X)=\left\{y \in \mathbb{R}^{n} \mid \exists x, x^{\prime} \in X, x \neq x^{\prime},\|y-x\|=\left\|y-x^{\prime}\right\|=\operatorname{dist}(y, X)\right\}
$$

Examples:

The medial axis of the unit circle is the origin

The medial axis of an ellipse is a segment

The medial axis of a point is the empty set

The medial axis of two points is their bisector

Medial axis e reach

The medial axis of X is the subset med $(X) \subset \mathbb{R}^{n}$ which consists of points $y \in \mathbb{R}^{n}$ that admit at least two projections on X :

$$
\operatorname{med}(X)=\left\{y \in \mathbb{R}^{n} \mid \exists x, x^{\prime} \in X, x \neq x^{\prime},\|y-x\|=\left\|y-x^{\prime}\right\|=\operatorname{dist}(y, X)\right\}
$$

The reach of X is

$$
\begin{aligned}
\operatorname{reach}(X) & =\inf \{\operatorname{dist}(y, X) \mid y \in \operatorname{med}(X)\} \\
& =\inf \{\|x-y\| \mid x \in X, y \in \operatorname{med}(X)\}
\end{aligned}
$$

Medial axis e reach

The medial axis of X is the subset $\operatorname{med}(X) \subset \mathbb{R}^{n}$ which consists of points $y \in \mathbb{R}^{n}$ that admit at least two projections on X :

$$
\operatorname{med}(X)=\left\{y \in \mathbb{R}^{n} \mid \exists x, x^{\prime} \in X, x \neq x^{\prime},\|y-x\|=\left\|y-x^{\prime}\right\|=\operatorname{dist}(y, X)\right\}
$$

The reach of X is

$$
\begin{aligned}
\operatorname{reach}(X) & =\inf \{\operatorname{dist}(y, X) \mid y \in \operatorname{med}(X)\} \\
& =\inf \{\|x-y\| \mid x \in X, y \in \operatorname{med}(X)\}
\end{aligned}
$$

Medial axis e reach

The medial axis of X is the subset med $(X) \subset \mathbb{R}^{n}$ which consists of points $y \in \mathbb{R}^{n}$ that admit at least two projections on X :

$$
\operatorname{med}(X)=\left\{y \in \mathbb{R}^{n} \mid \exists x, x^{\prime} \in X, x \neq x^{\prime},\|y-x\|=\left\|y-x^{\prime}\right\|=\operatorname{dist}(y, X)\right\}
$$

The reach of X is

$$
\begin{aligned}
\operatorname{reach}(X) & =\inf \{\operatorname{dist}(y, X) \mid y \in \operatorname{med}(X)\} \\
& =\inf \{\|x-y\| \mid x \in X, y \in \operatorname{med}(X)\}
\end{aligned}
$$

Proposition: For every $t \in[0$, reach $(X))$, the spaces X and X^{t} are homotopy equivalent.

Medial axis e reach

The medial axis of X is the subset med $(X) \subset \mathbb{R}^{n}$ which consists of points $y \in \mathbb{R}^{n}$ that admit at least two projections on X :

$$
\operatorname{med}(X)=\left\{y \in \mathbb{R}^{n} \mid \exists x, x^{\prime} \in X, x \neq x^{\prime},\|y-x\|=\left\|y-x^{\prime}\right\|=\operatorname{dist}(y, X)\right\}
$$

The reach of X is

$$
\begin{aligned}
\operatorname{reach}(X) & =\inf \{\operatorname{dist}(y, X) \mid y \in \operatorname{med}(X)\} \\
& =\inf \{\|x-y\| \mid x \in X, y \in \operatorname{med}(X)\}
\end{aligned}
$$

Proposition: For every $t \in[0$, reach $(X))$, the spaces X and X^{t} are homotopy equivalent.

Medial axis e reach

The medial axis of X is the subset med $(X) \subset \mathbb{R}^{n}$ which consists of points $y \in \mathbb{R}^{n}$ that admit at least two projections on X :

$$
\operatorname{med}(X)=\left\{y \in \mathbb{R}^{n} \mid \exists x, x^{\prime} \in X, x \neq x^{\prime},\|y-x\|=\left\|y-x^{\prime}\right\|=\operatorname{dist}(y, X)\right\}
$$

The reach of X is

$$
\begin{aligned}
\operatorname{reach}(X) & =\inf \{\operatorname{dist}(y, X) \mid y \in \operatorname{med}(X)\} \\
& =\inf \{\|x-y\| \mid x \in X, y \in \operatorname{med}(X)\} .
\end{aligned}
$$

Proposition: For every $t \in[0$, reach $(X))$, the spaces X and X^{t} are homotopy equivalent.
If $t \geq \operatorname{reach}(X)$, the sets X and X^{t} may not be homotopy equivalent.

Medial axis e reach

Proposition: For every $t \in[0$, reach $(X))$, the spaces X and X^{t} are homotopy equivalent.

Proof: For every $t \in[0$, reach $(X))$, the thickening X^{t} deform retracts onto X. A homotopy is given by the following map:

$$
\begin{aligned}
X^{t} \times[0,1] & \longrightarrow X^{t} \\
(x, t) & \longmapsto(1-t) x+t \cdot \operatorname{proj}(x, X) .
\end{aligned}
$$

Indeed, the projection $\operatorname{proj}(x, X)$ is well defined (it is unique).

Seleção do parâmetro t

Remember Question 1: How to select a t such that $X^{t} \approx \mathcal{M}$?

Theorem (Frédéric Chazal, David Cohen-Steiner, and André Lieutier, 2009):
Let X and \mathcal{M} be subsets of \mathbb{R}^{n}. Suppose that \mathcal{M} has positive reach, and that $\mathrm{d}_{\mathrm{H}}(X, \mathcal{M}) \leq \frac{1}{17} \operatorname{reach}(\mathcal{M})$.
Then X^{t} and \mathcal{M} are homotopic equivalent, provided that

$$
t \in\left[4 \mathrm{~d}_{\mathrm{H}}(X, \mathcal{M}), \operatorname{reach}(\mathcal{M})-3 \mathrm{~d}_{\mathrm{H}}(X, \mathcal{M})\right)
$$

Seleção do parâmetro t

Remember Question 1: How to select a t such that $X^{t} \approx \mathcal{M}$?

Theorem (Frédéric Chazal, David Cohen-Steiner, and André Lieutier, 2009):
Let X and \mathcal{M} be subsets of \mathbb{R}^{n}. Suppose that \mathcal{M} has positive reach, and that $\mathrm{d}_{\mathrm{H}}(X, \mathcal{M}) \leq \frac{1}{17} \operatorname{reach}(\mathcal{M})$.
Then X^{t} and \mathcal{M} are homotopic equivalent, provided that

$$
t \in\left[4 \mathrm{~d}_{\mathrm{H}}(X, \mathcal{M}), \operatorname{reach}(\mathcal{M})-3 \mathrm{~d}_{\mathrm{H}}(X, \mathcal{M})\right)
$$

Theorem (Partha Niyogi, Stephen Smale, and Shmuel Weinberger, 2008):
Let X and \mathcal{M} be subsets of \mathbb{R}^{n}, with \mathcal{M} a submanifold, and X a finite subset of \mathcal{M}.
Suppose that \mathcal{M} has positive reach.
Then X^{t} and \mathcal{M} are homotopic equivalent, provided that

$$
t \in\left[2 \mathrm{~d}_{\mathrm{H}}(X, \mathcal{M}), \sqrt{\frac{3}{5}} \operatorname{reach}(\mathcal{M})\right) .
$$

I - Simplicial homology

1 - Reminder of algebra
2 - Homological algebra
3 - Incremental algorithm
II - More about homology
1 - Topology of simplicial complexes
2 - Singular homology
3 - Functoriality
III - Homological inference
1 - Thickening parameter selection
2 - Čech complex
3 - Rips complex

Triangulações (fracas)

Let us consider Question 2: How to compute the homology groups of X^{t} ?
We must a triangulation of X^{t}, that is: a simplicial complex K homeomorphic to X.
Actually, we will define something weaker: a simplicial complex K that is homotopy equivalent to X.

Triangulações (fracas)

Let us consider Question 2: How to compute the homology groups of X^{t} ?
We must a triangulation of X^{t}, that is: a simplicial complex K homeomorphic to X.
Actually, we will define something weaker: a simplicial complex K that is homotopy equivalent to X.

weak triangulation

Either case, we will have $\beta_{i}(X)=\beta_{i}(K)$ for all $i \geq 0$.

Nervos

Definition: Let X be a topological space, and $\mathcal{U}=\left\{U_{i}\right\}_{1 \leq i \leq N}$ a cover of X, that is, a collection of subsets $U_{i} \subset X$ such that

$$
\bigcup_{1 \leq i \leq N} U_{i}=X
$$

The nerve of \mathcal{U} is the simplicial complex with vertex set $\{1, \ldots, N\}$ and whose m-simplices are the subsets $\left\{i_{1}, \ldots, i_{m}\right\} \subset\{1, \ldots, N\}$ such that $\bigcap_{k=0}^{m} U_{i_{k}} \neq \emptyset$. It is denoted $\mathcal{N}(\mathcal{U})$.

Nervos

$38 / 44(2 / 12)$
Definition: Let X be a topological space, and $\mathcal{U}=\left\{U_{i}\right\}_{1 \leq i \leq N}$ a cover of X, that is, a collection of subsets $U_{i} \subset X$ such that

$$
\bigcup_{1 \leq i \leq N} U_{i}=X
$$

The nerve of \mathcal{U} is the simplicial complex with vertex set $\{1, \ldots, N\}$ and whose m-simplices are the subsets $\left\{i_{1}, \ldots, i_{m}\right\} \subset\{1, \ldots, N\}$ such that $\bigcap_{k=0}^{m} U_{i_{k}} \neq \emptyset$. It is denoted $\mathcal{N}(\mathcal{U})$.

Nervos

Definition: Let X be a topological space, and $\mathcal{U}=\left\{U_{i}\right\}_{1 \leq i \leq N}$ a cover of X, that is, a collection of subsets $U_{i} \subset X$ such that

$$
\bigcup_{1 \leq i \leq N} U_{i}=X
$$

The nerve of \mathcal{U} is the simplicial complex with vertex set $\{1, \ldots, N\}$ and whose m-simplices are the subsets $\left\{i_{1}, \ldots, i_{m}\right\} \subset\{1, \ldots, N\}$ such that $\bigcap_{k=0}^{m} U_{i_{k}} \neq \emptyset$. It is denoted $\mathcal{N}(\mathcal{U})$.

4

Nervos

$38 / 44(4 / 12)$
Definition: Let X be a topological space, and $\mathcal{U}=\left\{U_{i}\right\}_{1 \leq i \leq N}$ a cover of X, that is, a collection of subsets $U_{i} \subset X$ such that

$$
\bigcup_{1 \leq i \leq N} U_{i}=X
$$

The nerve of \mathcal{U} is the simplicial complex with vertex set $\{1, \ldots, N\}$ and whose m-simplices are the subsets $\left\{i_{1}, \ldots, i_{m}\right\} \subset\{1, \ldots, N\}$ such that $\bigcap_{k=0}^{m} U_{i_{k}} \neq \emptyset$. It is denoted $\mathcal{N}(\mathcal{U})$.

Nervos

Definition: Let X be a topological space, and $\mathcal{U}=\left\{U_{i}\right\}_{1 \leq i \leq N}$ a cover of X, that is, a collection of subsets $U_{i} \subset X$ such that

$$
\bigcup_{1 \leq i \leq N} U_{i}=X
$$

The nerve of \mathcal{U} is the simplicial complex with vertex set $\{1, \ldots, N\}$ and whose m-simplices are the subsets $\left\{i_{1}, \ldots, i_{m}\right\} \subset\{1, \ldots, N\}$ such that $\bigcap_{k=0}^{m} U_{i_{k}} \neq \emptyset$. It is denoted $\mathcal{N}(\mathcal{U})$.

Nervos

$38 / 44(6 / 12)$
Definition: Let X be a topological space, and $\mathcal{U}=\left\{U_{i}\right\}_{1 \leq i \leq N}$ a cover of X, that is, a collection of subsets $U_{i} \subset X$ such that

$$
\bigcup_{1 \leq i \leq N} U_{i}=X
$$

The nerve of \mathcal{U} is the simplicial complex with vertex set $\{1, \ldots, N\}$ and whose m-simplices are the subsets $\left\{i_{1}, \ldots, i_{m}\right\} \subset\{1, \ldots, N\}$ such that $\bigcap_{k=0}^{m} U_{i_{k}} \neq \emptyset$. It is denoted $\mathcal{N}(\mathcal{U})$.

Nervos

Definition: Let X be a topological space, and $\mathcal{U}=\left\{U_{i}\right\}_{1 \leq i \leq N}$ a cover of X, that is, a collection of subsets $U_{i} \subset X$ such that

$$
\bigcup_{1 \leq i \leq N} U_{i}=X
$$

The nerve of \mathcal{U} is the simplicial complex with vertex set $\{1, \ldots, N\}$ and whose m-simplices are the subsets $\left\{i_{1}, \ldots, i_{m}\right\} \subset\{1, \ldots, N\}$ such that $\bigcap_{k=0}^{m} U_{i_{k}} \neq \emptyset$. It is denoted $\mathcal{N}(\mathcal{U})$.

Nervos

Definition: Let X be a topological space, and $\mathcal{U}=\left\{U_{i}\right\}_{1 \leq i \leq N}$ a cover of X, that is, a collection of subsets $U_{i} \subset X$ such that

$$
\bigcup_{1 \leq i \leq N} U_{i}=X
$$

The nerve of \mathcal{U} is the simplicial complex with vertex set $\{1, \ldots, N\}$ and whose m-simplices are the subsets $\left\{i_{1}, \ldots, i_{m}\right\} \subset\{1, \ldots, N\}$ such that $\bigcap_{k=0}^{m} U_{i_{k}} \neq \emptyset$. It is denoted $\mathcal{N}(\mathcal{U})$.

$X^{0.2}=\bigcup_{x \in X} \overline{\mathcal{B}}(x, 0.2)$ is covered by $\mathcal{U}=\{\overline{\mathcal{B}}(x, 0.2) \mid x \in X\}$

Nervos

Definition: Let X be a topological space, and $\mathcal{U}=\left\{U_{i}\right\}_{1 \leq i \leq N}$ a cover of X, that is, a collection of subsets $U_{i} \subset X$ such that

$$
\bigcup_{\leq i \leq N} U_{i}=X .
$$

The nerve of \mathcal{U} is the simplicial complex with vertex set $\{1, \ldots, N\}$ and whose m-simplices are the subsets $\left\{i_{1}, \ldots, i_{m}\right\} \subset\{1, \ldots, N\}$ such that $\bigcap_{k=0}^{m} U_{i_{k}} \neq \emptyset$. It is denoted $\mathcal{N}(\mathcal{U})$.

$$
X^{0.2}=\bigcup_{x \in X} \overline{\mathcal{B}}(x, 0.2) \text { is covered by } \mathcal{U}=\{\overline{\mathcal{B}}(x, 0.2) \mid x \in X\}
$$

Nervos

Definition: Let X be a topological space, and $\mathcal{U}=\left\{U_{i}\right\}_{1 \leq i \leq N}$ a cover of X, that is, a collection of subsets $U_{i} \subset X$ such that

$$
\bigcup_{1 \leq i \leq N} U_{i}=X
$$

The nerve of \mathcal{U} is the simplicial complex with vertex set $\{1, \ldots, N\}$ and whose m-simplices are the subsets $\left\{i_{1}, \ldots, i_{m}\right\} \subset\{1, \ldots, N\}$ such that $\bigcap_{k=0}^{m} U_{i_{k}} \neq \emptyset$. It is denoted $\mathcal{N}(\mathcal{U})$.

$$
X^{0.3}=\bigcup_{x \in X} \overline{\mathcal{B}}(x, 0.3) \text { is covered by } \mathcal{U}=\{\overline{\mathcal{B}}(x, 0.3) \mid x \in X\}
$$

Nervos

Definition: Let X be a topological space, and $\mathcal{U}=\left\{U_{i}\right\}_{1 \leq i \leq N}$ a cover of X, that is, a collection of subsets $U_{i} \subset X$ such that

$$
\bigcup_{1 \leq i \leq N} U_{i}=X
$$

The nerve of \mathcal{U} is the simplicial complex with vertex set $\{1, \ldots, N\}$ and whose m-simplices are the subsets $\left\{i_{1}, \ldots, i_{m}\right\} \subset\{1, \ldots, N\}$ such that $\bigcap_{k=0}^{m} U_{i_{k}} \neq \emptyset$. It is denoted $\mathcal{N}(\mathcal{U})$.

$$
X^{0.3}=\bigcup_{x \in X} \overline{\mathcal{B}}(x, 0.3) \text { is covered by } \mathcal{U}=\{\overline{\mathcal{B}}(x, 0.3) \mid x \in X\}
$$

Nervos

Definition: Let X be a topological space, and $\mathcal{U}=\left\{U_{i}\right\}_{1 \leq i \leq N}$ a cover of X, that is, a collection of subsets $U_{i} \subset X$ such that

$$
\bigcup_{\leq i \leq N} U_{i}=X .
$$

The nerve of \mathcal{U} is the simplicial complex with vertex set $\{1, \ldots, N\}$ and whose m-simplices are the subsets $\left\{i_{1}, \ldots, i_{m}\right\} \subset\{1, \ldots, N\}$ such that $\bigcap_{k=0}^{m} U_{i_{k}} \neq \emptyset$. It is denoted $\mathcal{N}(\mathcal{U})$.

Nerve theorem: Consider $X \subset \mathbb{R}^{n}$. Suppose that each U_{i} are balls (or more generally, closed and convex). Then $\mathcal{N}(\mathcal{U})$ is homotopy equivalent to X.

Complexo de Čech

Let X be a finite subset of \mathbb{R}^{n}, and $t \geq 0$. Consider the collection

$$
\mathcal{V}^{t}=\{\overline{\mathcal{B}}(x, t), x \in X\} .
$$

This is a cover of the thickening X^{t}, and each components are closed balls. By Nerve Theorem, its nerve $\mathcal{N}\left(\mathcal{V}^{t}\right)$ has the homotopy type of X^{t}.

Definition: This nerve is denoted $\check{\text { Cech }}{ }^{t}(X)$ and is called the Čech complex of X at time t.

Complexo de Čech

Let X be a finite subset of \mathbb{R}^{n}, and $t \geq 0$. Consider the collection

$$
\mathcal{V}^{t}=\{\overline{\mathcal{B}}(x, t), x \in X\} .
$$

This is a cover of the thickening X^{t}, and each components are closed balls. By Nerve Theorem, its nerve $\mathcal{N}\left(\mathcal{V}^{t}\right)$ has the homotopy type of X^{t}.

Definition: This nerve is denoted $\check{\operatorname{Cech}}{ }^{t}(X)$ and is called the Čech complex of X at time t.

\longrightarrow The Question 2 (How to compute the homology groups of X^{t} ?) is solved.

I - Simplicial homology

1 - Reminder of algebra
2 - Homological algebra
3 - Incremental algorithm
II - More about homology
1 - Topology of simplicial complexes
2 - Singular homology
3 - Functoriality
III - Homological inference
1 - Thickening parameter selection
2 - Čech complex
3 - Rips complex

Computação do complexo de Čech

Let $X=\left\{x_{1}, \ldots, x_{N}\right\} \subset \mathbb{R}^{n}$ be finite, let $t \geq 0$ and consider the t-thickening

$$
X^{t}=\bigcup_{x \in X} \overline{\mathcal{B}}(x, t) .
$$

By definition, its nerve, Čech ${ }^{t}(X)$, the Čech complex at time t, is a simplicial complex on the vertices $\{1, \ldots, N\}$ whose simplices are the subsets $\left\{i_{1}, \ldots, i_{m}\right\}$ such that

$$
\bigcap_{1 \leq k \leq m} \overline{\mathcal{B}}\left(x_{i_{k}}, t\right) \neq \emptyset
$$

Computação do complexo de Čech

Let $X=\left\{x_{1}, \ldots, x_{N}\right\} \subset \mathbb{R}^{n}$ be finite, let $t \geq 0$ and consider the t-thickening

$$
X^{t}=\bigcup_{x \in X} \overline{\mathcal{B}}(x, t) .
$$

By definition, its nerve, Čech ${ }^{t}(X)$, the Čech complex at time t, is a simplicial complex on the vertices $\{1, \ldots, N\}$ whose simplices are the subsets $\left\{i_{1}, \ldots, i_{m}\right\}$ such that

$$
\bigcap_{1 \leq k \leq m} \overline{\mathcal{B}}\left(x_{i_{k}}, t\right) \neq \emptyset .
$$

Therefore, computing the Čech complex relies on the following geometric predicate:
Given m closed balls of \mathbb{R}^{n}, do they intersect?
This problem is known as the smallest circle problem. It can can be solved in $O(m)$ time, where m is the number of points.

Computação do complexo de Čech

Let $X=\left\{x_{1}, \ldots, x_{N}\right\} \subset \mathbb{R}^{n}$ be finite, let $t \geq 0$ and consider the t-thickening

$$
X^{t}=\bigcup_{x \in X} \overline{\mathcal{B}}(x, t)
$$

By definition, its nerve, $\check{\operatorname{Cech}}{ }^{t}(X)$, the Čech complex at time t, is a simplicial complex on the vertices $\{1, \ldots, N\}$ whose simplices are the subsets $\left\{i_{1}, \ldots, i_{m}\right\}$ such that

$$
\bigcap_{1 \leq k \leq m} \overline{\mathcal{B}}\left(x_{i_{k}}, t\right) \neq \emptyset
$$

Therefore, computing the Čech complex relies on the following geometric predicate:

Given m closed balls of \mathbb{R}^{n}, do they intersect?

This problem is known as the smallest circle problem. It can can be solved in $O(m)$ time, where m is the number of points.
\longrightarrow in practice, we prefer a more simple version

Complexo de clique

Let G be a graph.
We call a clique of G a set of vertices v_{1}, \ldots, v_{m} such that for every $i, j \in \llbracket 1, m \rrbracket$ with $i \neq j$, the edge $\left[v_{i}, v_{j}\right]$ belongs to G.

Complexo de clique

Let G be a graph.
We call a clique of G a set of vertices v_{1}, \ldots, v_{m} such that for every $i, j \in \llbracket 1, m \rrbracket$ with $i \neq j$, the edge $\left[v_{i}, v_{j}\right]$ belongs to G.

Complexo de clique

Let G be a graph.
We call a clique of G a set of vertices v_{1}, \ldots, v_{m} such that for every $i, j \in \llbracket 1, m \rrbracket$ with $i \neq j$, the edge $\left[v_{i}, v_{j}\right]$ belongs to G.

Complexo de clique

Let G be a graph.
We call a clique of G a set of vertices v_{1}, \ldots, v_{m} such that for every $i, j \in \llbracket 1, m \rrbracket$ with $i \neq j$, the edge $\left[v_{i}, v_{j}\right]$ belongs to G.

Complexo de clique

Let G be a graph.
We call a clique of G a set of vertices v_{1}, \ldots, v_{m} such that for every $i, j \in \llbracket 1, m \rrbracket$ with $i \neq j$, the edge $\left[v_{i}, v_{j}\right]$ belongs to G.

Definition: Given a graph G, the corresponding clique complex is the simplicial complex whose

- vertices are the vertices of G,
- simplices are the sets of vertices of the cliques of G.

Complexo de clique

Let G be a graph.
We call a clique of G a set of vertices v_{1}, \ldots, v_{m} such that for every $i, j \in \llbracket 1, m \rrbracket$ with $i \neq j$, the edge $\left[v_{i}, v_{j}\right]$ belongs to G.

Definition: Given a graph G, the corresponding clique complex is the simplicial complex whose

- vertices are the vertices of G,
- simplices are the sets of vertices of the cliques of G.

Observation: The clique complex of a graph is a simplicial complex.

Complexo de Rips

Let $X=\left\{x_{1}, \ldots, x_{N}\right\} \subset \mathbb{R}^{n}$ and $t \geq 0$.
Consider the graph G^{t} whose vertex set is $\{1, \ldots, N\}$, and whose edges are the pairs (i, j) such that $\left\|x_{i}-x_{j}\right\| \leq 2 t$.
Alternatively, G^{t} can be seen as the 1-skeleton of the Čech complex Čech ${ }^{t}(X)$.

Complexo de Rips

Let $X=\left\{x_{1}, \ldots, x_{N}\right\} \subset \mathbb{R}^{n}$ and $t \geq 0$.
Consider the graph G^{t} whose vertex set is $\{1, \ldots, N\}$, and whose edges are the pairs (i, j) such that $\left\|x_{i}-x_{j}\right\| \leq 2 t$.
Alternatively, G^{t} can be seen as the 1-skeleton of the Čech complex Čech ${ }^{t}(X)$.

Definition: The Rips complex of X at time t is the clique complex of the graph G^{t}. We denote it $\operatorname{Rips}^{t}(X)$.

Complexo de Rips

Let $X=\left\{x_{1}, \ldots, x_{N}\right\} \subset \mathbb{R}^{n}$ and $t \geq 0$.
Consider the graph G^{t} whose vertex set is $\{1, \ldots, N\}$, and whose edges are the pairs (i, j) such that $\left\|x_{i}-x_{j}\right\| \leq 2 t$.
Alternatively, G^{t} can be seen as the 1-skeleton of the Čech complex Čech ${ }^{t}(X)$.

Definition: The Rips complex of X at time t is the clique complex of the graph G^{t}. We denote it $\operatorname{Rips}^{t}(X)$.

Complexo de Rips

Let $X=\left\{x_{1}, \ldots, x_{N}\right\} \subset \mathbb{R}^{n}$ and $t \geq 0$.
Consider the graph G^{t} whose vertex set is $\{1, \ldots, N\}$, and whose edges are the pairs (i, j) such that $\left\|x_{i}-x_{j}\right\| \leq 2 t$.
Alternatively, G^{t} can be seen as the 1-skeleton of the Čech complex Čech ${ }^{t}(X)$.

Definition: The Rips complex of X at time t is the clique complex of the graph G^{t}. We denote it $\operatorname{Rips}^{t}(X)$.

Complexo de Rips

Proposition: For every $t \geq 0$, we have

$$
\operatorname{Cech}^{t}(X) \subset \operatorname{Rips}^{t}(X) \subset \operatorname{Cech}^{2 t}(X)
$$

Cech $^{2 t}(X)$

Complexo de Rips

Proposition: For every $t \geq 0$, we have

$$
\check{\operatorname{Cech}}^{t}(X) \subset \operatorname{Rips}^{t}(X) \subset \operatorname{Cech}^{2 t}(X)
$$

Proof: Let $t \geq 0$. The first inclusion follows from the fact that $\operatorname{Rips}^{t}(X)$ is the clique complex of Čech ${ }^{t}(X)$.
To prove the second one, choose a simplex $\sigma \in \operatorname{Rips}^{t}(X)$. Let us prove that $\omega \in$ Cech $^{2 t}(X)$.
Let $x \in \sigma$ be any vertex. Note that $\forall y \in \sigma$, we have $\|x-y\| \leq 2 t$ by definition of the Rips complex. Hence

$$
x \in \bigcap_{y \in \sigma} \overline{\mathcal{B}}(y, 2 t) .
$$

The intersection being non-empty, we deduce $\sigma \in$ Čech $^{2 t}(X)$.

Conclusão

Question 1: How to select a t such that $X^{t} \approx \mathcal{M}$?

Theorem (Frédéric Chazal, David Cohen-Steiner, and André Lieutier, 2009):
Let X and \mathcal{M} be subsets of \mathbb{R}^{n}. Suppose that \mathcal{M} has positive reach, and that $\mathrm{d}_{\mathrm{H}}(X, \mathcal{M}) \leq \frac{1}{17} \operatorname{reach}(\mathcal{M})$.
Then X^{t} and \mathcal{M} are homotopic equivalent, provided that

$$
t \in\left[4 \mathrm{~d}_{\mathrm{H}}(X, \mathcal{M}), \operatorname{reach}(\mathcal{M})-3 \mathrm{~d}_{\mathrm{H}}(X, \mathcal{M})\right)
$$

Theorem (Partha Niyogi, Stephen Smale, and Shmuel Weinberger, 2008) Let X and \mathcal{M} be subsets of \mathbb{R}^{n}, with \mathcal{M} a submanifold, and X a finite subset of \mathcal{M}. Suppose that \mathcal{M} has positive reach.
Then X^{t} and \mathcal{M} are homotopic equivalent, provided that

$$
t \in\left[2 \mathrm{~d}_{\mathrm{H}}(X, \mathcal{M}), \sqrt{\frac{3}{5}} \operatorname{reach}(\mathcal{M})\right) .
$$

Question 2: How to compute the homology groups of X^{t} ?

Conclusão

Question 1: How to select a t such that $X^{t} \approx \mathcal{M}$?

Theorem (Frédéric Chazal, David Cohen-Steiner, and André Lieutier, 2009): Let X and \mathcal{M} be subsets of \mathbb{R}^{n}. Suppose that \mathcal{M} has positive reach, and that $\mathrm{d}_{\mathrm{H}}(X, \mathcal{M}) \leq \frac{1}{17} \operatorname{reach}(\mathcal{M})$.
Then X^{t} and \mathcal{M} are homotopic equivalent, provided that

Theorem (Partha Niyogi, Stephen Smale, and Shmuel Weinberger, 2008) Let X and \mathcal{M} be subsets of \mathbb{R}^{n}, with \mathcal{M} a submanifold, and X a finite subset of \mathcal{M}. Suppose that \mathcal{M} has positive reach.
Then X^{t} and \mathcal{M} are homotopic equivalent, provided that

$$
t \in\left[2 \mathrm{~d}_{\mathrm{H}}(X, \mathcal{M}), \sqrt{\frac{3}{5}} \operatorname{reach}(\mathcal{M})\right) .
$$

these quantities are not known!

Question 2: How to compute the homology groups of X^{t} ?

compute the nerve

Conclusão

Question 1: How to select a t such that $X^{t} \approx \mathcal{M}$?

Theorem (Frédéric Chazal, David Cohen-Steiner, and André Lieutier, 2009):
Let X and \mathcal{M} be subsets of \mathbb{R}^{n}. Suppose that \mathcal{M} has positive reach, and that $\mathrm{d}_{\mathrm{H}}(X, \mathcal{M}) \leq \frac{1}{17} \operatorname{reach}(\mathcal{M})$.
Then X^{t} and \mathcal{M} are homotopic equivalent, provided that

Theorem (Partha Niyogi, Stephen Smale, and Shmuel Weinberger, 2008) Let X and \mathcal{M} be subsets of \mathbb{R}^{n}, with \mathcal{M} a submanifold, and X a finite subset of \mathcal{M}. Suppose that \mathcal{M} has positive reach.
Then X^{t} and \mathcal{M} are homotopic equivalent, provided that

$$
t \in\left[2 \mathrm{~d}_{\mathrm{H}}(X, \mathcal{M}), \sqrt{\frac{3}{5}} \operatorname{reach}(\mathcal{M})\right)
$$

these quantities are not known!

Is this object 1- or 2-dimensional?

Conclusão

Question 1: How to select a t such that $X^{t} \approx \mathcal{M}$?

Theorem (Frédéric Chazal, David Cohen-Steiner, and André Lieutier, 2009):
Let X and \mathcal{M} be subsets of \mathbb{R}^{n}. Suppose that \mathcal{M} has positive reach, and that $\mathrm{d}_{\mathrm{H}}(X, \mathcal{M}) \leq \frac{1}{17} \operatorname{reach}(\mathcal{M})$.
Then X^{t} and \mathcal{M} are homotopic equivalent, provided that

Theorem (Partha Niyogi, Stephen Smale, and Shmuel Weinberger, 2008) Let X and \mathcal{M} be subsets of \mathbb{R}^{n}, with \mathcal{M} a submanifold, and X a finite subset of \mathcal{M}. Suppose that \mathcal{M} has positive reach.
Then X^{t} and \mathcal{M} are homotopic equivalent, provided that

$$
t \in\left[2 \mathrm{~d}_{\mathrm{H}}(X, \mathcal{M}), \sqrt{\frac{3}{5}} \operatorname{reach}(\mathcal{M})\right) .
$$

these quantities are not known!

Is this object 1- or 2-dimensional?

Idea (multiscale analysis): Instead of estimating a value of t, we will choose all of them.

[^0]: Algorithm 2: Reduction of the boundary matrix
 Input: a boundary matrix Δ
 Output: a reduced matrix $\widetilde{\Delta}$

 ## for $j \leftarrow 1$ to n do

 while there exists $i<j$ with $\delta(i)=\delta(j)$ do
 add column i to column j ;

 .

 $$
 \left.\begin{array}{cccccccccc}
 \sigma^{1} \\
 \sigma^{2} \\
 \sigma^{3} \\
 \sigma^{4} \\
 \sigma^{5} & \left(\begin{array}{lllllllll}
 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 \\
 0 \\
 0 & 0 & 0 & 0 & 1 & 1 & 0 & 0 & 1 \\
 0 \\
 \sigma^{6} & 0 & 0 & 0 & 0 & 1 & 1 & 0 & 0 \\
 0 \\
 \sigma^{7} & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 1 \\
 \sigma^{8} & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
 1 \\
 \sigma^{9} & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
 0 \\
 \sigma^{10}
 \end{array}\right. & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
 0 \\
 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 \\
 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 \\
 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0
 \end{array}\right)
 $$

 $$
 \begin{gathered}
 \sigma^{1} \\
 \sigma^{2} \\
 \sigma^{3} \\
 \sigma^{4} \\
 \sigma^{5} \\
 \sigma^{6} \\
 \sigma^{7} \\
 \sigma^{8} \\
 \sigma^{9} \\
 \sigma^{10}
 \end{gathered}
 $$

 $\left(\begin{array}{llllllllll}0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0\end{array}\right)$

