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3/44Lembrete de ontem

Some datasets contain topology Invariants of homotopy classes allow to
describe and understand topological spaces

X

β0(X) 1 1 1 1 2

β1(X) 0 1 0 2 2

β2(X) 0 0 1 0 0

Betti numbers β0, β1, β2, . . .

Euler characteristic χ

Number of connected components



4/44 (1/5)Cardápio

Today we will define a powerful invariant, homology groups, that already contains the
number of connected components, and the Euler characteristic.

Algebraic topology
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4/44 (5/5)Cardápio

Today we will define a powerful invariant, homology groups, that already contains the
number of connected components, and the Euler characteristic.

Algebraic topology

Homology groups Cohomology algebra Characteristic classes Functor K

Singular homology Simplicial homology Cellular homology

Over a finite field Over Z

Singular homology over the finite field Z/2Z
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I - Simplicial homology

1 - Reminder of algebra

2 - Homological algebra

3 - Incremental algorithm

II - More about homology
1 - Topology of simplicial complexes

2 - Singular homology

III - Homological inference
1 - Thickening parameter selection

2 - Čech complex

3 - Functoriality

3 - Rips complex



6/44O grupo Z/2Z

The group Z/2Z can be seen as the set {0, 1} with the operation

0 + 0 = 0
0 + 1 = 1
1 + 0 = 1
1 + 1 = 0

For any n ≥ 1, the product group (Z/2Z)n is the group whose underlying set is

(Z/2Z)n = {(ε1, ..., εn), ε1, ..., εn ∈ Z/2Z}
and whose operation is defined as

(ε1, ..., εn) + (ε′1, ..., ε
′
n) = (ε1 + ε′1, ..., εn + ε′n).

and (Z/2Z)n can be seen as a Z/2Z-vector space over the field Z/2Z.

The group Z/2Z can be given a field structure

0× 0 = 0
0× 1 = 0
1× 0 = 0
1× 1 = 1



7/44 (1/3)Espaços vetoriais sobre Z/2Z

Definition: A vector space over Z/2Z is a set V endowed with two operations

such that

Z/2Z× V −→ V

(λ, v) 7−→ λ · v
V × V −→ V

(u, v) 7−→ u+ v

(compatibility of multiplication) ∀λ, µ ∈ Z/2Z,∀v ∈ V, λ · (µ · v) = (λ× µ) · v,
(scalar identity) ∀v ∈ V, 1 · v = v,

(scalar distributivity) ∀µ, ν ∈ Z/2Z,∀v ∈ V , (λ+ ν) · v = λ · v + ν · v,
(vector distributivity) ∀µ ∈ Z/2Z,∀v, w ∈ V , λ · (u+ v) = λ · v + ν · v.

(associativity) ∀u, v, w ∈ V , (u+ v) + w = u+ (v + w),
(identity) ∃0 ∈ V , ∀v ∈ V , v + 0 = 0 + v = v,
(inverse) ∀v ∈ V,∃w ∈ V , u+ v = v + u = 0,

(commutativity) ∀u, v ∈ V , u+ v = v + u,
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Definition: A vector space over Z/2Z is a set V endowed with two operations

such that

Z/2Z× V −→ V

(λ, v) 7−→ λ · v
V × V −→ V

(u, v) 7−→ u+ v

(compatibility of multiplication) ∀λ, µ ∈ Z/2Z,∀v ∈ V, λ · (µ · v) = (λ× µ) · v,
(scalar identity) ∀v ∈ V, 1 · v = v,

(scalar distributivity) ∀µ, ν ∈ Z/2Z,∀v ∈ V , (λ+ ν) · v = λ · v + ν · v,
(vector distributivity) ∀µ ∈ Z/2Z,∀v, w ∈ V , λ · (u+ v) = λ · v + ν · v.

(associativity) ∀u, v, w ∈ V , (u+ v) + w = u+ (v + w),
(identity) ∃0 ∈ V , ∀v ∈ V , v + 0 = 0 + v = v,
(inverse) ∀v ∈ V,∃w ∈ V , u+ v = v + u = 0,

(commutativity) ∀u, v ∈ V , u+ v = v + u,

Proposition: Le (V,+) be a commutative group.
It can be given a Z/2Z-vector space structure iff ∀v ∈ V, v + v = 0.

Proposition: Let (V,+, ·) be a finite Z/2Z-vector space. Then there exists n ≥ 0 such
that V has cardinal 2n, and (V,+, ·) is isomorphic to the vector space (Z/2Z)n.

Proof: Consequence of the theory of vector spaces.
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A linear subspace of (V,+, ·) is a subset W ⊂ V such that

∀u, v ∈W,u+ v ∈W and ∀v ∈W, ∀λ ∈ Z/2Z, λv ∈W.

Proposition: We have dimV/W = dimV − dimW .

We define the following equivalence relation on V : for all u, v ∈ V ,

u ∼ v ⇐⇒ u− v ∈W.

Denote by V/W the quotient set of V under this relation. For any v ∈ V , one shows
that the equivalence class of v is equal to v +W = {v + w | w ∈W}.

One defines a group structure ⊕ on V/W as follows:

(u+W )⊕ (u′ +W ) = (u+ u′) +W.

Definition: The vector space (V/W,⊕, ·) is called the quotient vector space.
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I - Simplicial homology

1 - Reminder of algebra

2 - Homological algebra

3 - Incremental algorithm

II - More about homology
1 - Topology of simplicial complexes

2 - Singular homology

III - Homological inference
1 - Thickening parameter selection

2 - Čech complex

3 - Functoriality
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9/44 (1/4)Cadeias

Let K be a simplicial complex. For any n ≥ 0, define

K(n) = {σ ∈ K | dim(σ) = n}.

K(0) K(1) K(2)

K

Definition (reminder): Let V be a set (called the set of vertices). A simplicial complex
over V is a set K of subsets of V (called the simplices) such that, for every σ ∈ K and
every non-empty τ ⊂ σ, we have τ ∈ K.
The dimension of a simplex σ ∈ K is dim(σ) = |σ| − 1.



9/44 (2/4)Cadeias

Let n ≥ 0. The n-chains of K is the set Cn(K) whose elements are the formal sums∑
σ∈K(n)

εσ · σ where ∀σ ∈ K(n), εσ ∈ Z/2Z.

Example: The 0-chains of K = {[0], [1], [2], [0, 1], [0, 2]} are:

[0]
[0] + [1] + [2]

0

1 2

[0] + [1] + [2][1] + [2][0] + [2][0] + [1][2][1][0]0

and the 1-chains

0 [0, 1] [0, 2] [0, 1] + [0, 2]
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Let n ≥ 0. The n-chains of K is the set Cn(K) whose elements are the formal sums∑
σ∈K(n)

εσ · σ where ∀σ ∈ K(n), εσ ∈ Z/2Z.

We can give Cn(K) a group structure via∑
σ∈K(n)

εσ · σ +
∑

σ∈K(n)

ησ · σ =
∑

σ∈K(n)

(εσ + ησ) · σ.

Example: The 0-chains of K = {[0], [1], [2], [0, 1], [0, 2]} are:

[0]
[0] + [1] + [2]

0

1 2

[0] + [1] + [2][1] + [2][0] + [2][0] + [1][2][1][0]0

and the 1-chains

0 [0, 1] [0, 2] [0, 1] + [0, 2]

Moreover, Cn(K) can be given a Z/2Z-vector space structure.
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Let n ≥ 0. The n-chains of K is the set Cn(K) whose elements are the formal sums∑
σ∈K(n)

εσ · σ where ∀σ ∈ K(n), εσ ∈ Z/2Z.

We can give Cn(K) a group structure via∑
σ∈K(n)

εσ · σ +
∑

σ∈K(n)

ησ · σ =
∑

σ∈K(n)

(εσ + ησ) · σ.

[0]
[0] + [1] + [2]

Moreover, Cn(K) can be given a Z/2Z-vector space structure.

Example: In the simplicial complex K = {[0], [1], [2], [0, 1], [0, 2]}, the sum of the
0-chains [0] + [1] and [0] + [2] is [1] + [2]:

([0] + [1]) + ([0] + [2]) = [0] + [0] + [1] + [2] = [1] + [2].

+ =

0

1 2



10/44 (1/5)Operador bordo

Let n ≥ 1, and σ = [x0, ..., xn] ∈ K(n) a simplex of dimension n. We define its
boundary as the following element of Cn−1(K):

∂nσ =
∑
τ⊂σ

|τ |=|σ|−1

τ

We can extend the operator ∂n as a linear map ∂n : Cn(K)→ Cn−1(K).

Example: Consider the simplicial complex
K = {[0], [1], [2], [3], [0, 1], [0, 2], [1, 2], [1, 3], [2, 3], [0, 1, 2]}.

The simplex [0, 1] has the faces [0] and [1]. Hence

∂1[0, 1] = [0] + [1].

0

1 2

3

∂1



10/44 (2/5)Operador bordo

Let n ≥ 1, and σ = [x0, ..., xn] ∈ K(n) a simplex of dimension n. We define its
boundary as the following element of Cn−1(K):

∂nσ =
∑
τ⊂σ

|τ |=|σ|−1

τ

We can extend the operator ∂n as a linear map ∂n : Cn(K)→ Cn−1(K).

Example: Consider the simplicial complex
K = {[0], [1], [2], [3], [0, 1], [0, 2], [1, 2], [1, 3], [2, 3], [0, 1, 2]}.

The boundary of the 1-chain [0, 1] + [1, 2] + [2, 0] is

0

1 2

3

∂1

∂1
(
[0, 1] + [1, 2] + [2, 0]

)
= ∂1[0, 1] + ∂1[1, 2] + ∂1[2, 0]

= [0] + [1] + [1] + [2] + [2] + [0] = 0
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Let n ≥ 1, and σ = [x0, ..., xn] ∈ K(n) a simplex of dimension n. We define its
boundary as the following element of Cn−1(K):

∂nσ =
∑
τ⊂σ

|τ |=|σ|−1

τ

We can extend the operator ∂n as a linear map ∂n : Cn(K)→ Cn−1(K).

Example: Consider the simplicial complex
K = {[0], [1], [2], [3], [0, 1], [0, 2], [1, 2], [1, 3], [2, 3], [0, 1, 2]}.

The simplex [0, 1, 2] has the faces [0, 1] and [1, 2] and [2, 0]. Hence

∂2[0, 1, 2] = [0, 1] + [1, 2] + [2, 0].

0

1 2

3

∂2



10/44 (4/5)Operador bordo

Let n ≥ 1, and σ = [x0, ..., xn] ∈ K(n) a simplex of dimension n. We define its
boundary as the following element of Cn−1(K):

∂nσ =
∑
τ⊂σ

|τ |=|σ|−1

τ

We can extend the operator ∂n as a linear map ∂n : Cn(K)→ Cn−1(K).

Proposition: For any n ≥ 1, for any c ∈ Cn(K), we have ∂n−1 ◦ ∂n(c) = 0.

0

1 2

3

∂2 ∂1
×2 ×2

×2

=
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Proof: Suppose that n ≥ 2, the result being trivial otherwise.
Since the boundary operators are linear, it is enough to prove that ∂n−1 ◦ ∂n(σ) = 0 for
all simplex σ ∈ K(n).
By definition, ∂n(σ) =

∑
τ⊂σ

|τ |=|σ|−1
τ , and

∂n−1 ◦ ∂n(σ) =
∑
τ⊂σ

|τ |=|σ|−1

∂n−1(τ) =
∑
τ⊂σ

|τ |=|σ|−1

∑
ν⊂τ

|ν|=|τ |−1

ν

We can write this last sum as∑
τ⊂σ

|τ |=|σ|−1

∑
ν⊂τ

|ν|=|τ |−1

ν =
∑
ν⊂σ

|ν|=|σ|−2

ανν

where αν = {τ ⊂ σ | |τ | = |σ| − 1, ν ⊂ τ}.
It is easy to see that for every ν such that dim ν = dim τ − 2, we have αν = 2 = 0.

Proposition: For any n ≥ 1, for any c ∈ Cn(K), we have ∂n−1 ◦ ∂n(c) = 0.

0

1 2

3

∂2 ∂1
×2 ×2

×2

=



11/44 (1/4)Ciclos e bordos

Let n ≥ 0. We have a sequence of vector spaces

· · · −→ Cn+1(K)
∂n+1−−−→ Cn(K)

∂n−−→ Cn−1(K) −→ . . .

The maps ∂n+1 and ∂n are linear maps, and we can consider their kernel and image.

Example: Consider the simplicial complex

0

1 2

3
The 1-boundaries are:The 1-cycles are:

0

[0, 1] + [1, 2] + [0, 2]

[0, 2] + [2, 3] + [0, 3]

[0, 1] + [1, 2] + [2, 3] + [0, 3].

0

[0, 1] + [1, 2] + [0, 2]

Definition: We define:
• The n-cycles: Zn(K) = Ker(∂n) = {c ∈ Cn(K) | ∂n(c) = 0},
• The n-boundaries: Bn(K) = Im(∂n+1) = {∂n+1(c) | c ∈ Cn+1(K)}.
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Let n ≥ 0. We have a sequence of vector spaces

· · · −→ Cn+1(K)
∂n+1−−−→ Cn(K)

∂n−−→ Cn−1(K) −→ . . .

The maps ∂n+1 and ∂n are linear maps, and we can consider their kernel and image.

Example: Consider the simplicial complex

0

1 2

3
The 1-boundaries are:

Proposition: We have Bn(K) ⊂ Zn(K).

The 1-cycles are:

0

[0, 1] + [1, 2] + [0, 2]

[0, 2] + [2, 3] + [0, 3]

[0, 1] + [1, 2] + [2, 3] + [0, 3].

0

[0, 1] + [1, 2] + [0, 2]

Definition: We define:
• The n-cycles: Zn(K) = Ker(∂n) = {c ∈ Cn(K) | ∂n(c) = 0},
• The n-boundaries: Bn(K) = Im(∂n+1) = {∂n+1(c) | c ∈ Cn+1(K)}.
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Let n ≥ 0. We have a sequence of vector spaces

· · · −→ Cn+1(K)
∂n+1−−−→ Cn(K)

∂n−−→ Cn−1(K) −→ . . .

The maps ∂n+1 and ∂n are linear maps, and we can consider their kernel and image.

Definition: We say that two chains c, c′ ∈ Cn(K) are homologous if there exists
b ∈ Bn(K) such that c = c′ + b.

Example:

[0, 2] + [2, 3] + [0, 3] = [0, 1] + [1, 2] + [2, 3] + [0, 3] + [0, 1] + [0, 2] + [1, 2].

Proposition: We have Bn(K) ⊂ Zn(K).

≈= + hence

interpretation: two cycles are homologous if they represent the same ‘hole’

Definition: We define:
• The n-cycles: Zn(K) = Ker(∂n) = {c ∈ Cn(K) | ∂n(c) = 0},
• The n-boundaries: Bn(K) = Im(∂n+1) = {∂n+1(c) | c ∈ Cn+1(K)}.
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Let n ≥ 0. We have a sequence of vector spaces

· · · −→ Cn+1(K)
∂n+1−−−→ Cn(K)

∂n−−→ Cn−1(K) −→ . . .

The maps ∂n+1 and ∂n are linear maps, and we can consider their kernel and image.

Proposition: We have Bn(K) ⊂ Zn(K).

Proof: Let b ∈ Bn(K) be a boundary. By definition, there exists c ∈ Cn+1(K) such
that b = ∂n+1(c). Using ∂n∂n+1 = 0, we get

∂n(b) = ∂n∂n+1(c) = 0,

hence b ∈ Zn(K).

Definition: We define:
• The n-cycles: Zn(K) = Ker(∂n) = {c ∈ Cn(K) | ∂n(c) = 0},
• The n-boundaries: Bn(K) = Im(∂n+1) = {∂n+1(c) | c ∈ Cn+1(K)}.



12/44 (1/4)Grupos de homologia

We have defined a sequence of vector spaces, connected by linear maps

· · · −→ Cn+1(K) −→ Cn(K) −→ Cn−1(K) −→ · · ·

and for every n ≥ 0, we have defined the cycles and the boundaries Zn(K) and Bn(K).

Since Bn(K) ⊂ Zn(K), we can see Bn(K) as a linear subspace of Zn(K).

Definition: The nth (simplicial) homology group of K is the quotient vector space

Hn(K) = Zn(K)/Bn(K).
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We have defined a sequence of vector spaces, connected by linear maps

· · · −→ Cn+1(K) −→ Cn(K) −→ Cn−1(K) −→ · · ·

and for every n ≥ 0, we have defined the cycles and the boundaries Zn(K) and Bn(K).

Since Bn(K) ⊂ Zn(K), we can see Bn(K) as a linear subspace of Zn(K).

Definition: The nth (simplicial) homology group of K is the quotient vector space

Hn(K) = Zn(K)/Bn(K).

Remark: A finite Z/2Z-vector space must be isomorphic to (Z/2Z)k for some k.

Definition: Let K be a simplicial complex and n ≥ 0. Its nth Betti number is the
integer βn(K) = dimHn(K).

Hn(K) = (Z/2Z)k βn(K) = k
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We have defined a sequence of vector spaces, connected by linear maps

· · · −→ Cn+1(K) −→ Cn(K) −→ Cn−1(K) −→ · · ·

and for every n ≥ 0, we have defined the cycles and the boundaries Zn(K) and Bn(K).

Since Bn(K) ⊂ Zn(K), we can see Bn(K) as a linear subspace of Zn(K).

Definition: The nth (simplicial) homology group of K is the quotient vector space

Hn(K) = Zn(K)/Bn(K).

Remark: A finite Z/2Z-vector space must be isomorphic to (Z/2Z)k for some k.

Definition: Let K be a simplicial complex and n ≥ 0. Its nth Betti number is the
integer βn(K) = dimHn(K).

Example: H0(K) = Z/2Z β0(K) = 1

H1(K) = Z/2Z β1(K) = 1

H2(K) = 0 β2(K) = 0
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X

β0(X) 1 1 1 1 2

β1(X) 0 1 0 2 2

β2(X) 0 0 1 0 0

H0(X) Z/2Z Z/2Z Z/2Z Z/2Z (Z/2Z)2

H1(X) 0 Z/2Z 0 (Z/2Z)2 (Z/2Z)2

H2(X) 0 0 Z/2Z 0 0

X

β0(X) 1 1 1 1 2

β1(X) 0 1 0 2 2

β2(X) 0 0 1 0 0

X

H0(X) Z/2Z Z/2Z Z/2Z Z/2Z (Z/2Z)2

H1(X) 0 Z/2Z 0 (Z/2Z)2 (Z/2Z)2

H2(X) 0 0 Z/2Z 0 0
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I - Simplicial homology

1 - Reminder of algebra

2 - Homological algebra

3 - Incremental algorithm

II - More about homology
1 - Topology of simplicial complexes

2 - Singular homology

III - Homological inference
1 - Thickening parameter selection

2 - Čech complex

3 - Functoriality

3 - Rips complex



14/44Ordenar o complexo simplicial

Let K be a simplicial complex with n simplices. Choose a total order of the simplices

σ1 < σ2 < ... < σn

such that
∀σ, τ ∈ K, τ ( σ =⇒ τ < σ.

In other words, a face of a simplex is lower than the simplex itself.
For every i ≤ n, consider the simplicial complex

Ki = {σ1, ..., σi}.

We have ∀i ≤ n,Ki+1 = Ki ∪
{
σi+1

}
, and Kn = K. They form an inscreasing

sequence of simplicial complexes

K1 ⊂ K2 ⊂ ... ⊂ Kn.

K1 K2 K3 K4 K5 K6 K7 K8

K K

K9 K10

K1 K2 K3 K4 K5 K6 K7 K8 K9 K10



15/44 (1/8)Positividade dos simplexos

Let k ≥ 0. We will compute the homology groups of Ki incrementally:

K1 K2 K3 K4 K5 K6 K7 K8 K9 K10

Hk(K1), Hk(K2), Hk(K3), Hk(K4), Hk(K5), Hk(K6), Hk(K7), Hk(K8), Hk(K9), Hk(K10)



15/44 (2/8)Positividade dos simplexos

Let k ≥ 0. We will compute the homology groups of Ki incrementally:

K1 K2 K3 K4 K5 K6 K7 K8 K9 K10

Hk(K1), Hk(K2), Hk(K3), Hk(K4), Hk(K5), Hk(K6), Hk(K7), Hk(K8), Hk(K9), Hk(K10)

Definition: Let i ∈ J1, nK, and d = dim(σi). Recall that Ki = Ki−1 ∪ {σi}.
The simplex σi is positive if there exists a cycle c ∈ Zd(Ki) that contains σi.
In other words, there exist c =

∑
σ∈Ki

(n)
εσ · σ ∈ Cn(Ki) such that εσi = 1 and

∂n(c) = 0. Otherwise, σi is negative.

Example:
σ1 ∈ K1 is positive because it is included in the cycle c = σ1 (indeed, ∂0(σ1) = 0).
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Let k ≥ 0. We will compute the homology groups of Ki incrementally:

K1 K2 K3 K4 K5 K6 K7 K8 K9 K10

Hk(K1), Hk(K2), Hk(K3), Hk(K4), Hk(K5), Hk(K6), Hk(K7), Hk(K8), Hk(K9), Hk(K10)

Definition: Let i ∈ J1, nK, and d = dim(σi). Recall that Ki = Ki−1 ∪ {σi}.
The simplex σi is positive if there exists a cycle c ∈ Zd(Ki) that contains σi.
In other words, there exist c =

∑
σ∈Ki

(n)
εσ · σ ∈ Cn(Ki) such that εσi = 1 and

∂n(c) = 0. Otherwise, σi is negative.

Example:
σ1 ∈ K1 is positive because it is included in the cycle c = σ1 (indeed, ∂0(σ1) = 0).

σ2 ∈ K2 is positive because it is included in the cycle c = σ2 (indeed, ∂0(σ2) = 0).
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Let k ≥ 0. We will compute the homology groups of Ki incrementally:

K1 K2 K3 K4 K5 K6 K7 K8 K9 K10

Hk(K1), Hk(K2), Hk(K3), Hk(K4), Hk(K5), Hk(K6), Hk(K7), Hk(K8), Hk(K9), Hk(K10)

Definition: Let i ∈ J1, nK, and d = dim(σi). Recall that Ki = Ki−1 ∪ {σi}.
The simplex σi is positive if there exists a cycle c ∈ Zd(Ki) that contains σi.
In other words, there exist c =

∑
σ∈Ki

(n)
εσ · σ ∈ Cn(Ki) such that εσi = 1 and

∂n(c) = 0. Otherwise, σi is negative.

Example:
σ1 ∈ K1 is positive because it is included in the cycle c = σ1 (indeed, ∂0(σ1) = 0).

σ2 ∈ K2 is positive because it is included in the cycle c = σ2 (indeed, ∂0(σ2) = 0).

σ6 ∈ K5 is negative because it is not included in a cycle Z1(K5). Indeed, C1(K5)
only contains 0 and σ5, and ∂1(σ5) = σ1 + σ2 6= 0.
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Let k ≥ 0. We will compute the homology groups of Ki incrementally:

K1 K2 K3 K4 K5 K6 K7 K8 K9 K10

Hk(K1), Hk(K2), Hk(K3), Hk(K4), Hk(K5), Hk(K6), Hk(K7), Hk(K8), Hk(K9), Hk(K10)

Definition: Let i ∈ J1, nK, and d = dim(σi). Recall that Ki = Ki−1 ∪ {σi}.
The simplex σi is positive if there exists a cycle c ∈ Zd(Ki) that contains σi.
In other words, there exist c =

∑
σ∈Ki

(n)
εσ · σ ∈ Cn(Ki) such that εσi = 1 and

∂n(c) = 0. Otherwise, σi is negative.

Example:
σ1 ∈ K1 is positive because it is included in the cycle c = σ1 (indeed, ∂0(σ1) = 0).

σ2 ∈ K2 is positive because it is included in the cycle c = σ2 (indeed, ∂0(σ2) = 0).

σ6 ∈ K5 is negative because it is not included in a cycle Z1(K5). Indeed, C1(K5)
only contains 0 and σ5, and ∂1(σ5) = σ1 + σ2 6= 0.

σ8 ∈ K8 is positive because it is included in the cycle c = σ5 + σ6 + σ7 + σ8

(indeed, ∂1(c) = 2σ1 + 2σ2 + 2σ3 + 2σ4 = 0).
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Definition: Let i ∈ J1, nK, and d = dim(σi). Recall that Ki = Ki−1 ∪ {σi}.
The simplex σi is positive if there exists a cycle c ∈ Zd(Ki) that contains σi.
Otherwise, σi is negative.

Remark: By adding σi in the simplicial complex, the only groups that may change are
Zd(K

i) and Bd−1(Ki).
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Definition: Let i ∈ J1, nK, and d = dim(σi). Recall that Ki = Ki−1 ∪ {σi}.
The simplex σi is positive if there exists a cycle c ∈ Zd(Ki) that contains σi.
Otherwise, σi is negative.

Lemma: If σi is positive, then βd(K
i) = βd(K

i−1) + 1,
and for all d′ 6= d, βd′(K

i) = βd′(K
i−1).

Proof: We start by proving the following fact: if c ∈ Zd(Ki) is a cycle that contains σi,
then c is not homologous (in Ki) to a cycle of c′ ∈ Zd(Ki−1).

By contradiction: if c = c′ + b with c′ ∈ Zd(Ki−1) and b ∈ Bd(Ki), then
c− c′ = b ∈ Bd(Ki). This is absurd because we just added σi: it cannot appear in a
boundary of Ki.

As a consequence, dimZd(K
i) = dimZd(K

i−1) + 1.

We conclude by using the relation βd(K
i) = dimZd(K

i)− dimBd(K
i).

Remark: By adding σi in the simplicial complex, the only groups that may change are
Zd(K

i) and Bd−1(Ki).
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Definition: Let i ∈ J1, nK, and d = dim(σi). Recall that Ki = Ki−1 ∪ {σi}.
The simplex σi is positive if there exists a cycle c ∈ Zd(Ki) that contains σi.
Otherwise, σi is negative.

Remark: By adding σi in the simplicial complex, the only groups that may change are
Zd(K

i) and Bd−1(Ki).

Lemma: If σi is negative, then βd−1(Ki) = βd−1(Ki−1)− 1,
and for all d′ 6= d− 1, βd′(K

i) = βd′(K
i−1).

Proof: We start by proving the following fact: ∂d(σ
i) is not a boundary of Ki−1.

Otherwise, we would have ∂d(σ
i) = ∂d(c) with c ∈ Cd(Ki−1), i.e. ∂d(σ

i + c) = 0.
Hence σi + c would be a cycle of Ki that contains c, contradicting the negativity of σi.

As a consequence, dimBd−1(Ki) = dimBd−1(Ki−1) + 1.

We conclude by using the relation βd−1(Ki) = dimZd−1(Ki)− dimBd−1(Ki).

Lemma: If σi is positive, then βd(K
i) = βd(K

i−1) + 1,
and for all d′ 6= d, βd′(K

i) = βd′(K
i−1).
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We deduce the following algorithm:

Lemma: If σi is positive, then βd(K
i) = βd(K

i−1) + 1,
and for all d′ 6= d, βd′(K

i) = βd′(K
i−1).

Lemma: If σi is negative, then βd−1(Ki) = βd−1(Ki−1)− 1,
and for all d′ 6= d− 1, βd′(K

i) = βd′(K
i−1).
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We deduce the following algorithm:

K1 K2 K3 K4 K5 K6 K7 K8 K9 K10

Positivity

β0(Ki)

β1(Ki)

0 0 0 0 1 11 1 1 2

1 2 3 4 1 13 2 1 1

Dimension

0 0 0 0 1 20 0 0 1

+ + + + + +− − − −
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Proposition: The Euler characteristic is also equal to

χ(K) =
∑

0≤i≤n

(−1)i · βi(K).

Reminder: the Euler characteristic of a simplicial complex K is

χ(K) =
∑

0≤i≤n

(−1)i · (number of simplices of dimension i).



17/44 (2/2)Caracteŕıstica de Euler

Proof: Pick an ordering K1 ⊂ · · · ⊂ Kn = K of K, with Ki = Ki−1 ∪ {σi} for all
2 ≤ i ≤ n.

By induction, let us show that, for all 1 ≤ m ≤ n,∑
0≤i≤m

(−1)i · βi(Km) =
∑

0≤i≤m

(−1)i · (number of simplices of dimension i of Km).

Proposition: The Euler characteristic of K is equal to

χ(K) =
∑

0≤i≤n

(−1)i · βi(K).

For m = 1, σm is a 0-simplex, and the equality reads 1 = 1.

Now, suppose that the equality is true for 1 ≤ m < n, and consider the simplex σm+1.
Let d = dimσm+1. The right-hand side of the Equation is increased by (−1)d.

If σm+1 is positive, then βd(K
m+1) = βd(K

m) + 1, hence the left-hand side of the
Equation is increased by (−1)d.

Otherwise, it is negative, and βd−1(Km+1) = βd−1(Km)− 1, hence the left-hand side
of the Equation is increased by −(−1)d−1 = (−1)d.
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σ1 σ2

σ3σ4

σ8

σ5

σ6

σ7

σ9

σ10



0 0 0 0 1 0 0 1 0 0
0 0 0 0 1 1 0 0 1 0
0 0 0 0 0 1 1 0 0 0
0 0 0 0 0 0 1 1 1 0
0 0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0 0 0



σ1 σ2 σ3 σ4 σ5 σ6 σ7 σ8 σ9 σ10

σ1

σ2

σ3

σ4

σ5

σ6

σ7

σ8

σ9

σ10

σ1 σ2 σ3 σ4 σ5 σ6 σ7 σ8 σ9 σ10

The only thing missing to apply the incremental algorithm is to determine whether a
simplex is positive or negative.

Let K be a simplicial complex, and σ1 < σ2 < · · · < σn and ordering of its simplices.

Define the boundary matrix of K, denoted ∆, as follows: ∆ is a n× n matrix, whose
(i, j)-entry (ith row, jth column is)

∆i,j = 1 if σi is a face of σj and |σi| = |σj | − 1

0 else.
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By adding columns one to the others, we create chains.
If we were able to reduce a column to zero, then we found a cycle.



0 0 0 0 1 0 0 1 0 0
0 0 0 0 1 1 0 0 1 0
0 0 0 0 0 1 1 0 0 0
0 0 0 0 0 0 1 1 1 0
0 0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0 0 0



σ1 σ2 σ3 σ4 σ5 σ6 σ7 σ8 σ9 σ10

σ1

σ2

σ3

σ4

σ5

σ6

σ7

σ8

σ9

σ10

∂1(σ6) = σ2 + σ3



0 0 0 0 1 0 0 0 0 0
0 0 0 0 1 1 0 0 1 0
0 0 0 0 0 1 1 0 0 0
0 0 0 0 0 0 1 0 1 0
0 0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0 0 0



σ1 σ2 σ3 σ4 σ5 σ6 σ7 σ8 σ9 σ10

σ1

σ2

σ3

σ4

σ5

σ6

σ7

σ8

σ9

σ10

∂1(σ5 + σ6 + σ7 + σ8) = 0

σ
5 +

σ
6 +

σ
7 +

σ
8
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The process of reducing columns to zero is called Gauss reduction.
For any j ∈ J1, nK, define

If ∆i,j = 0 for all j, then δ(j) is undefined.

We say that the boundary matrix ∆ is reduced if the map δ is injective on its domain of
definition.



0 0 0 0 1 0 0 0 0 0
0 0 0 0 1 1 0 0 0 0
0 0 0 0 0 1 1 0 0 0
0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0 0 0



σ1 σ2 σ3 σ4 σ5 σ6 σ7 σ8 σ9 σ10

σ1

σ2

σ3

σ4

σ5

σ6

σ7

σ8

σ9

σ10

σ
9 +

σ
6 +

σ
7

σ
5 +

σ
6 +

σ
7 +

σ
8

δ(j) = max{i ∈ J1, nK | ∆i,j 6= 0}.
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

0 0 0 0 1 0 0 1 0 0
0 0 0 0 1 1 0 0 1 0
0 0 0 0 0 1 1 0 0 0
0 0 0 0 0 0 1 1 1 0
0 0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0 0 0



σ1 σ2 σ3 σ4 σ5 σ6 σ7 σ8 σ9 σ10

σ1

σ2

σ3

σ4

σ5

σ6

σ7

σ8

σ9

σ10



0 0 0 0 1 0 0 1 0 0
0 0 0 0 1 1 0 0 1 0
0 0 0 0 0 1 1 1 0 0
0 0 0 0 0 0 1 0 1 0
0 0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0 0 0



σ1 σ2 σ3 σ4 σ5 σ6 σ7 σ8 σ9 σ10

σ1

σ2

σ3

σ4

σ5

σ6

σ7

σ8

σ9

σ10

σ
8 +

σ
7

j
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j



0 0 0 0 1 0 0 1 0 0
0 0 0 0 1 1 0 1 1 0
0 0 0 0 0 1 1 0 0 0
0 0 0 0 0 0 1 0 1 0
0 0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0 0 0



σ1 σ2 σ3 σ4 σ5 σ6 σ7 σ8 σ9 σ10

σ1

σ2

σ3

σ4

σ5

σ6

σ7

σ8

σ9

σ10

σ
8 +

σ
7 +

σ
6



0 0 0 0 1 0 0 1 0 0
0 0 0 0 1 1 0 0 1 0
0 0 0 0 0 1 1 1 0 0
0 0 0 0 0 0 1 0 1 0
0 0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0 0 0



σ1 σ2 σ3 σ4 σ5 σ6 σ7 σ8 σ9 σ10

σ1

σ2

σ3

σ4

σ5

σ6

σ7

σ8

σ9

σ10

σ
8 +

σ
7
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j



0 0 0 0 1 0 0 0 0 0
0 0 0 0 1 1 0 0 1 0
0 0 0 0 0 1 1 0 0 0
0 0 0 0 0 0 1 0 1 0
0 0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0 0 0



σ1 σ2 σ3 σ4 σ5 σ6 σ7 σ8 σ9 σ10

σ1

σ2

σ3

σ4

σ5

σ6

σ7

σ8

σ9

σ10

σ
8 +

σ
7 +

σ
6 +

σ
5



0 0 0 0 1 0 0 1 0 0
0 0 0 0 1 1 0 1 1 0
0 0 0 0 0 1 1 0 0 0
0 0 0 0 0 0 1 0 1 0
0 0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0 0 0



σ1 σ2 σ3 σ4 σ5 σ6 σ7 σ8 σ9 σ10

σ1

σ2

σ3

σ4

σ5

σ6

σ7

σ8

σ9

σ10

σ
8 +

σ
7 +

σ
6
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j



0 0 0 0 1 0 0 0 0 0
0 0 0 0 1 1 0 0 1 0
0 0 0 0 0 1 1 0 0 0
0 0 0 0 0 0 1 0 1 0
0 0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0 0 0



σ1 σ2 σ3 σ4 σ5 σ6 σ7 σ8 σ9 σ10

σ1

σ2

σ3

σ4

σ5

σ6

σ7

σ8

σ9

σ10

σ
8 +

σ
7 +

σ
6 +

σ
5



0 0 0 0 1 0 0 0 0 0
0 0 0 0 1 1 0 0 0 0
0 0 0 0 0 1 1 0 0 0
0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0 0 0



σ1 σ2 σ3 σ4 σ5 σ6 σ7 σ8 σ9 σ10

σ1

σ2

σ3

σ4

σ5

σ6

σ7

σ8

σ9

σ10

σ
9 +

σ
6 +

σ
7

σ
5 +

σ
6 +

σ
7 +

σ
8
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Lemma: Suppose that the boundary
matrix is reduced. Let j ∈ J1, nK.
If δ(j) is defined, then the simplex σj is
negative.
Otherwise, it is positive.



0 0 0 0 1 0 0 0 0 0
0 0 0 0 1 1 0 0 0 0
0 0 0 0 0 1 1 0 0 0
0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0 0 0



σ1 σ2 σ3 σ4 σ5 σ6 σ7 σ8 σ9 σ10

σ1

σ2

σ3

σ4

σ5

σ6

σ7

σ8

σ9

σ10

σ
9 +

σ
6 +

σ
7

σ
5 +

σ
6 +

σ
7 +

σ
8

σ1 σ2 σ3 σ4 σ5 σ6 σ7 σ8 σ9 σ10

+ + + + − − − + + −

j



19/44Algoritmo final

j

Incremental computation of the homology

Gauss reduction of the boundary matrix
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I - Simplicial homology

1 - Reminder of algebra

2 - Homological algebra

3 - Incremental algorithm

II - More about homology
1 - Topology of simplicial complexes

2 - Singular homology

III - Homological inference
1 - Thickening parameter selection

2 - Čech complex

3 - Functoriality

3 - Rips complex
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In order to describe topological spaces, we will decompose them into simpler pieces.
The pieces we shall consider are the standard simplices.

The standard simplex of dimension n is the following subset of Rn+1

∆n = {x = (x1, ..., xn+1) ∈ Rn+1 | x1, ..., xn+1 ≥ 0 and x1 + ...+ xn+1 = 1}

∆0 ∆1 ∆2
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In order to describe topological spaces, we will decompose them into simpler pieces.
The pieces we shall consider are the standard simplices.

The standard simplex of dimension n is the following subset of Rn+1

∆n = {x = (x1, ..., xn+1) ∈ Rn+1 | x1, ..., xn+1 ≥ 0 and x1 + ...+ xn+1 = 1}

∆0 ∆1 ∆2

Remark: For any collection of points a1, ..., ak ∈ Rn, their convex hull is defined as:

conv({a1...ak}) =
{∑

1≤i≤k tiai | t1 + ...+ tk = 1, t1, ..., tk ≥ 0
}
.

We can say that ∆n is the convex hull of the vectors e1, ..., en+1 of Rn+1, where

ei = (0, ..., 1, 0, ..., 0) (ith coordinate 1, the other ones 0).
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Let us give simplicial complexes a topology.

Definition: Let K be a simplicial complex, with vertex V = {1, ..., n}.
In Rn, consider, for every i ∈ J1, nK, the vector ei = (0, ..., 1, 0, ..., 0) (ith coordinate 1,
the other ones 0).
Let |K| be the subset of Rn defined as:

|K| =
⋃
σ∈K

conv ({ej , j ∈ σ})

where conv represent the convex hull of points.
Endowed with the subspace topology, (|K| , T||K|) is a topological space, that we call
the topological realization of K.

If a1, ..., ak ∈ Rn, the convex hull is defined as:

conv({a1...ak}) =
{∑

1≤i≤k tiai | t1 + ...+ tk = 1, t1, ..., tk ≥ 0
}
.



22/44 (2/2)Realização topológica

Let us give simplicial complexes a topology.

Definition: Let K be a simplicial complex, with vertex V = {1, ..., n}.
In Rn, consider, for every i ∈ J1, nK, the vector ei = (0, ..., 1, 0, ..., 0) (ith coordinate 1,
the other ones 0).
Let |K| be the subset of Rn defined as:

|K| =
⋃
σ∈K

conv ({ej , j ∈ σ})

where conv represent the convex hull of points.
Endowed with the subspace topology, (|K| , T||K|) is a topological space, that we call
the topological realization of K.

Remark: If the simplicial complex can be drawn in the plane (or space) without crossing
itself, then its topological realization simply is the subspace topology.

Example: K = {[0], [1], [2], [3], [0, 1], [1, 2], [2, 0], [1, 3], [2, 3], [0, 1, 2]}.

0
1

2

3
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Definition: Let X be a topological space. A triangulation of X is a simplicial complex
K such that its topological realization |K| is homeomorphic to X.

Example: The following simplicial complex is a triangulation of the circle:

K = {[0], [1], [2], [0, 1], [1, 2], [2, 0]}

0

1
2

Example: The following simplicial complex is a triangulation of the sphere:

K = {[0], [1], [2], [3], [0, 1], [1, 2], [2, 3], [3, 0], [0, 2], [1, 3], [0, 1, 2], [0, 1, 3], [0, 2, 3], [1, 2, 3]}.

0

1
2

0

1
2

3
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Definition: Let X be a topological space. A triangulation of X is a simplicial complex
K such that its topological realization |K| is homeomorphic to X.

Given a topological space, it is not always possible to triangulate it.
However, when it is, there exists many different triangulations.

Theorem (Manolescu, 2016): For any dimension n ≥ 5 there is a compact topological
manifold which does not admit a triangulation.
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I - Simplicial homology

1 - Reminder of algebra

2 - Homological algebra

3 - Incremental algorithm

II - More about homology
1 - Topology of simplicial complexes

2 - Singular homology

III - Homological inference
1 - Thickening parameter selection

2 - Čech complex

3 - Functoriality

3 - Rips complex
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Let us consider a topological space X. We want a notion of simplices.



25/44 (2/3)Simplexo singular

Let us consider a topological space X. We want a notion of simplices.

∆0

∆1

∆2

Definition: A singular n-simplex is a continuous map ∆n → X, where ∆n is the
standard n-simplex. We denote Sn their set.

We now want a notion of boundary.



25/44 (3/3)Simplexo singular

Let us consider a topological space X. We want a notion of simplices.

∆0

∆1

∆2

Definition: A singular n-simplex is a continuous map ∆n → X, where ∆n is the
standard n-simplex. We denote Sn their set.

The boundary of ∆n consists in n+ 1 copies of ∆n−1.

We can restrict a singular n-simplex ∆n → X to the boundaries, giving n+ 1 singular
(n− 1)-simplices ∆n−1 → X.

Definition: The boundary of a singular n-simplex ∆n → X is the formal sum of the
n+ 1 singular (n− 1)-simplices ∆n−1 → X

We now want a notion of boundary.



26/44 (1/4)Homologia singular

For a simplicial complex K, we have defined

. . .
∂n+2

−−−−−→Cn+1(K)
∂n+1

−−−−−→Cn(K)
∂n

−−−−−→Cn−1(K)
∂n−1

−−−−−→ . . .

Zn(K) = Ker(∂n) Bn(K) = Im(∂n+1)

Hn(K) = Zn(K)/Bn(K)

chain complex

n-cycles and n-boundaries

nthsimplicial homology group

n-chains
∑
σ∈K(n)

εσ · σ where ∀σ ∈ K(n), εσ ∈ Z/2Z

boundary operator ∂nσ =
∑

τ⊂σ
|τ |=|σ|−1

τ
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For a simplicial complex K, we have defined

. . .
∂n+2

−−−−−→Cn+1(K)
∂n+1

−−−−−→Cn(K)
∂n

−−−−−→Cn−1(K)
∂n−1

−−−−−→ . . .

Zn(K) = Ker(∂n) Bn(K) = Im(∂n+1)

Hn(K) = Zn(K)/Bn(K)

chain complex

n-cycles and n-boundaries

nthsimplicial homology group

n-chains
∑
σ∈K(n)

εσ · σ where ∀σ ∈ K(n), εσ ∈ Z/2Z

boundary operator ∂nσ =
∑

τ⊂σ
|τ |=|σ|−1

τ

For a topological space X, we can define

. . .
∂n+2

−−−−−→Cn+1(X)
∂n+1

−−−−−→Cn(X)
∂n

−−−−−→Cn−1(X)
∂n−1

−−−−−→ . . .

Zn(X) = Ker(∂n) Bn(X) = Im(∂n+1)

Hn(X) = Zn(X)/Bn(X)

chain complex

n-cycles and n-boundaries

nthsingular homology group

n-chains
∑
σ∈Sn

εσ · σ where ∀σ ∈ Sn, εσ ∈ Z/2Z

boundary operator ∂nσ =
∑

τ⊂σ
|τ |=|σ|−1

τ



26/44 (3/4)Homologia singular

Theorem: If X is a topological space and K a triangulation of it, then for all n ≥ 0,
Hn(X) = Hn(K).

H0(X) = Z/2Z
H1(X) = Z/2Z
H2(X) = 0

H0(K) = Z/2Z
H1(K) = Z/2Z
H2(X) = 0



26/44 (4/4)Homologia singular

Theorem: If X is a topological space and K a triangulation of it, then for all n ≥ 0,
Hn(X) = Hn(K).

H0(X) = Z/2Z
H1(X) = Z/2Z
H2(X) = 0

H0(K) = Z/2Z
H1(K) = Z/2Z
H2(X) = 0

Theorem: If X and Y are homotopy equivalent topological spaces, then for all n ≥ 0,
Hn(X) = Hn(Y ).

Corollary: If K and L are homotopy equivalent simplicial complexes, then for all n ≥ 0,
Hn(K) = Hn(L).

the homology groups are invariants of homotopy classes
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28/44Homologia é um functor

We have seen that homology transforms topological spaces into vector spaces

Hi : Top −→ Vect

X 7−→ Hi(X)

Actually, it also transforms continous maps into linear maps

X Y
f

Hn(X) Hn(Y )
Hn(f)

This operation preserves commutative diagrams:

X Y Z,

g◦f

f g Hn(X) Hn(Y ) Hn(Z).

Hn(g◦f)

Hn(f) Hn(g)

Hn(g ◦ f) = Hn(g) ◦Hn(f)



29/44Aplicação - na teoria

Application (Brouwer’s fixed point theorem):

Let f : B → B be a continous map, where B is the unit closed ball of Rn. Let us show
that f has a fixed point (f(x) = x).

If not, we can define a map F : B → ∂B such that F restricted to ∂B is the identity.
To do so, define F (x) as the first intersection between the half-line [x, f(x)) and ∂B.

But for i = n− 1, we have an absurdity:

Denote the inclusion i : ∂B → B. Then F ◦ i : ∂B → ∂B is the identity.
By functoriality, we have commutative diagrams

x

f(x) F (x)

∂B B ∂B,

id

i F Hi(∂B) Hi(B) Hi(∂B).

Hi(id)

Hi(i) Hi(F )

Z/2Z 0 Z/2Z.

id
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31/44 (1/13)O problema da inferência homológica

X M

Let M⊂ Rn be a bounded subset.
Suppose that we are given a finite sample X ⊂M.

Estimate the homology groups of M from X.
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X M

Let M⊂ Rn be a bounded subset.
Suppose that we are given a finite sample X ⊂M.

Estimate the homology groups of M from X.

We cannot use X directly.

β0(X) = 30 and βi(X) for i ≥ 1

number of connected components

= number of points of X

Its homology is disapointing:
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X M

Let M⊂ Rn be a bounded subset.
Suppose that we are given a finite sample X ⊂M.

Estimate the homology groups of M from X.

We cannot use X directly.

Idea: Thicken X.

Definition: For every t ≥ 0, the t-thickening of the set X, denoted Xt, is the set of
points of the ambient space with distance at most t from X:

Xt = {y ∈ Rn | ∃x ∈ X, ‖x− y‖ ≤ t} .
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M

Let M⊂ Rn be a bounded subset.
Suppose that we are given a finite sample X ⊂M.

Estimate the homology groups of M from X.

We cannot use X directly.

Idea: Thicken X.

Definition: For every t ≥ 0, the t-thickening of the set X, denoted Xt, is the set of
points of the ambient space with distance at most t from X:

Xt = {y ∈ Rn | ∃x ∈ X, ‖x− y‖ ≤ t} .

X0.05
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M

Let M⊂ Rn be a bounded subset.
Suppose that we are given a finite sample X ⊂M.

Estimate the homology groups of M from X.

We cannot use X directly.

Idea: Thicken X.

Definition: For every t ≥ 0, the t-thickening of the set X, denoted Xt, is the set of
points of the ambient space with distance at most t from X:

Xt = {y ∈ Rn | ∃x ∈ X, ‖x− y‖ ≤ t} .

X0.1
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M

Let M⊂ Rn be a bounded subset.
Suppose that we are given a finite sample X ⊂M.

Estimate the homology groups of M from X.

We cannot use X directly.

Idea: Thicken X.

Definition: For every t ≥ 0, the t-thickening of the set X, denoted Xt, is the set of
points of the ambient space with distance at most t from X:

Xt = {y ∈ Rn | ∃x ∈ X, ‖x− y‖ ≤ t} .

X0.2
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M

Let M⊂ Rn be a bounded subset.
Suppose that we are given a finite sample X ⊂M.

Estimate the homology groups of M from X.

We cannot use X directly.

Idea: Thicken X.

Definition: For every t ≥ 0, the t-thickening of the set X, denoted Xt, is the set of
points of the ambient space with distance at most t from X:

Xt = {y ∈ Rn | ∃x ∈ X, ‖x− y‖ ≤ t} .

X0.3
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M

Let M⊂ Rn be a bounded subset.
Suppose that we are given a finite sample X ⊂M.

Estimate the homology groups of M from X.

We cannot use X directly.

Idea: Thicken X.

Definition: For every t ≥ 0, the t-thickening of the set X, denoted Xt, is the set of
points of the ambient space with distance at most t from X:

Xt = {y ∈ Rn | ∃x ∈ X, ‖x− y‖ ≤ t} .

X0.4
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M

Let M⊂ Rn be a bounded subset.
Suppose that we are given a finite sample X ⊂M.

Estimate the homology groups of M from X.

We cannot use X directly.

Idea: Thicken X.

Definition: For every t ≥ 0, the t-thickening of the set X, denoted Xt, is the set of
points of the ambient space with distance at most t from X:

Xt = {y ∈ Rn | ∃x ∈ X, ‖x− y‖ ≤ t} .

X0.5
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M

Let M⊂ Rn be a bounded subset.
Suppose that we are given a finite sample X ⊂M.

Estimate the homology groups of M from X.

We cannot use X directly.

Idea: Thicken X.

Definition: For every t ≥ 0, the t-thickening of the set X, denoted Xt, is the set of
points of the ambient space with distance at most t from X:

Xt = {y ∈ Rn | ∃x ∈ X, ‖x− y‖ ≤ t} .

X0.9
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Some thickenings are homotopy equivalent to M.

X0.3 X0.4 X0.5

≈ ≈ ≈

M

Hence we can recover the homology of M:

β0(M) = β0(X0.3)
β1(M) = β1(X0.3)
β2(M) = β2(X0.3)

...
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Some thickenings are homotopy equivalent to M.

X0.3 X0.4 X0.5

≈ ≈ ≈

M

Hence we can recover the homology of M:

Question 1: How to select a t such that Xt ≈M?

Question 2: How to compute the homology groups of Xt?

β0(M) = β0(X0.3)
β1(M) = β1(X0.3)
β2(M) = β2(X0.3)

...



31/44 (13/13)O problema da inferência homológica

Some thickenings are homotopy equivalent to M.

X0.3 X0.4 X0.5

≈ ≈ ≈

M

Hence we can recover the homology of M:

Question 1: How to select a t such that Xt ≈M?

Question 2: How to compute the homology groups of Xt?

β0(M) = β0(X0.3)
β1(M) = β1(X0.3)
β2(M) = β2(X0.3)

...
Hausdorff distance

Reach
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33/44 (1/3)Distância de Hausdorff

Let X be any subset of Rn. The function distance to X is the map

dist (·, X) : Rn −→ R
y 7−→ dist (y,X) = inf{‖y − x‖ , x ∈ X}

A projection of y ∈ Rn on X is a point x ∈ X which attains this infimum.



33/44 (2/3)Distância de Hausdorff

Let X be any subset of Rn. The function distance to X is the map

dist (·, X) : Rn −→ R
y 7−→ dist (y,X) = inf{‖y − x‖ , x ∈ X}

A projection of y ∈ Rn on X is a point x ∈ X which attains this infimum.

Definition: Let Y ⊂ Rn be another subset. The Hausdorff distance between X and Y is

dH (X,Y ) = max

{
sup
y∈Y

dist (y,X) , sup
x∈X

dist (x, Y )

}
= max

{
sup
y∈Y

inf
x∈X
‖x− y‖ , sup

x∈X
inf
y∈Y
‖x− y‖

}
.



33/44 (3/3)Distância de Hausdorff

Let X be any subset of Rn. The function distance to X is the map

dist (·, X) : Rn −→ R
y 7−→ dist (y,X) = inf{‖y − x‖ , x ∈ X}

A projection of y ∈ Rn on X is a point x ∈ X which attains this infimum.

Definition: Let Y ⊂ Rn be another subset. The Hausdorff distance between X and Y is

dH (X,Y ) = max

{
sup
y∈Y

dist (y,X) , sup
x∈X

dist (x, Y )

}
= max

{
sup
y∈Y

inf
x∈X
‖x− y‖ , sup

x∈X
inf
y∈Y
‖x− y‖

}
.

Proposition: The Hausdorff distance is equal to inf {t ≥ 0 | X ⊂ Y t and Y ⊂ Xt} .

X Y Y ⊂ X0.3 X ⊂ Y 0.3



34/44 (1/11)Medial axis e reach

The medial axis of X is the subset med (X) ⊂ Rn which consists of points y ∈ Rn
that admit at least two projections on X:

med (X) = {y ∈ Rn | ∃x, x′ ∈ X,x 6= x′, ‖y − x‖ = ‖y − x′‖ = dist (y,X)} .
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The medial axis of X is the subset med (X) ⊂ Rn which consists of points y ∈ Rn
that admit at least two projections on X:

med (X) = {y ∈ Rn | ∃x, x′ ∈ X,x 6= x′, ‖y − x‖ = ‖y − x′‖ = dist (y,X)} .

Examples:
The medial axis of the unit circle is the origin



34/44 (3/11)Medial axis e reach

The medial axis of X is the subset med (X) ⊂ Rn which consists of points y ∈ Rn
that admit at least two projections on X:

med (X) = {y ∈ Rn | ∃x, x′ ∈ X,x 6= x′, ‖y − x‖ = ‖y − x′‖ = dist (y,X)} .

Examples:
The medial axis of the unit circle is the origin

The medial axis of an ellipse is a segment



34/44 (4/11)Medial axis e reach

The medial axis of X is the subset med (X) ⊂ Rn which consists of points y ∈ Rn
that admit at least two projections on X:

med (X) = {y ∈ Rn | ∃x, x′ ∈ X,x 6= x′, ‖y − x‖ = ‖y − x′‖ = dist (y,X)} .

Examples:
The medial axis of the unit circle is the origin

The medial axis of an ellipse is a segment

The medial axis of a point is the empty set



34/44 (5/11)Medial axis e reach

The medial axis of X is the subset med (X) ⊂ Rn which consists of points y ∈ Rn
that admit at least two projections on X:

med (X) = {y ∈ Rn | ∃x, x′ ∈ X,x 6= x′, ‖y − x‖ = ‖y − x′‖ = dist (y,X)} .

Examples:
The medial axis of the unit circle is the origin

The medial axis of an ellipse is a segment

The medial axis of a point is the empty set

The medial axis of two points is their bisector



34/44 (6/11)Medial axis e reach

The medial axis of X is the subset med (X) ⊂ Rn which consists of points y ∈ Rn
that admit at least two projections on X:

med (X) = {y ∈ Rn | ∃x, x′ ∈ X,x 6= x′, ‖y − x‖ = ‖y − x′‖ = dist (y,X)} .

The reach of X is

reach (X) = inf {dist (y,X) | y ∈ med (X)}
= inf {‖x− y‖ | x ∈ X, y ∈ med (X)} .



34/44 (7/11)Medial axis e reach

The medial axis of X is the subset med (X) ⊂ Rn which consists of points y ∈ Rn
that admit at least two projections on X:

med (X) = {y ∈ Rn | ∃x, x′ ∈ X,x 6= x′, ‖y − x‖ = ‖y − x′‖ = dist (y,X)} .

The reach of X is

reach (X) = inf {dist (y,X) | y ∈ med (X)}
= inf {‖x− y‖ | x ∈ X, y ∈ med (X)} .



34/44 (8/11)Medial axis e reach

The medial axis of X is the subset med (X) ⊂ Rn which consists of points y ∈ Rn
that admit at least two projections on X:

med (X) = {y ∈ Rn | ∃x, x′ ∈ X,x 6= x′, ‖y − x‖ = ‖y − x′‖ = dist (y,X)} .

The reach of X is

reach (X) = inf {dist (y,X) | y ∈ med (X)}
= inf {‖x− y‖ | x ∈ X, y ∈ med (X)} .

Proposition: For every t ∈ [0, reach (X)), the spaces X and Xt are homotopy
equivalent.
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The medial axis of X is the subset med (X) ⊂ Rn which consists of points y ∈ Rn
that admit at least two projections on X:

med (X) = {y ∈ Rn | ∃x, x′ ∈ X,x 6= x′, ‖y − x‖ = ‖y − x′‖ = dist (y,X)} .

The reach of X is

reach (X) = inf {dist (y,X) | y ∈ med (X)}
= inf {‖x− y‖ | x ∈ X, y ∈ med (X)} .

Proposition: For every t ∈ [0, reach (X)), the spaces X and Xt are homotopy
equivalent.



34/44 (10/11)Medial axis e reach

The medial axis of X is the subset med (X) ⊂ Rn which consists of points y ∈ Rn
that admit at least two projections on X:

med (X) = {y ∈ Rn | ∃x, x′ ∈ X,x 6= x′, ‖y − x‖ = ‖y − x′‖ = dist (y,X)} .

The reach of X is

reach (X) = inf {dist (y,X) | y ∈ med (X)}
= inf {‖x− y‖ | x ∈ X, y ∈ med (X)} .

Proposition: For every t ∈ [0, reach (X)), the spaces X and Xt are homotopy
equivalent.

If t ≥ reach (X), the sets X and Xt may not be homotopy equivalent.
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Proposition: For every t ∈ [0, reach (X)), the spaces X and Xt are homotopy
equivalent.

Proof: For every t ∈ [0, reach (X)), the thickening Xt deform retracts onto X. A
homotopy is given by the following map:

Xt × [0, 1] −→ Xt

(x, t) 7−→ (1− t)x+ t · proj (x,X) .

Indeed, the projection proj (x,X) is well defined (it is unique).



35/44 (1/2)Seleção do parâmetro t

Remember Question 1: How to select a t such that Xt ≈M?

Theorem (Frédéric Chazal, David Cohen-Steiner, and André Lieutier, 2009):
Let X and M be subsets of Rn. Suppose that M has positive reach, and that
dH (X,M) ≤ 1

17 reach (M).
Then Xt and M are homotopic equivalent, provided that

t ∈ [4dH (X,M) , reach (M)− 3dH (X,M)) .

X0.3

≈
M
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Remember Question 1: How to select a t such that Xt ≈M?

Theorem (Frédéric Chazal, David Cohen-Steiner, and André Lieutier, 2009):
Let X and M be subsets of Rn. Suppose that M has positive reach, and that
dH (X,M) ≤ 1

17 reach (M).
Then Xt and M are homotopic equivalent, provided that

t ∈ [4dH (X,M) , reach (M)− 3dH (X,M)) .

Theorem (Partha Niyogi, Stephen Smale, and Shmuel Weinberger, 2008):
Let X and M be subsets of Rn, with M a submanifold, and X a finite subset of M.
Suppose that M has positive reach.
Then Xt and M are homotopic equivalent, provided that

t ∈

[
2dH (X,M) ,

√
3

5
reach (M)

)
.

X0.3

≈
M
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37/44 (1/2)Triangulações (fracas)

Let us consider Question 2: How to compute the homology groups of Xt?

We must a triangulation of Xt, that is: a simplicial complex K homeomorphic to X.

Actually, we will define something weaker: a simplicial complex K that is homotopy
equivalent to X.



37/44 (2/2)Triangulações (fracas)

Let us consider Question 2: How to compute the homology groups of Xt?

We must a triangulation of Xt, that is: a simplicial complex K homeomorphic to X.

Actually, we will define something weaker: a simplicial complex K that is homotopy
equivalent to X.

weak triangulation

Either case, we will have βi(X) = βi(K) for all i ≥ 0.



38/44 (1/12)Nervos

Definition: Let X be a topological space, and U = {Ui}1≤i≤N a cover of X, that is, a
collection of subsets Ui ⊂ X such that⋃

1≤i≤N

Ui = X.

The nerve of U is the simplicial complex with vertex set {1, ..., N} and whose
m-simplices are the subsets {i1, ..., im} ⊂ {1, ..., N} such that

⋂m
k=0 Uik 6= ∅. It is

denoted N (U).

U1

U2

U3

U4
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Definition: Let X be a topological space, and U = {Ui}1≤i≤N a cover of X, that is, a
collection of subsets Ui ⊂ X such that⋃

1≤i≤N

Ui = X.

The nerve of U is the simplicial complex with vertex set {1, ..., N} and whose
m-simplices are the subsets {i1, ..., im} ⊂ {1, ..., N} such that

⋂m
k=0 Uik 6= ∅. It is

denoted N (U).
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U4
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2

3
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Definition: Let X be a topological space, and U = {Ui}1≤i≤N a cover of X, that is, a
collection of subsets Ui ⊂ X such that⋃

1≤i≤N

Ui = X.

The nerve of U is the simplicial complex with vertex set {1, ..., N} and whose
m-simplices are the subsets {i1, ..., im} ⊂ {1, ..., N} such that

⋂m
k=0 Uik 6= ∅. It is

denoted N (U).

U1
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U4
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Definition: Let X be a topological space, and U = {Ui}1≤i≤N a cover of X, that is, a
collection of subsets Ui ⊂ X such that⋃

1≤i≤N

Ui = X.

The nerve of U is the simplicial complex with vertex set {1, ..., N} and whose
m-simplices are the subsets {i1, ..., im} ⊂ {1, ..., N} such that

⋂m
k=0 Uik 6= ∅. It is

denoted N (U).
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Definition: Let X be a topological space, and U = {Ui}1≤i≤N a cover of X, that is, a
collection of subsets Ui ⊂ X such that⋃

1≤i≤N

Ui = X.

The nerve of U is the simplicial complex with vertex set {1, ..., N} and whose
m-simplices are the subsets {i1, ..., im} ⊂ {1, ..., N} such that

⋂m
k=0 Uik 6= ∅. It is

denoted N (U).

U1
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U3

U4
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Definition: Let X be a topological space, and U = {Ui}1≤i≤N a cover of X, that is, a
collection of subsets Ui ⊂ X such that⋃

1≤i≤N

Ui = X.

The nerve of U is the simplicial complex with vertex set {1, ..., N} and whose
m-simplices are the subsets {i1, ..., im} ⊂ {1, ..., N} such that

⋂m
k=0 Uik 6= ∅. It is

denoted N (U).

U1

U2

U3

U4

1
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Definition: Let X be a topological space, and U = {Ui}1≤i≤N a cover of X, that is, a
collection of subsets Ui ⊂ X such that⋃

1≤i≤N

Ui = X.

The nerve of U is the simplicial complex with vertex set {1, ..., N} and whose
m-simplices are the subsets {i1, ..., im} ⊂ {1, ..., N} such that

⋂m
k=0 Uik 6= ∅. It is

denoted N (U).

U1

U2

U3

U4

1

2

3

4

N (U)



38/44 (8/12)Nervos

Definition: Let X be a topological space, and U = {Ui}1≤i≤N a cover of X, that is, a
collection of subsets Ui ⊂ X such that⋃

1≤i≤N

Ui = X.

The nerve of U is the simplicial complex with vertex set {1, ..., N} and whose
m-simplices are the subsets {i1, ..., im} ⊂ {1, ..., N} such that

⋂m
k=0 Uik 6= ∅. It is

denoted N (U).

X0.2 =
⋃
x∈X B (x, 0.2) is covered by U =

{
B (x, 0.2) | x ∈ X

}



38/44 (9/12)Nervos

Definition: Let X be a topological space, and U = {Ui}1≤i≤N a cover of X, that is, a
collection of subsets Ui ⊂ X such that⋃

1≤i≤N

Ui = X.

The nerve of U is the simplicial complex with vertex set {1, ..., N} and whose
m-simplices are the subsets {i1, ..., im} ⊂ {1, ..., N} such that

⋂m
k=0 Uik 6= ∅. It is

denoted N (U).

X0.2 =
⋃
x∈X B (x, 0.2) is covered by U =

{
B (x, 0.2) | x ∈ X

}
2-simplex

3-simplex



38/44 (10/12)Nervos

Definition: Let X be a topological space, and U = {Ui}1≤i≤N a cover of X, that is, a
collection of subsets Ui ⊂ X such that⋃

1≤i≤N

Ui = X.

The nerve of U is the simplicial complex with vertex set {1, ..., N} and whose
m-simplices are the subsets {i1, ..., im} ⊂ {1, ..., N} such that

⋂m
k=0 Uik 6= ∅. It is

denoted N (U).

X0.3 =
⋃
x∈X B (x, 0.3) is covered by U =

{
B (x, 0.3) | x ∈ X

}



38/44 (11/12)Nervos

Definition: Let X be a topological space, and U = {Ui}1≤i≤N a cover of X, that is, a
collection of subsets Ui ⊂ X such that⋃

1≤i≤N

Ui = X.

The nerve of U is the simplicial complex with vertex set {1, ..., N} and whose
m-simplices are the subsets {i1, ..., im} ⊂ {1, ..., N} such that

⋂m
k=0 Uik 6= ∅. It is

denoted N (U).

X0.3 =
⋃
x∈X B (x, 0.3) is covered by U =

{
B (x, 0.3) | x ∈ X

}

6-simplex

5-simplex

4-simplex

3-simplex



38/44 (12/12)Nervos

Definition: Let X be a topological space, and U = {Ui}1≤i≤N a cover of X, that is, a
collection of subsets Ui ⊂ X such that⋃

1≤i≤N

Ui = X.

The nerve of U is the simplicial complex with vertex set {1, ..., N} and whose
m-simplices are the subsets {i1, ..., im} ⊂ {1, ..., N} such that

⋂m
k=0 Uik 6= ∅. It is

denoted N (U).

Nerve theorem: Consider X ⊂ Rn. Suppose that each Ui are balls (or more generally,
closed and convex). Then N (U) is homotopy equivalent to X.

≈

≈

≈



39/44 (1/2)Complexo de Čech

Let X be a finite subset of Rn, and t ≥ 0. Consider the collection

Vt =
{
B (x, t) , x ∈ X

}
.

This is a cover of the thickening Xt, and each components are closed balls.
By Nerve Theorem, its nerve N (Vt) has the homotopy type of Xt.

Definition: This nerve is denoted Čech
t
(X) and is called the Čech complex of X at

time t.



39/44 (2/2)Complexo de Čech

Let X be a finite subset of Rn, and t ≥ 0. Consider the collection

Vt =
{
B (x, t) , x ∈ X

}
.

This is a cover of the thickening Xt, and each components are closed balls.
By Nerve Theorem, its nerve N (Vt) has the homotopy type of Xt.

Definition: This nerve is denoted Čech
t
(X) and is called the Čech complex of X at

time t.

The Question 2 (How to compute the homology groups of Xt?) is solved.



40/44
I - Simplicial homology

1 - Reminder of algebra

2 - Homological algebra

3 - Incremental algorithm

II - More about homology
1 - Topology of simplicial complexes

2 - Singular homology

III - Homological inference
1 - Thickening parameter selection

2 - Čech complex

3 - Functoriality

3 - Rips complex



41/44 (1/3)Computação do complexo de Čech

Let X = {x1, . . . , xN} ⊂ Rn be finite, let t ≥ 0 and consider the t-thickening

Xt =
⋃
x∈X
B (x, t) .

By definition, its nerve, Čech
t
(X), the Čech complex at time t, is a simplicial complex

on the vertices {1, . . . , N} whose simplices are the subsets {i1, ..., im} such that⋂
1≤k≤m

B (xik , t) 6= ∅.



41/44 (2/3)Computação do complexo de Čech

Let X = {x1, . . . , xN} ⊂ Rn be finite, let t ≥ 0 and consider the t-thickening

Xt =
⋃
x∈X
B (x, t) .

By definition, its nerve, Čech
t
(X), the Čech complex at time t, is a simplicial complex

on the vertices {1, . . . , N} whose simplices are the subsets {i1, ..., im} such that⋂
1≤k≤m

B (xik , t) 6= ∅.

Therefore, computing the Čech complex relies on the following geometric predicate:

Given m closed balls of Rn, do they intersect?

This problem is known as the smallest circle problem.

It can can be solved in O(m) time, where m is the number of points.



41/44 (3/3)Computação do complexo de Čech

Let X = {x1, . . . , xN} ⊂ Rn be finite, let t ≥ 0 and consider the t-thickening

Xt =
⋃
x∈X
B (x, t) .

By definition, its nerve, Čech
t
(X), the Čech complex at time t, is a simplicial complex

on the vertices {1, . . . , N} whose simplices are the subsets {i1, ..., im} such that⋂
1≤k≤m

B (xik , t) 6= ∅.

Therefore, computing the Čech complex relies on the following geometric predicate:

Given m closed balls of Rn, do they intersect?

This problem is known as the smallest circle problem.

It can can be solved in O(m) time, where m is the number of points.

in practice, we prefer a more simple version



42/44 (1/6)Complexo de clique

Let G be a graph.
We call a clique of G a set of vertices v1, ..., vm such that for every i, j ∈ J1,mK with
i 6= j, the edge [vi, vj ] belongs to G.



42/44 (2/6)Complexo de clique

Let G be a graph.
We call a clique of G a set of vertices v1, ..., vm such that for every i, j ∈ J1,mK with
i 6= j, the edge [vi, vj ] belongs to G.

2-clique



42/44 (3/6)Complexo de clique

Let G be a graph.
We call a clique of G a set of vertices v1, ..., vm such that for every i, j ∈ J1,mK with
i 6= j, the edge [vi, vj ] belongs to G.

3-clique



42/44 (4/6)Complexo de clique

Let G be a graph.
We call a clique of G a set of vertices v1, ..., vm such that for every i, j ∈ J1,mK with
i 6= j, the edge [vi, vj ] belongs to G.

4-clique



42/44 (5/6)Complexo de clique

Let G be a graph.
We call a clique of G a set of vertices v1, ..., vm such that for every i, j ∈ J1,mK with
i 6= j, the edge [vi, vj ] belongs to G.

Definition: Given a graph G, the corresponding clique complex is the simplicial
complex whose
• vertices are the vertices of G,
• simplices are the sets of vertices of the cliques of G.

3-simplex 2-simplex



42/44 (6/6)Complexo de clique

Let G be a graph.
We call a clique of G a set of vertices v1, ..., vm such that for every i, j ∈ J1,mK with
i 6= j, the edge [vi, vj ] belongs to G.

Definition: Given a graph G, the corresponding clique complex is the simplicial
complex whose
• vertices are the vertices of G,
• simplices are the sets of vertices of the cliques of G.

3-simplex 2-simplex

Observation: The clique complex of a graph is a simplicial complex.



43/44 (1/6)Complexo de Rips

Let X = {x1, . . . , xN} ⊂ Rn and t ≥ 0.

Consider the graph Gt whose vertex set is {1, . . . , N}, and whose edges are the pairs
(i, j) such that ‖xi − xj‖ ≤ 2t.

Alternatively, Gt can be seen as the 1-skeleton of the Čech complex Čech
t
(X).

2t

X Gt Xt



43/44 (2/6)Complexo de Rips

Let X = {x1, . . . , xN} ⊂ Rn and t ≥ 0.

Consider the graph Gt whose vertex set is {1, . . . , N}, and whose edges are the pairs
(i, j) such that ‖xi − xj‖ ≤ 2t.

Alternatively, Gt can be seen as the 1-skeleton of the Čech complex Čech
t
(X).

Definition: The Rips complex of X at time t is the clique complex of the graph Gt.
We denote it Ripst(X).

2t

Ripst(X)Gt

X Gt Xt



43/44 (3/6)Complexo de Rips

Let X = {x1, . . . , xN} ⊂ Rn and t ≥ 0.

Consider the graph Gt whose vertex set is {1, . . . , N}, and whose edges are the pairs
(i, j) such that ‖xi − xj‖ ≤ 2t.

Alternatively, Gt can be seen as the 1-skeleton of the Čech complex Čech
t
(X).

Definition: The Rips complex of X at time t is the clique complex of the graph Gt.
We denote it Ripst(X).

2t

Ripst(X) Čech
t
(X)Gt

X Gt Xt



43/44 (4/6)Complexo de Rips

Let X = {x1, . . . , xN} ⊂ Rn and t ≥ 0.

Consider the graph Gt whose vertex set is {1, . . . , N}, and whose edges are the pairs
(i, j) such that ‖xi − xj‖ ≤ 2t.

Alternatively, Gt can be seen as the 1-skeleton of the Čech complex Čech
t
(X).

Definition: The Rips complex of X at time t is the clique complex of the graph Gt.
We denote it Ripst(X).

2t

Ripst(X) Čech
t
(X)Gt

X Gt Xt

≈



43/44 (5/6)Complexo de Rips

Proposition: For every t ≥ 0, we have

Čech
t
(X) ⊂ Ripst(X) ⊂ Čech

2t
(X).

Ripst(X)Čech
t
(X) Čech

2t
(X)



43/44 (6/6)Complexo de Rips

Proposition: For every t ≥ 0, we have

Čech
t
(X) ⊂ Ripst(X) ⊂ Čech

2t
(X).

Proof: Let t ≥ 0. The first inclusion follows from the fact that Ripst(X) is the clique

complex of Čech
t
(X).

To prove the second one, choose a simplex σ ∈ Ripst(X). Let us prove that

ω ∈ Čech
2t

(X).

Let x ∈ σ be any vertex. Note that ∀y ∈ σ, we have ‖x− y‖ ≤ 2t by definition of the
Rips complex. Hence

x ∈
⋂
y∈σ
B (y, 2t) .

The intersection being non-empty, we deduce σ ∈ Čech
2t

(X).

Ripst(X)Čech
t
(X) Čech

2t
(X)



44/44 (1/4)Problem of the scale

Question 1: How to select a t such that Xt ≈M?

Question 2: How to compute the homology groups of Xt?

Theorem (Frédéric Chazal, David Cohen-Steiner, and André Lieutier, 2009):
Let X and M be subsets of Rn. Suppose that M has positive reach, and that
dH (X,M) ≤ 1

17 reach (M).
Then Xt and M are homotopic equivalent, provided that

t ∈ [4dH (X,M) , reach (M)− 3dH (X,M)) .

Theorem (Partha Niyogi, Stephen Smale, and Shmuel Weinberger, 2008):
Let X and M be subsets of Rn, with M a submanifold, and X a finite
subset of M. Suppose that M has positive reach.
Then Xt and M are homotopic equivalent, provided that

t ∈

[
2dH (X,M) ,

√
3

5
reach (M)

)
.

estimate t

compute the nerve

Conclusão



44/44 (2/4)Problem of the scale

Question 1: How to select a t such that Xt ≈M?

Question 2: How to compute the homology groups of Xt?

Theorem (Frédéric Chazal, David Cohen-Steiner, and André Lieutier, 2009):
Let X and M be subsets of Rn. Suppose that M has positive reach, and that
dH (X,M) ≤ 1

17 reach (M).
Then Xt and M are homotopic equivalent, provided that

t ∈ [4dH (X,M) , reach (M)− 3dH (X,M)) .

Theorem (Partha Niyogi, Stephen Smale, and Shmuel Weinberger, 2008):
Let X and M be subsets of Rn, with M a submanifold, and X a finite
subset of M. Suppose that M has positive reach.
Then Xt and M are homotopic equivalent, provided that

t ∈

[
2dH (X,M) ,

√
3

5
reach (M)

)
.

compute the nerve

these quantities are not known!

Conclusão



44/44 (3/4)Problem of the scale

Question 1: How to select a t such that Xt ≈M?

Theorem (Frédéric Chazal, David Cohen-Steiner, and André Lieutier, 2009):
Let X and M be subsets of Rn. Suppose that M has positive reach, and that
dH (X,M) ≤ 1

17 reach (M).
Then Xt and M are homotopic equivalent, provided that

t ∈ [4dH (X,M) , reach (M)− 3dH (X,M)) .

Theorem (Partha Niyogi, Stephen Smale, and Shmuel Weinberger, 2008):
Let X and M be subsets of Rn, with M a submanifold, and X a finite
subset of M. Suppose that M has positive reach.
Then Xt and M are homotopic equivalent, provided that

t ∈

[
2dH (X,M) ,

√
3

5
reach (M)

)
.

these quantities are not known!

Is this object 1- or 2-dimensional?

Conclusão



44/44 (4/4)Problem of the scale

Question 1: How to select a t such that Xt ≈M?

Theorem (Frédéric Chazal, David Cohen-Steiner, and André Lieutier, 2009):
Let X and M be subsets of Rn. Suppose that M has positive reach, and that
dH (X,M) ≤ 1

17 reach (M).
Then Xt and M are homotopic equivalent, provided that

t ∈ [4dH (X,M) , reach (M)− 3dH (X,M)) .

Theorem (Partha Niyogi, Stephen Smale, and Shmuel Weinberger, 2008):
Let X and M be subsets of Rn, with M a submanifold, and X a finite
subset of M. Suppose that M has positive reach.
Then Xt and M are homotopic equivalent, provided that

t ∈

[
2dH (X,M) ,

√
3

5
reach (M)

)
.

these quantities are not known!

Is this object 1- or 2-dimensional?

Idea (multiscale analysis): Instead of estimating a value of t, we will choose all of them.

Conclusão


