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2/37 (1/3)Aperitivo topológico — Qúımica

[Martin, Thompson, Coutsias and Watson,Topology of cyclo-octane energy landscape,
2010]

The cyclo-octane molecule C8H16 contains 24 atoms.
Each atom has 3 spatial coordinates.
Hence a conformation of a molecule can be summarized by a point in R72 (3× 24 = 72).

R72
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[Martin, Thompson, Coutsias and Watson,Topology of cyclo-octane energy landscape,
2010]

The cyclo-octane molecule C8H16 contains 24 atoms.
Each atom has 3 spatial coordinates.
Hence a conformation of a molecule can be summarized by a point in R72 (3× 24 = 72).

By considering a lot of such molecules, we obtain a point cloud in R72.

R72



2/37 (3/3)Aperitivo topológico — Qúımica

[Martin, Thompson, Coutsias and Watson,Topology of cyclo-octane energy landscape,
2010]

The authors show that this point cloud lies close to a small dimensional object: the
union of a sphere and a Klein bottle.

The cyclo-octane molecule C8H16 contains 24 atoms.
Each atom has 3 spatial coordinates.
Hence a conformation of a molecule can be summarized by a point in R72 (3× 24 = 72).

By considering a lot of such molecules, we obtain a point cloud in R72.

R72



3/37 (1/2)Aperitivo topológico — Neurofisiologia

The authors recorded spikes of grid cells from rat brains. Then, they applied
dimensionality reduction to the firing matrix.

[Richard J. Gardner et al, Toroidal topology of population activity in grid cells, 2022]



3/37 (2/2)Aperitivo topológico — Neurofisiologia

The authors recorded spikes of grid cells from rat brains. Then, they applied
dimensionality reduction to the firing matrix.

[Richard J. Gardner et al, Toroidal topology of population activity in grid cells, 2022]

By applying persistent homology, they observed the homology of a torus.



4/37 (1/2)Aperitivo topológico — Biologia

[Topology based data analysis identifies a subgroup of breast cancers with a unique
mutational profile and excellent survival, Monica Nicolau, Arnold J Levine, and Gunnar
Carlsson, Proceedings of the National Academy of Sciences, 2011]

The authors study tissues from patients infected by breast cancer. They obtain 262
genomic variables per patient.

Gathering many patients gives a cloud of points in R262.

(x1, x2, ..., x262)



4/37 (2/2)Aperitivo topológico — Biologia

[Topology based data analysis identifies a subgroup of breast cancers with a unique
mutational profile and excellent survival, Monica Nicolau, Arnold J Levine, and Gunnar
Carlsson, Proceedings of the National Academy of Sciences, 2011]

The authors study tissues from patients infected by breast cancer. They obtain 262
genomic variables per patient.

Gathering many patients gives a cloud of points in R262.

(x1, x2, ..., x262)

The result is a graph composed
of three distinct branches Discovery of a new type of breast

cancer (c-MYB+) with a 100%
survival rate and no metastases



5/37Qual é a forma dos dados?

Topological Data Analysis (TDA) allows to explore and understand the topology of
datasets.

Computational
geometry

Algebraic
topology

Data analysis & Machine
learning
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8/37 (1/3)Algumas figuras históricas

Euler (1736) Möbius (1865) Riemann (1857) Betti (1871)
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Euler (1736) Möbius (1865) Riemann (1857) Betti (1871)

Poincaré (1895)

Toute 3-variété compacte sans bord
et simplement connexe est-elle
homéomorphe à la 3-sphère ?

[Cinquième complément à l’analysis situs, 1904]
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Euler (1736) Möbius (1865) Riemann (1857) Betti (1871)

Poincaré (1895)

Toute 3-variété compacte sans bord
et simplement connexe est-elle
homéomorphe à la 3-sphère ?

[Cinquième complément à l’analysis situs, 1904]

Perelman (2002)
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10/37 (1/2)Protagonistas da topologia

In topology we study topological spaces.

Definition: a topological space is a set X endowed with a collection of open sets
{Oα | α ∈ A}, with Oα ⊂ X, such that

• ∅ and X are open sets,
• an infinite union of open sets is an open set,
• a finite intersection of open sets is an open set.

Definition: Given two topological spaces X and Y , a map f : X → Y is continuous if
for every open set O ⊂ Y , the preimage f−1(O) is an open set of X.

X Y



10/37 (2/2)Protagonistas da topologia

In topology we study topological spaces.

Definition: a topological space is a set X endowed with a collection of open sets
{Oα | α ∈ A}, with Oα ⊂ X, such that

• ∅ and X are open sets,
• an infinite union of open sets is an open set,
• a finite intersection of open sets is an open set.

Definition: Given two topological spaces X and Y , a map f : X → Y is continuous if
for every open set O ⊂ Y , the preimage f−1(O) is an open set of X.

translation in
ε-δ calculus

One can think of subsets X ⊂ Rn and Y ⊂ Rm,

X Y

and maps f : X → Y continuous in the following sense:

∀x ∈ X,∀ε > 0,∃η > 0,∀y ∈ X, ‖x− y‖ < η =⇒ ‖f(x)− f(y)‖ < ε.



11/37 (1/10)Construção de espaços topológicos

1 - We can build a topological space by seeing it as a subspace of another one.

In Rn, we can define:
• the unit sphere Sn−1 = {x ∈ Rn | ‖x‖ = 1}
• the unit cube Cn−1 = {(x1, ..., xn) ∈ Rn | max(|x1|, ..., |xn|) = 1}
• the open balls B(x, r) = {y ∈ Rn | ‖x− y‖ < r}
• the closed balls B (x, r) = {y ∈ Rn | ‖x− y‖ ≤ r}



11/37 (2/10)Construção de espaços topológicos

1 - We can build a topological space by seeing it as a subspace of another one.

Most of the time, we do not have a nice algebraic definition...

In Rn, we can define:
• the unit sphere Sn−1 = {x ∈ Rn | ‖x‖ = 1}
• the unit cube Cn−1 = {(x1, ..., xn) ∈ Rn | max(|x1|, ..., |xn|) = 1}
• the open balls B(x, r) = {y ∈ Rn | ‖x− y‖ < r}
• the closed balls B (x, r) = {y ∈ Rn | ‖x− y‖ ≤ r}



11/37 (3/10)Construção de espaços topológicos

1 - We can build a topological space by seeing it as a subspace of another one.

2 - We can build a topological space by gluing the boundaries of another one.

S1 S2 S3
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1 - We can build a topological space by seeing it as a subspace of another one.

2 - We can build a topological space by gluing the boundaries of another one.

Bonus:



11/37 (6/10)Construção de espaços topológicos

1 - We can build a topological space by seeing it as a subspace of another one.

2 - We can build a topological space by gluing the boundaries of another one.

Bonus: Projective plane RP 2



11/37 (7/10)Construção de espaços topológicos

1 - We can build a topological space by seeing it as a subspace of another one.

2 - We can build a topological space by gluing the boundaries of another one.

3 - We can build a topological space by quotienting another one.

Let us declare that x = −x
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1 - We can build a topological space by seeing it as a subspace of another one.

2 - We can build a topological space by gluing the boundaries of another one.

3 - We can build a topological space by quotienting another one.

Let us declare that x = −x

Projective plane RP 2



11/37 (9/10)Construção de espaços topológicos

1 - We can build a topological space by seeing it as a subspace of another one.

2 - We can build a topological space by gluing the boundaries of another one.

3 - We can build a topological space by quotienting another one.

How to understand all these spaces?



11/37 (10/10)Construção de espaços topológicos

1 - We can build a topological space by seeing it as a subspace of another one.

2 - We can build a topological space by gluing the boundaries of another one.

3 - We can build a topological space by quotienting another one.

How to understand all these spaces?

Compare them via homeomorphism equivalence

or homotopy equivalence
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13/37 (1/4)Homeomorfismos

Definition: Let X and Y be two topological spaces, and f : X → Y a map.
We say that f is a homeomorphism if
• f is a bijection,
• f : X → Y is continuous,
• f−1 : Y → X is continuous.

If there exist such a homeomorphism, we say that the two topological spaces are
homeomorphic.

Example: The unit circle and the unit square are homeomorphic via

f : S1 −→ C

(x1, x2) 7−→
1

max(|x1|, |x2|)
(x1, x2)

Interpretation: Homeomorphisms allow ’continuous deformations’.



13/37 (2/4)Homeomorfismos

Definition: Let X and Y be two topological spaces, and f : X → Y a map.
We say that f is a homeomorphism if
• f is a bijection,
• f : X → Y is continuous,
• f−1 : Y → X is continuous.

If there exist such a homeomorphism, we say that the two topological spaces are
homeomorphic.

Example: The unit circle and the interval [0, 1] are not homeomorphic.

Interpretation: Homeomorphisms allow ’continuous deformations’.



13/37 (3/4)Homeomorfismos

Definition: Let X and Y be two topological spaces, and f : X → Y a map.
We say that f is a homeomorphism if
• f is a bijection,
• f : X → Y is continuous,
• f−1 : Y → X is continuous.

If there exist such a homeomorphism, we say that the two topological spaces are
homeomorphic.

Interpretation: Homeomorphisms allow ’continuous deformations’.

Example (Invariance of domain): [Brouwer, 1912] If n 6= m, the Euclidean spaces Rn
and Rm are not homeomorphic.



13/37 (4/4)Homeomorfismos

Definition: Let X and Y be two topological spaces, and f : X → Y a map.
We say that f is a homeomorphism if
• f is a bijection,
• f : X → Y is continuous,
• f−1 : Y → X is continuous.

If there exist such a homeomorphism, we say that the two topological spaces are
homeomorphic.

Interpretation: Homeomorphisms allow ’continuous deformations’.

...

g = 0 g = 1 g = 2 g = 3

Example (Classification of surfaces): [Möbius, Jordan, von Dyck, Dehn and Heegaard,
Alexander, Brahana, 1863-1921] If g 6= g′, the surfaces of genus g and g′ are not
homeomorphic.



14/37 (1/5)Classes de homeomorfismo

We can gather topological spaces that are homeomorphic

the class of circles

= = = = = = ...
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the class of circles
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the class of intervals

= = = = = = ...
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= = = = = = ...
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= = = = = = ...



14/37 (4/5)Classes de homeomorfismo

We can gather topological spaces that are homeomorphic

the class of circles

= = = = = = ...

the class of intervals

= = = = = = ...

the class of crosses

= = = = = = ...

the class of spheres

= = = = = = ...



14/37 (5/5)Classes de homeomorfismo

In general, it may be complicated to determine whether two spaces are homeomorphic.

To answer this problem, we will use the notion of invariant.

=
?

R2\ Cantor set
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16/37 (1/3)Homotopias

Definition: Let X, Y be two topological spaces, and f, g : X → Y two continuous
maps. A homotopy between f and g is a map F : X × [0, 1]→ Y such that:
• x 7→ F (x, 0) is equal to f ,
• x 7→ F (x, 1) is equal to g,
• F : X × [0, 1]→ Y is continuous.

If such a homotopy exists, we say that the maps f and g are homotopic.

F (·, 0) = f F (·, 0.2) F (·, 0.5) F (·, 0.6) F (·, 1) = g

Example: Homotopy between f : R→ R and g : R→ R.



16/37 (2/3)Homotopias

Definition: Let X, Y be two topological spaces, and f, g : X → Y two continuous
maps. A homotopy between f and g is a map F : X × [0, 1]→ Y such that:
• x 7→ F (x, 0) is equal to f ,
• x 7→ F (x, 1) is equal to g,
• F : X × [0, 1]→ Y is continuous.

If such a homotopy exists, we say that the maps f and g are homotopic.

Example: The map F : (x, t) ∈ S1 × [0, 1] 7→ (cos(θ) + 2t, sin(θ) + 2t) is a homotopy
between

θ 7→ (cos(θ), sin(θ)) and θ 7→ (cos(θ) + 2, sin(θ) + 2)
f : S1 → R2 g : S1 → R2and



16/37 (3/3)Homotopias

Definition: Let X, Y be two topological spaces, and f, g : X → Y two continuous
maps. A homotopy between f and g is a map F : X × [0, 1]→ Y such that:
• x 7→ F (x, 0) is equal to f ,
• x 7→ F (x, 1) is equal to g,
• F : X × [0, 1]→ Y is continuous.

If such a homotopy exists, we say that the maps f and g are homotopic.

Example: The map F : (x, t) ∈ S1 × [0, 1] 7→ (cos(θ) + 2t, sin(θ) + 2t) is a homotopy
between

not well-defined

θ 7→ (cos(θ), sin(θ)) and θ 7→ (cos(θ) + 2, sin(θ) + 2)
f : S1 → R2 \ {0} g : S1 → R2 \ {0}

This is not true anymore if we remove the origin from the plane.

and



17/37 (1/4)Equivalência de homotopia

Defintion: Let X and Y be two topological spaces. A homotopy equivalence between
X and Y is a pair of continuous maps f : X → Y and g : Y → X such that:
• g ◦ f : X → X is homotopic to the identity map id : X → X,
• f ◦ g : Y → Y is homotopic to the identity map id : Y → Y .

If such a homotopy equivalence exists, we say that X and Y are homotopy equivalent.

f

gg ◦ f f ◦ g
X Y



17/37 (2/4)Equivalência de homotopia

Defintion: Let X and Y be two topological spaces. A homotopy equivalence between
X and Y is a pair of continuous maps f : X → Y and g : Y → X such that:
• g ◦ f : X → X is homotopic to the identity map id : X → X,
• f ◦ g : Y → Y is homotopic to the identity map id : Y → Y .

If such a homotopy equivalence exists, we say that X and Y are homotopy equivalent.

f

gg ◦ f f ◦ g
X Y

Observation: A homotopy equivalence is a weaker formulation of homeomorphism.

f

g = f−1

X

X Yg ◦ f = idX f ◦ g = idY



17/37 (3/4)Equivalência de homotopia

Defintion: Let X and Y be two topological spaces. A homotopy equivalence between
X and Y is a pair of continuous maps f : X → Y and g : Y → X such that:
• g ◦ f : X → X is homotopic to the identity map id : X → X,
• f ◦ g : Y → Y is homotopic to the identity map id : Y → Y .

If such a homotopy equivalence exists, we say that X and Y are homotopy equivalent.

f

gg ◦ f f ◦ g
X Y

Proposition: If two topological spaces are homeomorphic, then they are homotopy
equivalent.

Observation: A homotopy equivalence is a weaker formulation of homeomorphism.

X



17/37 (4/4)Equivalência de homotopia

Homotopy equivalence allows to continuously deform the space

and to retract it.

=

= =

=
=



18/37 (1/5)Classes de homotopia

Just as before, we can classify topological spaces according to this relation, and obtain
classes of homotopy equivalence:

the class of circles

= = = = = = ...

the class of points

= = = = = = ...

the class of spheres, the class of torii, the class of Klein bottles, ...



18/37 (2/5)Classes de homotopia

To answer this problem, we will use the notion of invariant.

Example: Classification, up to homotopy equivalence, of the alphabet.

A B C D E F

G H I J K L

M N O P Q R

S T U V W X

Y Z



18/37 (3/5)Classes de homotopia

To answer this problem, we will use the notion of invariant.

Example: Classification, up to homotopy equivalence, of the alphabet.

≈A

B

C

D

E F G H I J K L

M N

O P Q R

S T U V W X Y Z

≈

≈



18/37 (4/5)Classes de homotopia

Example: Find the pairs of homotopy equivalent spaces.

≈

≈

≈



18/37 (5/5)Classes de homotopia

Example: Find the pairs of homotopy equivalent spaces.

≈

≈

≈
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20/37 (1/2)Caracteŕısticas comuns

• Given a topological space X, how to recognize in which class it belongs?

• What are the common features of spaces in a same class?

connected components
Euler characteristic
Betti numbers

We gathered topological spaces into homotopy classes.

A

B
C

D

E
F
G

HI

J

K L
M

N

O
P

Q
R

S

T U

V

W

X

Y

Z



20/37 (2/2)Caracteŕısticas comuns

• Given a topological space X, how to recognize in which class it belongs?

• What are the common features of spaces in a same class?

connected components
Euler characteristic
Betti numbers

We gathered topological spaces into homotopy classes.

A

B
C

D

E
F
G

HI

J

K L
M

N

O
P

Q
R

S

T U

V

W

X

Y

Z

La Mathématique est
l’art de donner le même
nom à des choses
différentes

[Henri Poincaré, Science
et Méthode, 1908]
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22/37 (1/2)Imersibilidade

Definition: Let n ∈ N. A topological space X is embeddable in Rn if there exists a
continuous injective map X → Rn.

Example: The interval (0, 1) is embeddable in R.

The circle S1 is not.

?



22/37 (2/2)Imersibilidade

Definition: Let n ∈ N. A topological space X is embeddable in Rn if there exists a
continuous injective map X → Rn.

Example: The interval (0, 1) is embeddable in R.

The circle S1 is not.

?

Proposition: Let n ∈ N. If two spaces X and Y are homeomorphic, then either both are
embeddable in Rn, or neither.

We say that ‘being embeddable in Rn’ is an invariant of homeomorphism classes.
It can be used to show that two spaces are not homeomorphic.



23/37 (1/5)Propriedade de invariância - na teoria

Example: The cylinder and the Möbius strip are not homeomorphic.

Indeed, the cylinder can be embedded in R2.

If the strip was homeomorphic to the cylinder, then it would be also embeddable in R2.

Proposition: Let n ∈ N. If two spaces X and Y are homeomorphic, then either both are
embeddable in Rn, or neither.



23/37 (2/5)Propriedade de invariância - na teoria

Example: The cylinder and the Möbius strip are not homeomorphic.

Indeed, the cylinder can be embedded in R2.

If the strip was homeomorphic to the cylinder, then it would be also embeddable in R2.

We draw two circles on the strip, C1 and C2, that only intersect once.

Proposition: Let n ∈ N. If two spaces X and Y are homeomorphic, then either both are
embeddable in Rn, or neither.



23/37 (3/5)Propriedade de invariância - na teoria

Example: The cylinder and the Möbius strip are not homeomorphic.

Indeed, the cylinder can be embedded in R2.

If the strip was homeomorphic to the cylinder, then it would be also embeddable in R2.

We draw two circles on the strip, C1 and C2, that only intersect once.

Embedded in R2, the circles C1 and C2 only intersect once.
This is impossible by Jordan’s theorem.

Proposition: Let n ∈ N. If two spaces X and Y are homeomorphic, then either both are
embeddable in Rn, or neither.



23/37 (4/5)Propriedade de invariância - na teoria

Example: The cylinder and the Möbius strip are not homeomorphic.

Remark: The property ‘being embeddable in Rn’ is not an invariant of homotopy classes.

Indeed, the space and the cylinder are homotopy equivalent, but only one of them is
embeddable in R2.

Proposition: Let n ∈ N. If two spaces X and Y are homeomorphic, then either both are
embeddable in Rn, or neither.



23/37 (5/5)Propriedade de invariância - na teoria

Example: The cylinder and the Möbius strip are not homeomorphic.

Remark: The property ‘being embeddable in Rn’ is not an invariant of homotopy classes.

Indeed, the space and the cylinder are homotopy equivalent, but only one of them is
embeddable in R2.

They can both be retracted to their inner circle.

Proposition: Let n ∈ N. If two spaces X and Y are homeomorphic, then either both are
embeddable in Rn, or neither.



24/37Propriedade de invariância - nas aplicações

In applications, finding an embedding corresponds to the problem of dimensionality
reduction.

Illustrations from [Luis Scoccola, Jose A. Perea, Fiberwise dimensionality reduction of
topologically complex data with vector bundles, 2022]
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26/37 (1/4)Componentes conexas

Definition: A subset X ⊂ Rn is (path-) connected if for every x, y ∈ X, there exists a
continuous map f : [0, 1]→ X such that f(0) = x and f(1) = y.

connected space non-connected space



26/37 (2/4)Componentes conexas

Definition: A subset X ⊂ Rn is (path-) connected if for every x, y ∈ X, there exists a
continuous map f : [0, 1]→ X such that f(0) = x and f(1) = y.

connected space non-connected space

x
y

x

y



26/37 (3/4)Componentes conexas

Definition: A subset X ⊂ Rn is (path-) connected if for every x, y ∈ X, there exists a
continuous map f : [0, 1]→ X such that f(0) = x and f(1) = y.

connected space non-connected space

More generally, any topological space X can be partitioned into connected components.



26/37 (4/4)Componentes conexas

Definition: A subset X ⊂ Rn is (path-) connected if for every x, y ∈ X, there exists a
continuous map f : [0, 1]→ X such that f(0) = x and f(1) = y.

connected space non-connected space

More generally, any topological space X can be partitioned into connected components.

Proposition: If two spaces X and Y are homotopy equivalent, then they have the same
number of connected components.



27/37 (1/5)Propriedade de invariância - na teoria

Example: The subsets [0, 1] and [0, 1] ∪ [2, 3] of R are not homeomorphic, neither
homotopy equivalent.
Indeed, the first one has one connected component, and the second one two.

1 1 2 3

Proposition: If two spaces X and Y are homotopy equivalent, then they have the same
number of connected components.

Consequence: If two spaces X and Y are homeomorphic, then they have the same
number of connected components.

0 0



27/37 (2/5)Propriedade de invariância - na teoria

Example: The interval [0, 2π) and the circle S1 ⊂ R2 are not homeomorphic.

We will prove this by contradiction. Suppose that they are homeomorphic. By
definition, this means that there exists a map f : [0, 2π)→ S1 which is continuous,
invertible, and with continuous inverse.

0 2π

Proposition: If two spaces X and Y are homotopy equivalent, then they have the same
number of connected components.



27/37 (3/5)Propriedade de invariância - na teoria

Example: The interval [0, 2π) and the circle S1 ⊂ R2 are not homeomorphic.

We will prove this by contradiction. Suppose that they are homeomorphic. By
definition, this means that there exists a map f : [0, 2π)→ S1 which is continuous,
invertible, and with continuous inverse.

0 2π

Let x ∈ [0, 2π) such that x 6= 0. Consider the subsets [0, 2π) \ {x} ⊂ [0, 2π) and
S1 \ {f(x)} ⊂ S1, and the induced map

g : [0, 2π) \ {x} → S1 \ {f(x)}.

The map g is a homeomorphism.

2π

x
f(x)

Proposition: If two spaces X and Y are homotopy equivalent, then they have the same
number of connected components.
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Example: The interval [0, 2π) and the circle S1 ⊂ R2 are not homeomorphic.

We will prove this by contradiction. Suppose that they are homeomorphic. By
definition, this means that there exists a map f : [0, 2π)→ S1 which is continuous,
invertible, and with continuous inverse.

0 2π

Let x ∈ [0, 2π) such that x 6= 0. Consider the subsets [0, 2π) \ {x} ⊂ [0, 2π) and
S1 \ {f(x)} ⊂ S1, and the induced map

g : [0, 2π) \ {x} → S1 \ {f(x)}.

The map g is a homeomorphism.

2π

x
f(x)

Moreover, [0, 2π) \ {x} has two connected components, and S1 \ {f(x)} only one.
This is absurd.

Proposition: If two spaces X and Y are homotopy equivalent, then they have the same
number of connected components.

==
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Proposition: If two spaces X and Y are homotopy equivalent, then they have the same
number of connected components.

Example: The intervals [0, 1) and (0, 1) are not homeomorphic.

0 1 0 1



28/37 (1/3)Propriedade de invariância - nas aplicações

In applications, finding connected components corresponds to a classification task.
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In applications, finding connected components corresponds to a classification task.

cluster 1 cluster 2
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In applications, finding connected components corresponds to a classification task.

We can think of these sets as an
underlying topological space,
on which the points are sampled.

cluster 1 cluster 2

connected component 1 connected component 2
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II - Comparing topological spaces

III - Topological invariants
1 - Embeddability

2 - Number of connected components

3 - Euler characteristic

1 - Homeomorphism equivalence

2 - Homotopy equivalence

I - Topology
1 - History

2 - Topological spaces

III - Topological invariants

2 - Number of connected components

III - Topological invariants

4 - Betti numbers
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number of faces

number of edges

number of vertices

4

6

4

8

12

6

6

12

8

12

30

20

20

30

12

χ 2 2 2 2 2
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Proposition [Euler, 1758]: In any convex polyhedron, we have
number of faces− number of edges + number of vertices = 2

number of faces

number of edges

number of vertices

4

6

4

8

12

6

6

12

8

12

30

20

20

30

12

χ 2 2 2 2 2
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Definition: Let V be a set (called the set of vertices). A simplicial complex over V is a
set K of subsets of V (called the simplices) such that, for every σ ∈ K and every
non-empty τ ⊂ σ, we have τ ∈ K.

The dimension of a simplex σ ∈ K is defined as |σ| − 1.
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Definition: Let V be a set (called the set of vertices). A simplicial complex over V is a
set K of subsets of V (called the simplices) such that, for every σ ∈ K and every
non-empty τ ⊂ σ, we have τ ∈ K.

Example: Let V = {0, 1, 2} and

K = {[0], [1], [2], [0, 1], [1, 2], [0, 2]}.

This is a simplicial complex.

0

1
2

It contains three simplices of dimension 0 ([0], [1] and [2]) and three simplices of
dimension 1 ([0, 1], [1, 2] and [0, 2]).

The dimension of a simplex σ ∈ K is defined as |σ| − 1.
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Definition: Let V be a set (called the set of vertices). A simplicial complex over V is a
set K of subsets of V (called the simplices) such that, for every σ ∈ K and every
non-empty τ ⊂ σ, we have τ ∈ K.

Example: Let V = {0, 1, 2} and

K = {[0], [1], [2], [0, 1], [1, 2], [0, 2]}.

This is a simplicial complex.

0

1
2

(this is a circle)

It contains three simplices of dimension 0 ([0], [1] and [2]) and three simplices of
dimension 1 ([0, 1], [1, 2] and [0, 2]).

The dimension of a simplex σ ∈ K is defined as |σ| − 1.
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Definition: Let V be a set (called the set of vertices). A simplicial complex over V is a
set K of subsets of V (called the simplices) such that, for every σ ∈ K and every
non-empty τ ⊂ σ, we have τ ∈ K.

0

1
2

Example: Let V = {0, 1, 2, 3} and

K = {[0], [1], [2], [3], [0, 1], [1, 2], [2, 3], [3, 0], [0, 2], [1, 3], [0, 1, 2], [0, 1, 3], [0, 2, 3], [1, 2, 3]}.

It a simplicial complex.

0

1
2

3

The dimension of a simplex σ ∈ K is defined as |σ| − 1.

It contains four simplices of dimension 0 ([0], [1], [2] and [3]), six simplices of dimension 1
([0, 1], [1, 2], [2, 3], [3, 0],[0, 2] and [1, 3]) and four simplices of dimension 2 ([0, 1, 2],
[0, 1, 3], [0, 2, 3] and [1, 2, 3]).
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Definition: Let V be a set (called the set of vertices). A simplicial complex over V is a
set K of subsets of V (called the simplices) such that, for every σ ∈ K and every
non-empty τ ⊂ σ, we have τ ∈ K.

0

1
2

Example: Let V = {0, 1, 2, 3} and

K = {[0], [1], [2], [3], [0, 1], [1, 2], [2, 3], [3, 0], [0, 2], [1, 3], [0, 1, 2], [0, 1, 3], [0, 2, 3], [1, 2, 3]}.

It a simplicial complex.

0

1
2

3

(this is a sphere)

The dimension of a simplex σ ∈ K is defined as |σ| − 1.

It contains four simplices of dimension 0 ([0], [1], [2] and [3]), six simplices of dimension 1
([0, 1], [1, 2], [2, 3], [3, 0],[0, 2] and [1, 3]) and four simplices of dimension 2 ([0, 1, 2],
[0, 1, 3], [0, 2, 3] and [1, 2, 3]).
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Definition: Let K be a simplicial complex of dimension n. Its Euler characteristic is
the integer

χ(K) =
∑

0≤i≤n

(−1)i · (number of simplices of dimension i).

Example: The simplicial complex K = {[0], [1], [2], [0, 1], [1, 2], [2, 0]} has Euler
characteristic

0

1
2

χ(K) = 3− 3 = 0



30/37 (9/10)Caracteŕıstica de Euler

Definition: Let K be a simplicial complex of dimension n. Its Euler characteristic is
the integer

χ(K) =
∑

0≤i≤n

(−1)i · (number of simplices of dimension i).

Example: The simplicial complex K = {[0], [1], [2], [0, 1], [1, 2], [2, 0]} has Euler
characteristic

0

1
2

χ(K) = 3− 3 = 0

Example: The simplicial complex

0

1
2

0

1
2

3

χ(K) = 4− 6 + 4 = 2

K = {[0], [1], [2], [3], [0, 1], [1, 2], [2, 3], [3, 0], [0, 2], [1, 3], [0, 1, 2], [0, 1, 3], [0, 2, 3], [1, 2, 3]}
has Euler characteristic
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Definition: Let K be a simplicial complex of dimension n. Its Euler characteristic is
the integer

χ(K) =
∑

0≤i≤n

(−1)i · (number of simplices of dimension i).

χ(X) = 0

χ(X) = 2

Definition: Let X be a topological space. Its Euler characteristic is defined as the
Euler caracteristic of a triangulation of X.
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Proposition: If X and Y are two homotopy equivalent topological spaces, then
χ(X) = χ(Y ).

Therefore, the Euler characteristic is an invariant of homotopy equivalence classes.

We can use this information to prove that two spaces are not homotopy equivalent.

Example: The circle has Euler characteristic 0, and the sphere Euler characteristic 2.
Therefore, they are not homotopy equivalent.

Exercise (21): Show that R3 and R4 are not homeomorphic.

χ(S1) = 0 χ(S2) = 2
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Proposition: If X and Y are two homotopy equivalent topological spaces, then
χ(X) = χ(Y ).

Therefore, the Euler characteristic is an invariant of homotopy equivalence classes.

We can use this information to prove that two spaces are not homotopy equivalent.

Exercise (21): Show that R3 and R4 are not homeomorphic.

Example (Classification of surfaces): The homeomorphism classes of connected and
compact surfaces are classified by their Euler characteristic.

. . .

χ 2 0 −2 −4 2− 2× genus
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The Euler characteristic contains information about the homeomorphism class (and
homotopy class) of the space.

[T. Sousbie, The persistent cosmic web and its filamentary structure, 2011]

seen as an object of dimension 3 of dimension 2 of dimension 1
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The Euler characteristic contains information about the homeomorphism class (and
homotopy class) of the space.

[T. Sousbie, The persistent cosmic web and its filamentary structure, 2011]

[P. Pranav, H. Edelsbrunner, R. de Weygaert, G. Vegter, M. Kerber, B. Jones and M.
Wintraecken, The topology of the cosmic web in terms of persistent Betti numbers, 2016]

The Euler characteristic ’counts’ the number
of holes



33/37

II - Comparing topological spaces
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1 - Embeddability
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3 - Euler characteristic
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2 - Homotopy equivalence

I - Topology
1 - History

2 - Topological spaces

III - Topological invariants

2 - Number of connected components

III - Topological invariants

4 - Betti numbers
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For any topological space X, one defines a sequence of integers

β0(X), β1(X), β2(X), β3(X), . . .

called the Betti numbers.

Construction of Betti numbers:
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Construction of Betti numbers: rendez-vous tomorrow! (based on homology theory)
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For any topological space X, one defines a sequence of integers

β0(X), β1(X), β2(X), β3(X), . . .

called the Betti numbers.

Example: Let us give some examples instead.

Construction of Betti numbers: rendez-vous tomorrow! (based on homology theory)

X

β0(X)

β1(X)

β2(X)

1 1 1 1

1

1

0 0

0 0 0 0

2

22
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For any topological space X, one defines a sequence of integers

β0(X), β1(X), β2(X), β3(X), . . .

called the Betti numbers.

Example: Let us give some examples instead.

Construction of Betti numbers: rendez-vous tomorrow! (based on homology theory)

X

β0(X)

β1(X)

β2(X)

1 1 1 1

1

1

0 0

0 0 0 0

2

22
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Example: Let us give some examples instead.

X

β0(X)

β1(X)

β2(X)

Interpretation: We have:
• β0(X) is the number of connected components of X

• β1(X) is the number of ’holes’ in X

• β2(X) is the number of ’voids’ in X

• . . .

1 1 1 1

1

1

0 0

0 0 0 0

2

22
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Example: Let us give some examples instead.

X

β0(X)

β1(X)

β2(X)

Interpretation: We have:
• β0(X) is the number of connected components of X

• β1(X) is the number of ’holes’ in X

• β2(X) is the number of ’voids’ in X

• . . .

1 1 1 1

1

1

0 0

0 0 0 0

2

22



34/37 (7/12)Números de Betti

Example: Let us give some examples instead.

X

β0(X)

β1(X)

β2(X)

Interpretation: We have:
• β0(X) is the number of connected components of X

• β1(X) is the number of ’holes’ in X

• β2(X) is the number of ’voids’ in X

• . . .

1 1 1 1

1

1

0 0

0 0 0 0

2

22
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Example: Let us give some examples instead.

X

β0(X)

β1(X)

β2(X)

Interpretation: We have:
• β0(X) is the number of connected components of X

• β1(X) is the number of ’holes’ in X

• β2(X) is the number of ’voids’ in X

• . . .

1 1 1 1

1

1

0 0

0 0 0 0

2

22
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Interpretation: We have:
• β0(X) is the number of connected components of X

• β1(X) is the number of ’holes’ in X

• β2(X) is the number of ’voids’ in X

• . . .

Example: Betti numbers of the torus:

β0(X) = 1, β1(X) = 2, β2(X) = 1, β3(X) = 0, . . .
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Interpretation: We have:
• β0(X) is the number of connected components of X

• β1(X) is the number of ’holes’ in X

• β2(X) is the number of ’voids’ in X

• . . .

Example: Betti numbers of the torus:

β0(X) = 1, β1(X) = 2, β2(X) = 1, β3(X) = 0, . . .
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Interpretation: We have:
• β0(X) is the number of connected components of X

• β1(X) is the number of ’holes’ in X

• β2(X) is the number of ’voids’ in X

• . . .

Example: Betti numbers of the torus:

β0(X) = 1, β1(X) = 2, β2(X) = 1, β3(X) = 0, . . .
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Interpretation: We have:
• β0(X) is the number of connected components of X

• β1(X) is the number of ’holes’ in X

• β2(X) is the number of ’voids’ in X

• . . .

Example: Betti numbers of the torus:

β0(X) = 1, β1(X) = 2, β2(X) = 1, β3(X) = 0, . . .
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Example: The n-dimensional sphere Sn ⊂ Rn+1 has Betti numbers

βi(X) = 1 if i = 0 or n,

βi(X) = 0 else.

Hence, if n 6= m, then Sn and Sn are not homotopy equivalent.

Proposition: If two spaces X and Y are homotopy equivalent, then they have the same
Betti numbers.

As a consequence, two spaces with different Betti numbers cannot be homotopy
equivalent.
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Let us show that Rn and Rm, with n 6= m, are not homeomorphic.

Let h : Rn → Rm be a homeomorphism.
Choose any x ∈ Rnand consider the restricted map

h : Rn \ {x} −→ Rm \ {h(x)}

It is still a homemorphism.

But Rn \ {x} is homotopic to the sphere Sn−1, and Rm \ {x} is homotopic to the
sphere Sm−1

We have seen before that Sn−1 and Sm−1 are homotopic if and only if m = n. This is a
contradiction.

Proposition: If two spaces X and Y are homotopy equivalent, then they have the same
Betti numbers.

As a consequence, two spaces with different Betti numbers cannot be homotopy
equivalent.

Example (Brouwer’s invariance of domain):
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The Betti numbers contain information about the space we study.

[G. Carlsson, T. Ishkhanov, V. de Silva, and A. Zomorodian, On the Local Behavior of
Spaces of Natural Images, 2008.]

From a large collection of natural images, the authors extract 3× 3 patches.
Since it consists of 9 pixels, each of these patches can be seen as a 9-dimensional
vector, and the whole set as a point cloud in R9.

R9

They observe that the point cloud lies close to a shape whose Betti numbers (over
Z/2Z) are

β0(X) = 1, β1(X) = 2, β2(X) = 1, β3(X) = 0
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The Betti numbers contain information about the space we study.

[G. Carlsson, T. Ishkhanov, V. de Silva, and A. Zomorodian, On the Local Behavior of
Spaces of Natural Images, 2008.]

From a large collection of natural images, the authors extract 3× 3 patches.
Since it consists of 9 pixels, each of these patches can be seen as a 9-dimensional
vector, and the whole set as a point cloud in R9.

(and the authors actually show that the dataset concentrates near a Klein bottle
embedded in R9.)

R9

They observe that the point cloud lies close to a shape whose Betti numbers (over
Z/2Z) are

These are the Betti numbers of a Klein bottle!

β0(X) = 1, β1(X) = 2, β2(X) = 1, β3(X) = 0
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Conclusão

A course about TDA: https://raphaeltinarrage.github.io/EMAp.html

We can find interesting topology in datasets.

Invariants of homotopy classes allow to describe and understand them.

β0(X) = 1, β1(X) = 2, β2(X) = 1

Tomorrow morning: a stronger invariant, homology.

Tomorrow afternoon: how to compute these invariants in practice? persistent homology.


