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Segmentation 2/15

Objective: segment glioblastoma in MRIs (modalities Flair and T1ce).
Dataset: BraTS$2021.

BraTS2021 00318 Three classes:

Tumorous Core (TC),
Enhancing Tumor (ET).

T

sphere interior

segmentation



Homology groups 3/15

Let k be a field. The nt" singular homology with coefficients in & is a functor

H, : Top — k-Vect

l.e., e to each topological space is associated a k-vector space H,(X; k),
e to each continuous map f: X — Y is associated a linear map f.: H,(X; k) - H,(Y; k).

circle 2-sphere torus Klein bottle

Ay <

Ho(X;Z/27) 7.)27. 7.)27 7.)27 7.)27
H\(X;Z/27) 7.)27. 0 (Z/27,)? (Z./27,)?
Ho(X:;Z/27) 0 7./27 727 727

Interpretation: H, counts connected components, H; counts holes, Hs5 counts cavities.




Persistent homology — Filtrations 4/15

Let X C R finite. For ¢ > 0, define the ¢-thickening X' = {y e R" | 3z € X, ||z — y|| < t}.

'f 000...
..: IR .:. “.' 0003

Let f: M — R continuous. For t € R, consider the t-sublevel set f! =

0 0 0 O ()

Let I: [0,1]2 — [0,1] be an image. For t € [0, 1], consider the t-superlevel set I' = I~ 1([t,1)).

[




Persistent homology — Persistence modules 5/15 (1/2)

Given a filtration

__________ N Itl itl N It2 it2 N It3 it‘?’ \ It4 o __.
one applies the homology functor
oy (7)) oy i), o ), .
———————— » H;(I"") ———— H;(I"?) ————— H;(I"%) ————— H;(["*) --——-—----

Tracking the cycles: Consider ¢ € H;(I%).
Its death time is: sup {¢ > o | (i}, ), (c) # 0},

Its birth time is: inf {t <to | (i) ({e}) # (2)}, Lo

Its persistence is the difference.

One can define a persistence diagram. _
It is a multiset of points (b, d), with b < d. E '

0.2 1
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Persistent homology — Persistence modules 5/15 (2/2)

Given a filtration

—————————— y I s y I12 e y I3 s I
one applies the homology functor
oy (), oy i), o ), .
———————— » H;(I"") ———— H;(I"?) ————— H;(I"%) ————— H;(["*) --——-—----

Tracking the cycles: Consider ¢ € H;(I%).
Its death time is: sup {¢ > o | (i}, ), (c) # 0},

Its birth time is: inf {t <to| (i) ({e}) £ (2)},

Its persistence is the difference.

One can define a persistence diagram.
It is a multiset of points (b, d), with b < d.

Death




Persistent homology — Decomposition 6/15 (1/3)

Definition: Let k be a field. A persistence module is a functor (R, <) — k-Vect.
In other words, it is a pair

V= ((Vt)tERa (’Uﬁi Ve— Vt)sStER)

where V' are vector spaces over k, and v’ are linear maps such that
o Vi € R, v};:id,
e Vr, s,t € R such that r < s < t, one has v’ o v$ = VL.

Definition: Let S C R be an interval. The interval-module associated to S is the persistence
module V[S] with vector spaces and linear maps defined as

vt — kE iftels, And ot id ifs,tes,
0 else, $ 0 else.
| ] R
0 k k 0
~— v ~— I ~ v




Persistent homology — Decomposition 6/15 (2/3)

Definition: Let k be a field. A persistence module is a functor (R, <) — k-Vect.
In other words, it is a pair

V= ((Vt)teR7 ('vﬁ: Ve— Vt)sgteR)

where V' are vector spaces over k, and v’ are linear maps such that
o Vi € R, v,f:id,
e Vr, s,t € R such that r < s < t, one has v’ o v$ = VL.

Definition: Let S C R be an interval. The interval-module associated to S is the persistence
module V[S] with vector spaces and linear maps defined as

Vt—{k iftec S, nd vt—{id if s,t €S,

0 else, s 0 else.

One can sum interval-modules:

| | 1 0 O
' ' 0O 1 O




Persistent homology — Decomposition 6/15 (3/3)

A persistence module V decomposes into interval-modules if there exists a multiset B of intervals

such that
V ~ @ V[S].

Theorem (Crawley-Boevey, 2015): A pointwise finite-dimensional persistence module decomposes
into interval-modules.

[Zomorodian, Carlsson, Computing Persistent Homology, 2004]

[Chazal, de Silva, Glisse, Oudot, The Structure and Stability of Persistence Modules, 2012]

[Crawley-Boevey, Decomposition of pointwise finite-dimensional persistence modules, 2015]

[Botnan, Crawley-Boevey, Decomposition of persistence modules, 2020]

Theorem (consequence of Krull-Remak-Schmidt-Azumaya): If such a B exists, then it is unique.

In this case, the multiset B is called the persistence barcode of V.
Seen as a subset of R?, it is called the persistence diagram.

\




Superlevel set persistence of brain MRlIs 7/15 (1/2)

Consider the superlevel sets of Flair and T1lce modalities: I = I~1([t, 1)), where I: [0,1]%> — [0, 1].

BraTS2021_00318

‘;g’n :




Superlevel set persistence of brain MRlIs 7/15 (2/2)

BraTS2021_00318

Persistence of Flair: the whole tumor is repre-
sented by a persistent connected component.

Persistence of T1lce: the Enhancing Tumor
induces a persistent cycle in Hs.

Our strategy:
1. ldentification of whole tumor (in Flair),
2. Detection of Enhancing Tumor (in T1lce),
3. Deduction of other components

( , Tumorous Core)

segmentation

Notations: Images Irpar and Itice: 2 — [0, 1].
The three components are denoted Xg1, X1c and Xgp. Their union, Xy, is the whole tumour.




Module 1: Identification of the whole object 8/15

|dea: Select the largest hyper-intense region present in Flair, supposedly corresponding to X.

Let ¢ — #Ik; ;g Number of voxels of intensity > ¢, and ¢ — d# Ik o1g its derivative (normalized).
|dentify the first value ¢ (starting from 1) for which d#£If; ;g > dt_threshold (fixed parameter).

Last define Xy as the largest connected component of Ify A1r-

le6

- f

2.0 1 df normalized | 5

t=0.417

1.5 1

1.0 A

0.5 4

0.0 - - o o L @ -0 DICE - 0-9523
dO d2 d4 dﬁ d& ﬁO
time

This is a sort of Otsu’s binarization method.



Module 2: Detection of the geometric object 9/15

|dea: Select the spherical boundary of the tumour, supposedly corresponding to Xgr.

Compute the persistent homology of the superlevel sets of image I restricted to Xyw.
Select the H,-feature of highest persistence (i.e., point (¢,t4) that maximizes |ty — t]).

Let x;, € Q2 be the voxel that gave birth to it, and define Xgr as its connected component in Ifr"lce.

Fersistence diagram of tlce segmented
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DICE = 0.9047 P I
T T T T T
0.5 0.6 0.7 0.8 0.9

Remark: This connected component may not be a representative cycle of the homology class.



Module 3: Deduction of the other components 10/15

|dea: Select the interior and exterior of Xg1, supposedly corresponding to Xrc and Xgp.

Consider the subset Xy \ Xgr C 2, and compute its connected components.
The outer component (that in contact with the background) is saved in Xgp.

The others are considered inner and are added to Xc.

S : O

o

True segmentation "~ our segmentation

DICE: WT = 0.94, TC = 0.94, ET = 0.90, ED = 0.89



Dice coefficient between two binary images X,Y: Q — {0,1} is
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11/15 (1/5)

ET

<

:

PH U-Net
Whole dataset

We compare our results with U-net, on the whole BraTS 2021 dataset (1521 MRIs).



Results 11/15 (2/5)

Dice coefficient between two binary images X,Y: Q — {0,1} is

Dice(X,Y) = ( )
9
#X +#Y
WT TC ED ET
1.0 1.0 1.0 1.0
0.8 ? 0.8 1 ' 0.8 1 —‘7 0.8 —‘V '
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We compare our results with U-net, on the whole BraTS 2021 dataset (1521 MRIs).

In addition, we restrict the scores to the images satisfying our geometric model (31% of dataset).



Results 11/15 (3/5)

Geometric model: Let Xtw, Xep, X7c, and Xgt be the classes of grountruth segmentation.

Tumorous Core (TC),
Enhancing Tumor (ET).

WT is a hyperintense cluster: Xt consists of one connected component, or potentially more, the
other ones being 10 times smaller. The most intense voxel WT in FLAIR belongs to Xv¢ or Xg.

ET is sphere-like: After 3 binary dilations, XgT divides the space into two connected components.
Moreover, the most intense voxel of WT in Tlce belongs to Xgr.

TC (resp. ED) is inside (resp. outside): Applying a binary dilatation to Xy¢ (resp. Xgp) yields new
pixels of which at least (resp. at most) half belongs to Xgr.

31% of the dataset satisfy this model.
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U-Net
WT =0.963 TC =0.947
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ET=0.929 ED=10.925

U-Net
WT =0.975 TC=0.974

ET=0.950 ED=10.958

U-Net
WT =0.972 TC =0.829

ET=0.919 ED=10.942

U-Net
WT =0.972 TC =0.943

ET=0.940 ED=10.958

Cases where the model is valid

ours PH

WT =0.936 TC = 0.918
("1

)
¢
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ET=0.914 ED =0.872

ours PH
WT =0932 TC=0.923

ET=0.890 ED =0.871

ours PH
WT =0.944 TC =0.701

ET=0.806 ED =0.851

ours PH
WT =0.961 TC =0.767

ET=0.664 ED=0.914

11/15 (4/5)

Our vs ground truth

Our vs ground truth

Our vs ground truth




BraTS2021_00542

BraT52021_00217

J

BraT52021_00137

BraTS2021_00116

ground truth

ground truth

ground truth

ground truth

U-Net
WT =0.922 TC = 0.893

ET=0.922 ED=0.834

U-Net
WT =0.973, TC =0.235

ET =0.957 ED = 0.969

U-Net
WT =0.949 TC = 0.663
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ET =0.840 ED = 0.940

—r

U-Net
WT = 0.925 _ TC = 0.549

ET=0.761 ED =0.886

Cases where the model is not valid

ours PH
WT =0.316 TC = 0.000

”

ET =0.065 ED =0.299

ours PH
WT =0.952 ., TC = 0.000

ET =0.207 ED = 0.256

ours PH
WT =0.924 TC=0.171

ET=0.849 ED = 0.856

ours PH
WT =0.938 _ TC = 0.039

ET=0.768 ED = 0.830

11/15 (5/5)

Our vs ground truth

Our vs ground truth

Our vs ground truth

Our vs ground truth




Fetal plate segmentation 12/15 (1/2)

Objective: cortical plate segmentation in MRI (modality T2).

Dataset: Spatiotemporal Atlas (STA), one-week intervals between 21 and 38 weeks gestational age.

Cortical plate segmentations, for gestational week 21, 30, and 38.



Fetal plate segmentation 12/15 (2/2)

In cortical slices, the cortical plate may form a circle, two circles, or a simply connected object, or
two connected components.

21 23 25 27 29 31 33 35 37
Gestational week



Cardiac segmentation 13/15 (1/3)

Objective: coronal segmentation in Magnetic Resonance Images (CMR).

Dataset: Automated Cardiac Diagnosis Challenge (ACDC).
150 patients, two scans (at end diastolic and end systolic phase).

Classes: , Right Ventricule, Left Ventricule.

RV and LV: hyperintense.

Myocardium: hypointense, and form a cylinder.



Cardiac segmentation 13/15 (2/3)

One should study the CMR slice by slice.

Superposition of the segmentation of ~ Several coronal slices, with my-
the myocardium in two consecutive ocardium in red.
axial slices.

Strategy: Slice by slice,

1. Identification of LV as the most spherical connected component,

2. Detection of RV as the closest connected component to LV,

3. Dilate RV until it reaches LV, and identify the Mocardium as the most persisting H;-cycle.



Cardiac segmentation 13/15 (3/3)

We obtain a first segmentation of the image via Hy-persistence.

Persistence diagram

Results (DICE score):
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Potential improvements 14/15

Preprocessing can enhance the cycles.

Raw image After blurring (o0 =0.5) After dilation (r=3)
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Representative cycle identification: We are not extracting representatives of homology classes, but
only their connected components.

[Dey, Hirani, Krishnamoorthy, Optimal homologous cycles, total unimodularity, and linear programming, 2010]

[Escolar, Hiraoka, Optimal cycles for persistent homology via linear programming, 2016]

[Obayashi, Volume-optimal cycle: Tightest representative cycle of a generator in persistent homology, 2018]

[Li, Thompson, Henselman-Petrusek, Giusti, Ziegelmeier, Minimal cycle representatives in PH using linear programming, 2021]

[Cohen-Steiner, Lieutier, Vuillamy, Lexicographic optimal homologous chains and applications to point cloud triangulations, 2022]
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