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2/15Segmentation

Objective: segment glioblastoma in MRIs (modalities Flair and T1ce).
Dataset: BraTS2021.

Peritumoral Edema (ED),
Tumorous Core (TC),
Enhancing Tumor (ET).

Three classes:

sphereexterior interior



3/15Homology groups

Let k be a field. The nth singular homology with coefficients in k is a functor

Hn : Top → k-Vect

i.e., • to each topological space is associated a k-vector space Hn(X; k),
• to each continuous map f : X → Y is associated a linear map f∗ : Hn(X; k) → Hn(Y ; k).

X

H0(X;Z/2Z) Z/2Z

Z/2Z

0 Z/2Z

H1(X;Z/2Z)

H2(X;Z/2Z)

circle 2-sphere torus Klein bottle

Z/2Z Z/2Z Z/2Z

(Z/2Z)20 (Z/2Z)2

Z/2ZZ/2Z

Interpretation: H0 counts connected components, H1 counts holes, H2 counts cavities.



4/15Persistent homology – Filtrations

Let X ⊂ Rn finite.

Let f : M → R continuous. For t ∈ R, consider the t-sublevel set f t = f−1((−∞, t]).

Let I : [0, 1]3 → [0, 1] be an image. For t ∈ [0, 1], consider the t-superlevel set It = I−1([t, 1)).

For t ≥ 0, define the t-thickening Xt = {y ∈ Rn | ∃x ∈ X, ∥x− y∥ ≤ t} .

t = 0.7 t = 0.5 t = 0.5 t = 0.1



5/15 (1/2)Persistent homology – Persistence modules

Given a filtration

one applies the homology functor

Tracking the cycles: Consider c ∈ Hi(I
t0).

Its death time is: sup
{
t ≥ t0 |

(
itt0

)
∗ (c) ̸= 0

}
,

Its birth time is: inf
{
t ≤ t0 |

(
it0t

)−1

∗ ({c}) ̸= ∅
}
,

Its persistence is the difference.
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One can define a persistence diagram.
It is a multiset of points (b, d), with b ≤ d.
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Its death time is: inf
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6/15 (1/3)Persistent homology – Decomposition

Definition: Let S ⊂ R be an interval. The interval-module associated to S is the persistence
module V[S] with vector spaces and linear maps defined as

V t =

{
k if t ∈ S,
0 else,

and vts =

{
id if s, t ∈ S,
0 else.

R

0 0k k

0 0id

Definition: Let k be a field. A persistence module is a functor (R,≤) → k-Vect.
In other words, it is a pair

where V t are vector spaces over k, and vts are linear maps such that

• ∀t ∈ R, vtt = id,

• ∀r, s, t ∈ R such that r ≤ s ≤ t, one has vts ◦ vsr = vtr.

V =
(
(V t)t∈R, (vts : V

s → V t)s≤t∈R
)
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One can sum interval-modules:

Definition: Let k be a field. A persistence module is a functor (R,≤) → k-Vect.
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6/15 (3/3)Persistent homology – Decomposition

A persistence module V decomposes into interval-modules if there exists a multiset B of intervals
such that

Theorem (consequence of Krull-Remak-Schmidt-Azumaya): If such a B exists, then it is unique.

In this case, the multiset B is called the persistence barcode of V.
Seen as a subset of R2, it is called the persistence diagram.

Theorem (Crawley-Boevey, 2015): A pointwise finite-dimensional persistence module decomposes
into interval-modules.

[Zomorodian, Carlsson, Computing Persistent Homology, 2004]

[Chazal, de Silva, Glisse, Oudot, The Structure and Stability of Persistence Modules, 2012]

[Crawley-Boevey, Decomposition of pointwise finite-dimensional persistence modules, 2015]

[Botnan, Crawley-Boevey, Decomposition of persistence modules, 2020]

V ≃
⊕
S∈B

V[S].



7/15 (1/2)Superlevel set persistence of brain MRIs

Consider the superlevel sets of Flair and T1ce modalities: It = I−1([t, 1)), where I : [0, 1]3 → [0, 1].

Flair

T1ce



7/15 (2/2)Superlevel set persistence of brain MRIs

Persistence of Flair: the whole tumor is repre-
sented by a persistent connected component.

Persistence of T1ce: the Enhancing Tumor
induces a persistent cycle in H2.

Our strategy:
1. Identification of whole tumor (in Flair),
2. Detection of Enhancing Tumor (in T1ce),
3. Deduction of other components

(Peritumoral Edema, Tumorous Core)

Notations: Images IFLAIR and IT1ce : Ω → [0, 1].
The three components are denoted XET, XTC and XED. Their union, XWT, is the whole tumour.



8/15Module 1: Identification of the whole object

Idea: Select the largest hyper-intense region present in Flair, supposedly corresponding to XWT.

Let t 7→ #ItFLAIR number of voxels of intensity ≥ t, and t 7→ d#ItFLAIR its derivative (normalized).

Identify the first value t (starting from 1) for which d#ItFLAIR ≥ dt threshold (fixed parameter).

Last define XWT as the largest connected component of ItFLAIR.

This is a sort of Otsu’s binarization method.



9/15Module 2: Detection of the geometric object

Idea: Select the spherical boundary of the tumour, supposedly corresponding to XET.

Compute the persistent homology of the superlevel sets of image IT1ce restricted to XWT.

Remark: This connected component may not be a representative cycle of the homology class.

Select the H2-feature of highest persistence (i.e., point (tb, td) that maximizes |td − tb|).

Let xb ∈ Ω be the voxel that gave birth to it, and define XET as its connected component in ItbT1ce.



10/15Module 3: Deduction of the other components

Idea: Select the interior and exterior of XET, supposedly corresponding to XTC and XED.

Consider the subset XWT \XET ⊂ Ω, and compute its connected components.

The outer component (that in contact with the background) is saved in XED.

The others are considered inner and are added to XTC.



11/15 (1/5)Results

Dice coefficient between two binary images X,Y : Ω → {0, 1} is

Dice(X,Y ) =
2#(X ∩ Y )

#X +#Y

We compare our results with U-net, on the whole BraTS 2021 dataset (1521 MRIs).



11/15 (2/5)Results

Dice coefficient between two binary images X,Y : Ω → {0, 1} is

Dice(X,Y ) =
2#(X ∩ Y )

#X +#Y

In addition, we restrict the scores to the images satisfying our geometric model (31% of dataset).

We compare our results with U-net, on the whole BraTS 2021 dataset (1521 MRIs).



11/15 (3/5)Results

Geometric model: Let XTW, XED, XTC, and XET be the classes of grountruth segmentation.

Peritumoral Edema (ED),
Tumorous Core (TC),
Enhancing Tumor (ET).

WT is a hyperintense cluster: XTW consists of one connected component, or potentially more, the
other ones being 10 times smaller. The most intense voxel WT in FLAIR belongs to XTC or XET.

ET is sphere-like: After 3 binary dilations, XET divides the space into two connected components.
Moreover, the most intense voxel of WT in T1ce belongs to XET.

TC (resp. ED) is inside (resp. outside): Applying a binary dilatation to XTC (resp. XED) yields new
pixels of which at least (resp. at most) half belongs to XET.

31% of the dataset satisfy this model.



11/15 (4/5)Results

Cases where the model is valid



11/15 (5/5)Results

Cases where the model is not valid



12/15 (1/2)Fetal plate segmentation

Cortical plate segmentations, for gestational week 21, 30, and 38.

Objective: cortical plate segmentation in MRI (modality T2).

Dataset: Spatiotemporal Atlas (STA), one-week intervals between 21 and 38 weeks gestational age.



12/15 (2/2)Fetal plate segmentation

In cortical slices, the cortical plate may form a circle, two circles, or a simply connected object, or
two connected components.

Strategy: Identify the topology via H1-persistence.



13/15 (1/3)Cardiac segmentation

Objective: coronal segmentation in Magnetic Resonance Images (CMR).

Dataset: Automated Cardiac Diagnosis Challenge (ACDC).
150 patients, two scans (at end diastolic and end systolic phase).

Classes: Myocardium, Right Ventricule, Left Ventricule.

Myocardium: hypointense, and form a cylinder.

RV and LV: hyperintense.



13/15 (2/3)Cardiac segmentation

Strategy: Slice by slice,
1. Identification of LV as the most spherical connected component,
2. Detection of RV as the closest connected component to LV,
3. Dilate RV until it reaches LV, and identify the Mocardium as the most persisting H1-cycle.

One should study the CMR slice by slice.

Superposition of the segmentation of
the myocardium in two consecutive
axial slices.

Several coronal slices, with my-
ocardium in red.



13/15 (3/3)Cardiac segmentation

We obtain a first segmentation of the image via H0-persistence.

Results (DICE score):



14/15Potential improvements

Preprocessing can enhance the cycles.

Representative cycle identification: We are not extracting representatives of homology classes, but
only their connected components.

[Li, Thompson, Henselman-Petrusek, Giusti, Ziegelmeier, Minimal cycle representatives in PH using linear programming, 2021]

[Dey, Hirani, Krishnamoorthy, Optimal homologous cycles, total unimodularity, and linear programming, 2010]

[Escolar, Hiraoka, Optimal cycles for persistent homology via linear programming, 2016]

[Obayashi, Volume-optimal cycle: Tightest representative cycle of a generator in persistent homology, 2018]

Ippei Obayashi. Volume-optimal cycle: Tightest representative cycle of a generator in persistent
homology

[Chen, Daniel, Hardness results for homology localization, 2011]

[Cohen-Steiner, Lieutier, Vuillamy, Lexicographic optimal homologous chains and applications to point cloud triangulations, 2022]
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