Infinite-dimensional Geometry: Theory and Applications Week 5: Shape Analysis and Medical Applications Erwin Schrödinger International Institute – 14/02/2025

Train-Free Segmentation in MRI with Cubical Persistent Homology

Anton François – ENS Paris-Saclay Raphaël Tinarrage – IST Austria

Segmentation

Objective: segment glioblastoma in MRIs (modalities Flair and T1ce). Dataset: BraTS2021.

Three classes: Peritumoral Edema (ED), Tumorous Core (TC), Enhancing Tumor (ET).

Homology groups

Let k be a field. The n^{th} singular **homology** with coefficients in k is a functor

 $H_n: \mathbf{Top} \to k\text{-}\mathbf{Vect}$

i.e., • to each topological space is associated a k-vector space $H_n(X;k)$,

• to each continuous map $f: X \to Y$ is associated a linear map $f_*: H_n(X; k) \to H_n(Y; k)$.

	circle	2-sphere	torus	Klein bottle
X				
$H_0(X;\mathbb{Z}/2\mathbb{Z})$	$\mathbb{Z}/2\mathbb{Z}$	$\mathbb{Z}/2\mathbb{Z}$	$\mathbb{Z}/2\mathbb{Z}$	$\mathbb{Z}/2\mathbb{Z}$
$H_1(X;\mathbb{Z}/2\mathbb{Z})$	$\mathbb{Z}/2\mathbb{Z}$	0	$(\mathbb{Z}/2\mathbb{Z})^2$	$(\mathbb{Z}/2\mathbb{Z})^2$
$H_2(X;\mathbb{Z}/2\mathbb{Z})$	0	$\mathbb{Z}/2\mathbb{Z}$	$\mathbb{Z}/2\mathbb{Z}$	$\mathbb{Z}/2\mathbb{Z}$

Interpretation: H_0 counts connected components, H_1 counts holes, H_2 counts cavities.

Persistent homology – Filtrations

4/15

Let $X \subset \mathbb{R}^n$ finite. For $t \ge 0$, define the *t*-thickening $X^t = \{y \in \mathbb{R}^n \mid \exists x \in X, \|x - y\| \le t\}$.

Let $f: \mathcal{M} \to \mathbb{R}$ continuous. For $t \in \mathbb{R}$, consider the *t*-sublevel set $f^t = f^{-1}((-\infty, t])$.

Let $I: [0,1]^3 \rightarrow [0,1]$ be an image. For $t \in [0,1]$, consider the *t*-superlevel set $I^t = I^{-1}([t,1))$.

Persistent homology – Persistence modules 5/15 (1/2)

Tracking the cycles: Consider $c \in H_i(I^{t_0})$. Its death time is: $\sup \{t \ge t_0 \mid (i_{t_0}^t)_* (c) \ne 0\}$, Its birth time is: $\inf \{t \le t_0 \mid (i_t^{t_0})_*^{-1} (\{c\}) \ne \emptyset\}$, Its persistence is the difference.

One can define a **persistence diagram**. It is a multiset of points (b, d), with $b \le d$.

Persistent homology – Persistence modules 5/15 (2/2)

Given a filtration $\xrightarrow{i_{t_1}^{t_2}} I^{t_2} \xrightarrow{i_{t_2}^{t_3}} I^{t_3} \xrightarrow{i_{t_3}^{t_4}} I^{t_4} \xrightarrow{i_{t_4}^{t_4}}$ one applies the homology functor $\xrightarrow{I_i(I^{t_1})} \xrightarrow{(i_{t_1}^{t_2})_*} H_i(I^{t_2}) \xrightarrow{(i_{t_2}^{t_3})_*} H_i(I^{t_3}) \xrightarrow{(i_{t_3}^{t_4})_*} H_i(I^{t_4}) \xrightarrow{I_{t_4}^{t_4}} \cdots \cdots$

Tracking the cycles: Consider $c \in H_i(I^{t_0})$. Its death time is: $\sup \{t \ge t_0 \mid (i_{t_0}^t)_* (c) \ne 0\}$, Its birth time is: $\inf \{t \le t_0 \mid (i_t^{t_0})_*^{-1} (\{c\}) \ne \emptyset\}$, Its persistence is the difference.

One can define a **persistence diagram**. It is a multiset of points (b, d), with $b \le d$.

Persistent homology – Decomposition 6/15 (1/3)

<u>Definition</u>: Let k be a field. A **persistence module** is a functor $(\mathbb{R}, \leq) \rightarrow k$ -Vect. In other words, it is a pair

$$\mathbb{V} = \left((V^t)_{t \in \mathbb{R}}, \ (v_s^t \colon V^s \to V^t)_{s \le t \in \mathbb{R}} \right)$$

where V^t are vector spaces over k, and v_s^t are linear maps such that

- $\forall t \in \mathbb{R}$, $v_t^t = \mathsf{id}$,
- $\forall r, s, t \in \mathbb{R}$ such that $r \leq s \leq t$, one has $v_s^t \circ v_r^s = v_r^t$.

<u>Definition</u>: Let $S \subset \mathbb{R}$ be an interval. The **interval-module** associated to S is the persistence module $\mathbb{V}[S]$ with vector spaces and linear maps defined as

$$V^t = \begin{cases} k & \text{if } t \in S, \\ 0 & \text{else,} \end{cases} \quad \text{and} \quad v^t_s = \begin{cases} \text{id} & \text{if } s, t \in S, \\ 0 & \text{else.} \end{cases}$$

Persistent homology – Decomposition 6/15 (2/3)

<u>Definition</u>: Let k be a field. A **persistence module** is a functor $(\mathbb{R}, \leq) \rightarrow k$ -Vect. In other words, it is a pair

$$\mathbb{V} = \left((V^t)_{t \in \mathbb{R}}, \ (v_s^t \colon V^s \to V^t)_{s \le t \in \mathbb{R}} \right)$$

where V^t are vector spaces over $\boldsymbol{k},$ and \boldsymbol{v}_s^t are linear maps such that

- $\forall t \in \mathbb{R}$, $v_t^t = \mathsf{id}$,
- $\forall r, s, t \in \mathbb{R}$ such that $r \leq s \leq t$, one has $v_s^t \circ v_r^s = v_r^t$.

<u>Definition</u>: Let $S \subset \mathbb{R}$ be an interval. The **interval-module** associated to S is the persistence module $\mathbb{V}[S]$ with vector spaces and linear maps defined as

$$V^t = \begin{cases} k & \text{if } t \in S, \\ 0 & \text{else,} \end{cases} \quad \text{and} \quad v^t_s = \begin{cases} \text{id} & \text{if } s, t \in S, \\ 0 & \text{else.} \end{cases}$$

One can sum interval-modules:

Persistent homology – Decomposition 6/15 (3/3)

A persistence module \mathbb{V} decomposes into interval-modules if there exists a multiset \mathcal{B} of intervals such that

 $\mathbb{V} \simeq \bigoplus_{S \in \mathcal{B}} \mathbb{V}[S].$

<u>Theorem</u> (Crawley-Boevey, 2015): A pointwise finite-dimensional persistence module decomposes into interval-modules.

[Zomorodian, Carlsson, Computing Persistent Homology, 2004]

[Chazal, de Silva, Glisse, Oudot, The Structure and Stability of Persistence Modules, 2012]

[Crawley-Boevey, Decomposition of pointwise finite-dimensional persistence modules, 2015]

[Botnan, Crawley-Boevey, Decomposition of persistence modules, 2020]

<u>Theorem</u> (consequence of Krull-Remak-Schmidt-Azumaya): If such a \mathcal{B} exists, then it is unique.

In this case, the multiset \mathcal{B} is called the **persistence barcode** of \mathbb{V} . Seen as a subset of \mathbb{R}^2 , it is called the **persistence diagram**.

Superlevel set persistence of brain MRIs 7/15 (1/2)

Consider the superlevel sets of Flair and T1ce modalities: $I^t = I^{-1}([t, 1))$, where $I: [0, 1]^3 \rightarrow [0, 1]$.

Superlevel set persistence of brain MRIs 7/15 (2/2)

<u>Persistence of Flair</u>: the whole tumor is represented by a persistent connected component.

<u>Persistence of T1ce</u>: the Enhancing Tumor induces a persistent cycle in H_2 .

Our strategy:

- 1. Identification of whole tumor (in Flair),
- 2. Detection of Enhancing Tumor (in T1ce),
- 3. Deduction of other components (Peritumoral Edema, Tumorous Core)

<u>Notations</u>: Images I_{FLAIR} and $I_{\text{T1ce}}: \Omega \rightarrow [0, 1]$. The three components are denoted X_{ET} , X_{TC} and X_{ED} . Their union, X_{WT} , is the whole tumour.

Module 1: Identification of the whole object 8/15

<u>Idea</u>: Select the largest hyper-intense region present in Flair, supposedly corresponding to X_{WT} .

Let $t \mapsto \#I_{\text{FLAIR}}^t$ number of voxels of intensity $\geq t$, and $t \mapsto d\#I_{\text{FLAIR}}^t$ its derivative (normalized). Identify the first value t (starting from 1) for which $d\#I_{\text{FLAIR}}^t \geq dt_{\text{Threshold}}$ (fixed parameter). Last define X_{WT} as the largest connected component of I_{FLAIR}^t .

This is a sort of Otsu's binarization method.

Module 2: Detection of the geometric object 9/15

<u>Idea</u>: Select the spherical boundary of the tumour, supposedly corresponding to X_{ET} .

Compute the persistent homology of the superlevel sets of image I_{T1ce} restricted to X_{WT} . Select the H_2 -feature of highest persistence (i.e., point (t_b, t_d) that maximizes $|t_d - t_b|$). Let $x_b \in \Omega$ be the voxel that gave birth to it, and define X_{ET} as its connected component in $I_{T1ce}^{t_b}$.

<u>Remark</u>: This connected component may not be a representative cycle of the homology class.

Module 3: Deduction of the other components 10/15

<u>Idea</u>: Select the interior and exterior of X_{ET} , supposedly corresponding to X_{TC} and X_{ED} .

Consider the subset $X_{WT} \setminus X_{ET} \subset \Omega$, and compute its connected components.

The outer component (that in contact with the background) is saved in X_{ED} .

The others are considered inner and are added to $X_{\rm TC}$.

DICE: WT = 0.94, TC = 0.94, ET = 0.90, ED = 0.89

11/15 (1/5)

Dice coefficient between two binary images $X, Y \colon \Omega \to \{0, 1\}$ is

Dice
$$(X, Y) = \frac{2\#(X \cap Y)}{\#X + \#Y}$$

We compare our results with U-net, on the whole BraTS 2021 dataset (1521 MRIs).

11/15 (2/5)

Dice coefficient between two binary images $X, Y \colon \Omega \to \{0, 1\}$ is

Dice
$$(X, Y) = \frac{2\#(X \cap Y)}{\#X + \#Y}$$

We compare our results with **U-net**, on the whole BraTS 2021 dataset (1521 MRIs).

In addition, we restrict the scores to the images satisfying our geometric model (31% of dataset).

Geometric model: Let X_{TW} , X_{ED} , X_{TC} , and X_{ET} be the classes of grountruth segmentation.

Peritumoral Edema (ED), Tumorous Core (TC), Enhancing Tumor (ET).

<u>WT is a hyperintense cluster</u>: X_{TW} consists of one connected component, or potentially more, the other ones being 10 times smaller. The most intense voxel WT in FLAIR belongs to X_{TC} or X_{ET} .

ET is sphere-like: After 3 binary dilations, X_{ET} divides the space into two connected components. Moreover, the most intense voxel of WT in T1ce belongs to X_{ET} .

TC (resp. ED) is inside (resp. outside): Applying a binary dilatation to X_{TC} (resp. X_{ED}) yields new pixels of which at least (resp. at most) half belongs to X_{ET} .

31% of the dataset satisfy this model.

11/15 (4/5)

Cases where the model is valid

11/15 (5/5)

Cases where the model is not valid

Fetal plate segmentation

12/15 (1/2)

Objective: cortical plate segmentation in MRI (modality T2).

Dataset: Spatiotemporal Atlas (STA), one-week intervals between 21 and 38 weeks gestational age.

Cortical plate segmentations, for gestational week 21, 30, and 38.

Fetal plate segmentation

12/15 (2/2)

In cortical slices, the cortical plate may form a circle, two circles, or a simply connected object, or two connected components.

Strategy: Identify the topology via H_1 -persistence.

Cardiac segmentation

13/15 (1/3)

Objective: coronal segmentation in Magnetic Resonance Images (CMR).

<u>Dataset:</u> Automated Cardiac Diagnosis Challenge (ACDC). 150 patients, two scans (at end diastolic and end systolic phase).

Classes: Myocardium, Right Ventricule, Left Ventricule.

RV and LV: hyperintense.

Myocardium: hypointense, and form a cylinder.

Cardiac segmentation

13/15 (2/3)

One should study the CMR slice by slice.

Superposition of the segmentation of the myocardium in two consecutive axial slices. Several coronal slices, with myocardium in red.

Strategy: Slice by slice,

- 1. Identification of LV as the most spherical connected component,
- 2. Detection of RV as the closest connected component to LV,
- 3. Dilate RV until it reaches LV, and identify the Mocardium as the most persisting H_1 -cycle.

Cardiac segmentation

We obtain a first segmentation of the image via H_0 -persistence.

Potential improvements

Preprocessing can enhance the cycles.

Representative cycle identification: We are not extracting representatives of homology classes, but only their connected components.

[Dey, Hirani, Krishnamoorthy, Optimal homologous cycles, total unimodularity, and linear programming, 2010]

[Escolar, Hiraoka, Optimal cycles for persistent homology via linear programming, 2016]

[Obayashi, Volume-optimal cycle: Tightest representative cycle of a generator in persistent homology, 2018]

[Li, Thompson, Henselman-Petrusek, Giusti, Ziegelmeier, Minimal cycle representatives in PH using linear programming, 2021]

[Cohen-Steiner, Lieutier, Vuillamy, Lexicographic optimal homologous chains and applications to point cloud triangulations, 2022]

Conclusion

One or two rings - ${\rm H}_{\rm 1}$

Topological Data Analysis

Birth

Automatic Segmentation

Coronal view

Coronal views

ACDC

BraTS2021

