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Persistent homology 2/25 (1/8)

We observe a point cloud X, that we suppose close to a submanifold M.

Submanifold M Point cloud X "

Persistent homology in practice:
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Persistent homology 2/25 (2/8)

We observe a point cloud X, that we suppose close to a submanifold M.

Submanifold M Point cloud X "

Persistent homology in practice:
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Filtration V| X] Persistence module V[ X] Barcode| X]

___—» homotopy type estimation
~——» persistence stability

How does Barcode| X| reveals the homology of M?




Persistent homology 2/25 (3/8)

Homotopy type estimation

The Cech filtration of X is the collection V[X] = (X*);>¢ where X* is the t-thickening
of X:
X'={yeR" e X, |z—yl| <t}




Persistent homology 2/25 (4/8)

Homotopy type estimation

The Cech filtration of X is the collection V[X] = (X*);>0 where X? is the t-thickening
of X:

= {y cR", 3z € X, |z —y| <t}

. %
e 'pﬁ
X() — X XOl

Theorem (Chazal, Cohen-Steiner, Lieutier, 2009)

Let M, X be subsets of R".
Suppose that reach (M) > 0 and dy (X, M) < f-reach (M). Let

€ [4dg (X, M) ,reach (M) — 3dg (X, M)).

Then Xt and M are homotopy equivalent.




Persistent homology 2/25 (5/8)

Homotopy type estimation

The Cech filtration of X is the collection V[X] = (X*);>0 where X? is the t-thickening
of X:

= {y cR", 3z € X, |z —y| <t}

. %
e 'pﬁ
X() — X XOl

Theorem (Niyogi, Smale, Weinberger, 2008)

Let X and M be subsets of R™, with M a submanifold and X C M finite.
Suppose that reach (M) > 0. Let

[QdH (X, M), \/7reach (M))

Then X* and M are homotopy equivalent.




Persistent homology 2/25 (6/8)

Homotopy type estimation

The Cech filtration of X is the collection V[X] = (X*);>¢ where X* is the t-thickening
of X:
X'={yeR" e X, |z—yl| <t}

XO,2




Persistent homolo
Stability point of view &Y 2/25 (7/8)

Let V[M] be the Cech filtration of M.
For every ¢ € [0, reach (M)), we have M* ~ M.




Persistent homolo
Stability point of view &Y 2/25 (8/8)

Let V[M] be the Cech filtration of M.
For every ¢ € [0, reach (M)), we have M* ~ M.

H,
I
0.5
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Let € = dg (X,./\/l)
By stability theorem, Barcode[X] and Barcode[M] are e-close in bottleneck distance.

choose the largest bars!



Other topological invariants 3/25 (1/7)

Persistent homology allows to estimate the homology of a space. However, over Z /27,

homology may not be fine enough to distinguish between|non-homeomorphic spaces.
non-homotopy equivalent spaces.

(>

Torus Klein bottle

7.)27, (7)27)?, )27, 0, ...  7.)27, (Z)27)2, 7.)27, 0, ...



Other topological invariants 3/25 (2/7)

Persistent homology allows to estimate the homology of a space. However, over Z /27,

homology may not be fine enough to distinguish between

Torus

non-homeomorphic spaces.
non-homotopy equivalent spaces.

(>

Klein bottle

Hi(M,Z/2Z),i > 0

7.)27., (7,)27)?, 7.)2Z, 0, ...

7.)27, (2,)27)?, 7.)27, 0, ...

7.|pZ, (Z.]pZ)?, 7./pZ, 0, ...

Z7/pZ, 7.]pZ, 0, 0, ...

H,(M,Z),i >0

Z, 7% 7, 0, ...

7, Z®7/2Z, 0, 0, ...

H*(M,Z/2Z)

L/2Z]x,y)/(x*,y?)

L)2Z]x,y) /(x> ¥, %y)

w1 (T)




Other topological invariants 3/25 (3/7)

Persistent homology allows to estimate the homology of a space. However, over Z /27,

homology may not be fine enough to distinguish between|non-homeomorphic spaces.
non-homotopy equivalent spaces.

homology groups I
over Z/pZ
Torus Klein bottle

H;(M,Z/27),i > 0 )27, (Z.)27.)*, Z.]2Z, 0, ... )27, (Z.)27.)*, Z]2Z, 0, ...
H;(M,Z/pZ),i >0 7/pZ, (Z/pZ)?, Z.)pZ, 0, ... | Z/pZ, Z./pZ, 0, 0, ...
H,(M,Z),i >0 Z,7° 7,0, .. Z,7®7L/2Z, 0,0, ...
H*(M,Z/27) Z/2Z[z,y]/(=*,y?) Z/2Z]z, y]/(=°, y*, 2%y)
w1 (T) 0 x




Other topological invariants 3/25 (4/7)

Persistent homology allows to estimate the homology of a space. However, over Z /27,

homology may not be fine enough to distinguish between|non-homeomorphic spaces.
non-homotopy equivalent spaces.

homology groups I
over Z
Torus Klein bottle

H;(M,Z/27),i > 0 )27, (Z.)27.)*, Z.]2Z, 0, ... )27, (Z.)27.)*, Z]2Z, 0, ...
H;(M,Z/pZ),i >0 | Z/pZ, (Z/pZ)? Z/pZ,O, ... | Z/PL, L/pL, 0,0, ...
H,(M,Z),i >0 Z,7° 7,0, .. Z,7®7L/2Z, 0,0, ...
H* (M, Z/2Z) Z/2Z[x,y)/(z*, y*) Z/2Z]z, y]/(=°, y*, 2%y)
w1 (T) 0 x




Other topological invariants 3/25 (5/7)

Persistent homology allows to estimate the homology of a space. However, over Z /27,

homology may not be fine enough to distinguish between|non-homeomorphic spaces.
non-homotopy equivalent spaces.

cohomology I
algebra over Z /27
Torus Klein bottle

H;(M,Z/27),i > 0 )27, (Z.)27.)*, Z.]2Z, 0, ... )27, (Z.)27.)*, Z]2Z, 0, ...
H;(M,Z/pZ),i >0 7/pZ, (Z/pZ)?, Z.)pZ, 0, ... | Z/pZ, Z./pZ, 0, 0, ...
H,(M,Z),i >0 7,72 7,0, .. Z,7®7L/2Z, 0,0, ...
H*(M,Z/27) Z/2Z[z,y]/(=*,y?) 222z, y]/(x”, y*, 2*y)
w1 (T) 0 x




Other topological invariants 3/25 (6/7)

Persistent homology allows to estimate the homology of a space. However, over Z /27,

homology may not be fine enough to distinguish between|non-homeomorphic spaces.
non-homotopy equivalent spaces.

first Stiefel-Whitney
class of tangent bundle

Torus Klein bottle
H;(M,Z/27),i > 0 )27, (Z.)27.)*, Z.]2Z, 0, ... )27, (Z.)27.)*, Z]2Z, 0, ...
H;(M,Z/pZ),i >0 7/pZ, (Z/pZ)?, Z/pZ, 0, ... | Z/vZ, Z/pZ, 0, 0, ...
H,(M,Z),i >0 Z,7° 7,0, .. Z,7®7L/2Z, 0,0, ...
H* (M, Z/2Z) Z)2Z[z,y|/(x*,y*) L/2Z[z,y)/{z°, y*, z%y)
w1 (T) 0 x




Other topological invariants 3/25 (7/7)

Persistent homology allows to estimate the homology of a space. However, over Z /27,

homology may not be fine enough to distinguish between|non-homeomorphic spaces.
non-homotopy equivalent spaces.

(>

first Stiefel-Whitney
class of tangent bundle

Torus Klein bottle

Aim of this talk:
Building a persistent framework for Stiefel-Whitney classes, with
consistency and stability inspired from persistent homology.

w1 (7) 0 x




| - Stiefel-Whitney classes



Vector bundles 5/25 (1/2)

Definition:
A vector bundle (of dimension d) over X is a surjection 7 : E — X, with E a
topological space, such that:

o the fibers m=1({z}),z € X, are vector spaces of dimension d,

e 7 satisfies a local triviality condition.

Local triviality condition: for all z € X, there exists a neigborhood U C X and a
homeomorphism h: U x R? — 7=1(U) such that for all y € U, h(y, ) is an
isomorphism of vector spaces.

il ‘/:/ /

Mobius stri
Normal bundle == . P
= = (universal

of the circle bundle)
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Vector bundles 5/25 (2/2)

Definition:
A vector bundle (of dimension d) over X is a surjection 7 : E — X, with E a
topological space, such that:

o the fibers m=1({z}),z € X, are vector spaces of dimension d,

e 7 satisfies a local triviality condition.

Local triviality condition: for all x € X, there exists a neigbhorhood U C X and a
homeomorphism h: U x R? — 7=1(U) such that for all y € U, h(y, ) is an
isomorphism of vector spaces.

Normal bundle

Tangent bundle of the torus

of sphere




Stiefel-Whitney classes (axioms) ¢ o5 (1 /2

For every vector bundle m: £ — X, there exists a sequence of cohomology classes
wo(m) € HY(X,Z/27),
X,7/27),

() (

() ( )
wo () € H2(X,Z/27),

() ( )

that satisfy the following axioms:

o Axiom 1: wq(r) is equal to 1 € HY(X,Z/27), and if 7 is of dimension d then
wz(w) =0 for ¢z > d.

e Axiom 2: if f: m — pis a bundle map, then w;(7) = f*(w;(p)), where
f*: H*(X) < H*(Y) is the map induced in cohomology by f.

e Axiom 3: if 7, p are vector bundles over the same base space X, then for all
keN, wy(r®p) =S8 wi(m) — wi_s(p) (cup product).

e Axiom 4: w;(v{) # 0, where 7{ denotes the Mobius strip bundle over the circle.



Stiefel-Whitney classes (axioms) ¢ o5 (2/2)

For every vector bundle m: £ — X, there exists a sequence of cohomology classes
wo(m) € HY(X,Z/27),
X,7/27),

() (

() ( )
wo () € H2(X,Z/27),

() ( )

Basic properties:
e |f two bundles are isomorphic, then their Stiefel-Whitney classes are equal.

o If m admits a (nowhere vanishing) section, then wgy(7w) = 0.

o If m admits k independent (nowhere vanishing) sections, then
wd(7'('> = ...wd_k;_|_1(71') = 0.

Topological information:

e If 7 is the tangent bundle of a manifold M, then M is orientable if and only if
w1 (7') = 0.

o M admits a spin structure if and only if wy(7) = 0 and ws(7) = 0.



he Grassmann manifolds 7/25 (1/3)

Let d,n > 1.
The Grassmannian G4(R"™) is the set of d-dimensional linear subspaces of R™.
It can be endowed with a manifold structure, of dimension d(n — d).

G1(R?) G1(R?) ~ G2(R?)

A construction of G (R?):
A A

N[
INE

quotient




he Grassmann manifolds 7/25 (2/3)

Let d,n > 1.
The Grassmannian G4(R"™) is the set of d-dimensional linear subspaces of R™.
It can be endowed with a manifold structure, of dimension d(n — d).

G1(R?) G1(R?) ~ G2(R?)

Let R* denotes the space of sequences of real numbers that are zero from some point.
We can also define the infinite Grassmannian G4(R>).

The infinite Grassmannian has Z/27Z-cohomology
H™(G4(R™)) = Z/2Z[wn, ..., wq]

where w; has degree 1.

In particular, H*(G1(R*>®)) = Z/27Z]w1].



he Grassmann manifolds 7/25 (3/3)

Let d,n > 1.
The Grassmannian G4(R"™) is the set of d-dimensional linear subspaces of R™.
It can be endowed with a manifold structure, of dimension d(n — d).

G1(R?) G1(R?) ~ G5(R?)
Let M(R™) be the space of n x n matrices.

For every linear subspace T' C R"™, let pr denotes the orthogonal projection matrix on T'.

The application T" € G4(R™) — pr € M(R") is an embedding.

Hence G4(R™) can be seen as a submanifold of M(R"™).



Vector bundles (2" definition) 8/25

Correspondence vector bundles / classifying maps:

Let X is a topological space. From any continuous map £: X — G4(R™), we can build
a d-dimensional vector bundle structure on X.

Conversely, for any vector bundle m: E — X, there exists a corresponding map
£: X — Gq(R*°), called a classifying map.

Moreover, if X is compact, we can choose £: X — G4(R™) for m large enough.

INE

Normal bundle of the circle gl (RZ)

(Second) Definition:
A vector bundle over X is a continuous map £: X — Gg(R*®) or £ : X — G4(R™).




Stiefel-Whitney classes (construction) 0/25 (1/2)

Let [£: X — G4(R*°) be a vector bundle, and
£ H*(X,Z/27) < H*(G4(R>),7Z/27) the map induced in cohomology.

Recall that H*(G4(R*>®)) = Z/27Z|w1, ..., wq].

The Stiefel-Whitney classes of the vector bundle £: X — G4(R°°) can be defined as
wo(§) = &£ (wo)
w1 (§) = & (w1)
wz(§) = & (w2)

1
Normal bundle of the circle gl (RZ)
_-%: : > g 0
3T
3 '
H'(S1,7/27) < HY(G4(R®), Z,/27)

’LU1<€) =0 - I w1



Stiefel-Whitney classes (construction) 0/25 (2/2)

Let [£: X — G4(R*°) be a vector bundle, and
£ H*(X,Z/27) < H*(G4(R>),7Z/27) the map induced in cohomology.

Recall that H*(G4(R*>®)) = Z/27Z|w1, ..., wq].

The Stiefel-Whitney classes of the vector bundle £: X — G4(R°°) can be defined as
wo(§) = &£ (wo)
w1 (§) = & (w1)
wz(§) = & (w2)

Mébius strip bundle i’ : G (RZ)
== ‘ - 2 0
LY
e T
H(S1,7/27) < H'(G4(R®), Z/27Z)

IUl(f) =1 - I w1



Il - Persistent Stiefel-Whitney classes



Adopting a persistent viewpoint 11/25 (1/3)

Sampling model for vector bundles:

Let n,m,d > 0.

We observe | a point cloud X C R” \ }
and a map £: X — Gg(R™). \\\ / /////
—~— /
—— e
- g



Adopting a persistent viewpoint

Sampling model for vector bundles:

Let n,m,d > 0.
We observe | a point cloud X C R”
and a map £: X — G4(R™).

Defining a vector bundle filtration:
Let (X*);>0 be the Cech filtration of X.

We want to define maps £': Xt — G4(R™).

1
<V
= =

|
2%
I .

11/25 (2/3)



Adopting a persistent viewpoint

Sampling model for vector bundles:

Let n,m,d > 0.
We observe | a point cloud X C R”
and a map £: X — G4(R™).

Defining a vector bundle filtration:
Let (X*);>0 be the Cech filtration of X.

We want to define maps £': Xt — G4(R™).

Nothing interesting to do here...

1
<V
= =

11/25 (3/3)



A persistent viewpoint (2" attempt) 1, 55 (1/3)

Sampling model for vector bundles:

Let n,m,d > 0.

We observe |a point cloud X C R" : .
@ t cloud X C R™ x R™).
and a map £: X — G4(R™). 3 POt 1ot Ga(R™)

X = {(2,£(x)),x € X}



A persistent viewpoint (2" attempt) 1, 5 (5/3)

Sampling model for vector bundles:

Let n,m,d > 0.

We observe |a point cloud X C R" : .
@ t cloud X C R™ x R™).
and a map £: X — G4(R™). 3 POt 1ot Ga(R™)

X = {(2,£(x)),x € X}

e By embedding G4(R™) < M(R™), we can see X as a subset of R™ x M(R™).

o Let (X?);>0 be the Cech filtration of X in the ambient space R™ x M(R™), endowed
with the metric ||(z, A)|| = \/||x||§ + A3

e We can define extended maps £* as follows:

gt: Xt — Qd(Rm)
(z, A) — proj (4, Ga(R™))



A persistent viewpoint (2" attempt) 1, 5 (3/3)

Sampling model for vector bundles:

Let n,m,d > 0.

We observe |a point cloud X C R" : .
@ t cloud X C R™ x R™).
and a map £: X — G4(R™). 3 POt 1ot Ga(R™)

X = {(2,£(x)),x € X}

e By embedding G4(R™) < M(R™), we can see X as a subset of R™ x M(R™).

o Let (X?);>0 be the Cech filtration of X in the ambient space R™ x M(R™), endowed
with the metric ||(z, A)|| = \/||x||§ + A3

e We can define extended maps £* as follows:

gt: Xt — Qd(Rm)
(z, A) — proj (4, Ga(R™))

Definition:
The data of (X*);>0 and (£%: Xt — G4(R™))s>0 is called the Cech bundle filtration
of X.




Persistent Stiefel-Whitney classes 1355 (79

Let | X ¢ R™ x Ga(R™),
(X1, (€1); its Cech bundle filtration,
i > 0.

For every t > 0, we have the ith Stiefel-Whitney class of (X7, &t):

v w; (') = (§7)* (wy),
where (£8)*: H*(Xt) < H*(Gq(R™)).

Definition:
The it persistent Stiefel-Whitney class of X is the collection (w;(£%))s>0.




Persistent Stiefel-Whitney classes 1355 (5/2)

Let | X ¢ R™ x Ga(R™),
(X1, (€1); its Cech bundle filtration,
i > 0.

For every t > 0, we have the ith Stiefel-Whitney class of (X7, &t):

v w; (') = (§7)* (wy),
where (£6)*: H*(X?) « H*(G4(R™)).

Definition:
The it persistent Stiefel-Whitney class of X is the collection (w;(£%))s>0.

Issue: £ is not well-defined for every ¢ > 0...



Maximal filtration value 14/25 (1/2)

The extended maps £° are defined as

gt: Xt — Qd(Rm)
(7, A) = proj (4, Ga(R™))

But proj (A4, G4(R™)) does not make sense if A lies in the medial axis of G4(R™).

There exists a maximal value tM® such that for all ¢ € [0,t™M®), the maps &
are well-defined.



Maximal filtration value 14/25 (2/2)

The extended maps £° are defined as
ft; Xt — Qd(Rm)
(x, A) — proj (A4, G4(R™))

But proj (A4, G4(R™)) does not make sense if A lies in the medial axis of G4(R™).

There exists a maximal value t™® such that for all ¢ € [0,t™®*), the maps &'
are well-defined.

Lemma
For any A € M(R™), let A* denote the matrix A* = 2(A +'A), and let

A (A%), ..., A\ (A?®) be the eigenvalues of A® in decreasing order.
The distance from A to med (G4(R™)) is %2 |Aa(A®%) — Agr1(4%)].

The persistent Stiefel-Whitney class (w;(£")); is defined for every ¢ € [0, t™2*).



Lifebar 15/25 (1/2)

Let X C R™ x M(R™), and w;(X) its it" persistent Stiefel-Whitney class.

Definition )
The lifebar of the persistent Stiefel-Whitney class w;(X) is the set

{t €10,t™), w; (&) #0}.‘

//A the lifebar is an interval!

| T 1
0 0.2 1




Lifebar

Let X C R™ x M(R™), and w;(X) its it" persistent Stiefel-Whitney class.

15/25 (2/2)

Definition )
The lifebar of the persistent Stiefel-Whitney class w;(X) is the set

{t €10,t™), w; (&) #0}.‘

//A the lifebar is an interval!

| T 1
0 0.2 1

Example: lifebars of first persistent Stiefel-Whitney classes

i ’/ /

Il
HiL

l
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Stability

16/25

Theorem

If two subsets X,Y C R™ x M(R™) satisfies d (X, Y) < ¢, then for all i > 0, the
lifebars of their it" Stiefel-Whitney classes are e-close.

*. .

wl(X)

W S

"\




Consistency 17/25 (1/2)

If u: My — M C R™is an immersion and &: My — G4(R™) a vector bundle, consider
the set

M = {(u(xg), E(x0)) , 0 € Mo} C R"™ x M(R™).

Theorem
Let X C R™ x M(R™) be any subset such that dy (X, M) <e. Then for every

t € |[4e,reach (M) — 3¢), the composition of inclusions My — M < X induces an
isomorphism H*(Mj) < H*(X") which sends the i*" persistent Stiefel-Whitney
class w!(X) of the Cech bundle filtration of X to the i*" Stiefel-Whitney class of
(M07p)'

Normal bundle of the torus Normal bundle of the Klein bottle




Consistency 17/25 (2/2)

If u: My — M C R™is an immersion and &: My — G4(R™) a vector bundle, consider
the set

M = {(u(xg), E(x0)) , 0 € Mo} C R"™ x M(R™).

Theorem
Let X C R™ x M(R™) be any subset such that dy (X, M) <e. Then for every

t € |[4e,reach (M) — 3¢), the composition of inclusions My — M < X induces an
isomorphism H*(Mj) < H*(X") which sends the i*" persistent Stiefel-Whitney
class w!(X) of the Cech bundle filtration of X to the i*" Stiefel-Whitney class of
(M07p)'

Normal bundle of the torus Normal bundle of the Klein bottle

orientable /

non-orientable




Il - Algorithmic considerations



Simplicial approximation

Let | X C R™ x Gg(R™) or X C R™ x M(R™),
(X1, (€1) its Cech bundle filtration,
(w; (€Y)); its it persistent Stiefel-Whitney class.

& Xt > Gq(R™)
(&) H*(X!) - H*(Ga(R™))
wz(ft) < || Wy

19/25 (1/3)

Problem:
Compute w; (&) on a computer.




Simplicial approximation

Let | X C R™ x Gg(R™) or X C R™ x M(R™),
(X1, (€1) its Cech bundle filtration,
(w; (€Y)); its it persistent Stiefel-Whitney class.

& Xt > Gq(R™)
(&) H*(X!) - H*(Ga(R™))
wz(ft) < || Wy

10/25 (2/3)

Problem:
Compute w; (&) on a computer.

Suppose that we have triangulations S? of X* and G of G4(R™).

/ \

nerve of the union of balls see later



Simplicial approximation

Let | X C R™ x Gg(R™) or X C R™ x M(R™),
(X1, (€1) its Cech bundle filtration,
(w; (€Y)); its it persistent Stiefel-Whitney class.

& Xt > Gq(R™)
(&) H*(X!) - H*(Ga(R™))
wz(ft) < || Wy

19/25 (3/3)

Problem:
Compute w; (&) on a computer.

Suppose that we have triangulations S? of X* and G of G4(R™).
Denote their topological realizations |S*| and |G|.

t
xt : . Gu(R™)

zT zT 3

| S| -mmmmmm e > |G St e R

We look for a simplicial map pt: S* — G that ‘corresponds to’ £°.



Star condition

t
Xt : > Gq(R™)
§P| <oeemeemeeees O — - |G UAEEERRR—

The map g satisfies the star condition if:

20/25 (1/3)

for every vertex v € S*, there exists a vertex w € G such that g (|St(v)|) C [St(w)].

5 G @ 9(5")



Star condition

20/25 (2/3)

t
Xt € > Qd(Rm)
iR rEr— g > L| St
— .

f

The map g satisfies the star condition if:

for every vertex v € S*, there exists a vertex w € G such that g (|St(v)|) C [St(w)|.

If this is the case, let f: S* — G be any map between vertex sets such that:

for every vertex v € S*, we have g (|St(v)|) C [St(f(v))].

Such a map f is called a simplicial approximation to ¢. It is a simplicial map.

Its topological realization |f| is homotopic to g.

- & &



Star condition

. gt

20/25 (3/3)

Xt > Ga(R™)
g T
S sz e G

f

The map g satisfies the star condition if:

for every vertex v € S*, there exists a vertex w € G such that g (|St(v)|) C [St(w)|.

If this is the case, let f: S* — G be any map between vertex sets such that:

for every vertex v € S*, we have g (|St(v)|) C [St(f(v))].

Such a map f is called a simplicial approximation to ¢. It is a simplicial map.

Its topological realization |f| is homotopic to g.

Remark:

If ¢ does not satisfy the star condition, we can apply barycentric subdivisions to S?.

Ny

N Y
%}%ﬁ X
?ﬁ%g’

-

N2




Weak star condition 21/25 (1/2)

In practice, we cannot check whether g satisfies the star condition...
®

g (|St(v)]) < ISt(w)]?

The map g satisfies the weak star condition if:

for every vertex v € St there exists a vertex w € G such that
g (|vertices(St(v))]) C |St(w)|.

|2 &




Weak star condition 21/25 (2/2)

In practice, we cannot check whether g satisfies the star condition...
®

g (|St(v)]) < ISt(w)]?

The map g satisfies the weak star condition if:

for every vertex v € St there exists a vertex w € G such that
g (|vertices(St(v))]) C |St(w)|.

If this is the case, let f: St — G be any map between vertex sets such that:
for every vertex v € S*, we have g (|vertices(St(v))|) C [St(f(v))].

Such a map f is called a weak simplicial approximation to g. It is a simplicial map.

Proposition:
If S? is subdivised enough, then any weak simplicial approximation is a simplicial
approximation.




riangulations of the Grassmannian 22/25 (1/2)

The Grassmaniann G4(R"™) has a well-known CW-complex structure.

However, | had some troubles finding explicit triangulations of G4(R™).

What is known: triangulations of G, (R"™), the projective spaces.

barycentric quotient by antipodal
subdivision relation
>

>

3

boundary of
n-simplex G1(R")



riangulations of the Grassmannian 22/25 (2/2)

The Grassmaniann G4(R"™) has a well-known CW-complex structure.

However, | had some troubles finding explicit triangulations of G4(R™).

What is known: triangulations of G, (R"™), the projective spaces.

barycentric quotient by antipodal
subdivision relation
>

>

)

boundary of
n-simplex G1(R")

In practice, we will only consider the case d = 1.



An algorithm for w1 (£"), t fixed 23/25

Consider the map £': Xt — G;(R™). We want to compute wy (&%) = (£1)*(wy).
Reminder: H'(Gi(R™)) = (w) ~ Z/27Z.
We have to find the image of (£V)*: H'(X?) + HY(G(R™))

e Compute a triangulation S* of X?
o Compute a triangulation G of G;(R™)
e Check whether & satisfies the weak star condition
< e If not, subdivise barycentric
e Compute a weak simplicial approximation f to &°
o Compute the induced map in simplicial cohomology f*: H!(S?) + H'(G)

» The image of f* is wy (&)
(seen in simplicial cohomology)




Computing the lifebar 24/25 (1/3)

Let | X C R™ x G4(R™),
(X1, (€); its Cech bundle filtration,
(w; (€%)); its it persistent Stiefel-Whitney class.

We have seen how to compute wy (£%), t fixed.
Recall that the lifebar of wq(X) is the set

[t < sy w1 (€1) £ 0}

L

I I 1
0 0.2 1

Three possibilities for computing the lifebar:

e Compute w1 (&") for several values of ¢, and check whether w1 (£*) = 0 (dichotomic
search)

® Use the persistent image algorithm of [Cohen-Steiner, Edelsbrunner, Harer, Morozov]

e Use the formula on the next page



Computing the lifebar 24/25 (2/3)

Reminder: H(G,(R™)) = 7Z/2Z. )
We have to find the image of (£V)*: H'(X?) + HY(G;(R™))

Let C(£') be the mapping cone of £¢: Xt — G (R™).

We have a long exact sequence

e — Hk(Xt) — Hk+1(C(£t)) — Hk“(gl(Rm)) — H’““(Xt) — ...
We deduce that

400

rank((£)") =) (-1)* (dim H*(X") — dim H*"H(C(€)) + dim H*(G, (Rm)))
k=1



Computing the lifebar 24/25 (3/3)

Reminder: H(G,(R™)) = 7Z/2Z. )
We have to find the image of (£V)*: H'(X?) + HY(G;(R™))

Let C(£') be the mapping cone of £¢: Xt — G (R™).

We have a long exact sequence

e — Hk(Xt) — Hk+1(C(£t)) — Hk“(gl(Rm)) — H’““(Xt) — ...
We deduce that

400

rank((£)") =) (-1)* (dim H*(X") — dim H*"H(C(€)) + dim H*(G, (Rm)))
k=1

——  (Can be computed with the persistence algorithm



Conclusion

o We defined persistent Stiefel-Whitney classes,
e Proved stability and consistency results,

e Proposed an algorithm when d = 1.

Perspectives:

o ldeas could be extended to other characteristic classes (Euler, Chern, Pontrjagin).

o Need for a triangulation of G4(R™).



Conclusion

o We defined persistent Stiefel-Whitney classes,
e Proved stability and consistency results,

e Proposed an algorithm when d = 1.

Perspectives:

o ldeas could be extended to other characteristic classes (Euler, Chern, Pontrjagin).

o Need for a triangulation of G4(R™).

Thank you!




