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V

Point cloud X

Filtration V [X] Persistence module V[X] Barcode[X]

We observe a point cloud X, that we suppose close to a submanifold M.

Submanifold M

Persistent homology in practice:



2/25 (2/8)Persistent homology

V

Point cloud X

Filtration V [X] Persistence module V[X] Barcode[X]

We observe a point cloud X, that we suppose close to a submanifold M.

Submanifold M

Persistent homology in practice:

How does Barcode[X] reveals the homology of M?
homotopy type estimation

persistence stability
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The Čech filtration of X is the collection V [X] = (Xt)t≥0 where Xt is the t-thickening
of X:

Xt = {y ∈ Rn,∃x ∈ X, ‖x− y‖ ≤ t}.

We consider the corresponding ith persistent homology module V[X] = (Hi(X
t))t≥0.

X0 = X X0,1 X0,2
X0,3

Homotopy type estimation
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The Čech filtration of X is the collection V [X] = (Xt)t≥0 where Xt is the t-thickening
of X:

Xt = {y ∈ Rn,∃x ∈ X, ‖x− y‖ ≤ t}.

We consider the corresponding ith persistent homology module V[X] = (Hi(X
t))t≥0.

Let M, X be subsets of Rn.
Suppose that reach (M) > 0 and dH (X,M) ≤ 1

17 reach (M). Let

t ∈ [4dH (X,M) , reach (M)− 3dH (X,M)) .

Then Xt and M are homotopy equivalent.

'

Theorem (Chazal, Cohen-Steiner, Lieutier, 2009)

X0 = X X0,1 X0,2
X0,3'

Homotopy type estimation
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The Čech filtration of X is the collection V [X] = (Xt)t≥0 where Xt is the t-thickening
of X:

Xt = {y ∈ Rn,∃x ∈ X, ‖x− y‖ ≤ t}.

We consider the corresponding ith persistent homology module V[X] = (Hi(X
t))t≥0.

'X0 = X X0,1 X0,2
X0,3'

Homotopy type estimation

Let X and M be subsets of Rn, with M a submanifold and X ⊂M finite.
Suppose that reach (M) > 0. Let

t ∈
[
2dH (X,M) ,

√
3
5 reach (M)

)
.

Then Xt and M are homotopy equivalent.

Theorem (Niyogi, Smale, Weinberger, 2008)
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The Čech filtration of X is the collection V [X] = (Xt)t≥0 where Xt is the t-thickening
of X:

Xt = {y ∈ Rn,∃x ∈ X, ‖x− y‖ ≤ t}.

We consider the corresponding ith persistent homology module V[X] = (Hi(X
t))t≥0.

X0 = X X0,1 X0,2
X0,3

Homotopy type estimation

As a consequence, one reads the homology of M on Barcode[X], on some interval.

H0

H1
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Stability point of view

Let V [M] be the Čech filtration of M.
For every t ∈ [0, reach (M)), we have Mt 'M.

H0

H1



2/25 (8/8)Persistent homology
Stability point of view

Let V [M] be the Čech filtration of M.
For every t ∈ [0, reach (M)), we have Mt 'M.

H0

H1

Let ε = dH (X,M).
By stability theorem, Barcode[X] and Barcode[M] are ε-close in bottleneck distance.

choose the largest bars!
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Persistent homology allows to estimate the homology of a space. However, over Z/2Z,
homology may not be fine enough to distinguish between non-homeomorphic spaces.

Over Z/2Z, it may not be fine enough to distinguish between non-homeomorphic spaces.

Torus Klein bottle

Z/2Z, (Z/2Z)2, Z/2Z, 0, ...Z/2Z, (Z/2Z)2, Z/2Z, 0, ...

non-homotopy equivalent spaces.
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M,
Hi(M,Z)
H∗(M,Z), H∗(M,Zp)
wi(ξ)

Persistent homology allows to estimate the homology of a space. However, over Z/2Z,
homology may not be fine enough to distinguish between non-homeomorphic spaces.

Over Z/2Z, it may not be fine enough to distinguish between non-homeomorphic spaces.

Torus Klein bottle

Z/2Z, (Z/2Z)2, Z/2Z, 0, ...

Z/pZ, (Z/pZ)2, Z/pZ, 0, ...

Z/2Z, (Z/2Z)2, Z/2Z, 0, ...

Z, Z2, Z, 0, ... Z, Z⊕ Z/2Z, 0, 0, ...

Hi(M,Z/2Z), i ≥ 0

Hi(M,Z/pZ), i ≥ 0

Hi(M,Z), i ≥ 0

H∗(M,Z/2Z)

w1(τ)

Z/2Z[x, y]/〈x2, y2〉 Z/2Z[x, y]/〈x3, y2, x2y〉

0 x

Z/pZ, Z/pZ, 0, 0, ...

non-homotopy equivalent spaces.
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M,
Hi(M,Z)
H∗(M,Z), H∗(M,Zp)
wi(ξ)

Persistent homology allows to estimate the homology of a space. However, over Z/2Z,
homology may not be fine enough to distinguish between non-homeomorphic spaces.

Over Z/2Z, it may not be fine enough to distinguish between non-homeomorphic spaces.

Torus Klein bottle

Z/2Z, (Z/2Z)2, Z/2Z, 0, ...

Z/pZ, (Z/pZ)2, Z/pZ, 0, ...

Z/2Z, (Z/2Z)2, Z/2Z, 0, ...

Z, Z2, Z, 0, ... Z, Z⊕ Z/2Z, 0, 0, ...

Hi(M,Z/2Z), i ≥ 0

Hi(M,Z/pZ), i ≥ 0

Hi(M,Z), i ≥ 0

H∗(M,Z/2Z)

w1(τ)

Z/2Z[x, y]/〈x2, y2〉 Z/2Z[x, y]/〈x3, y2, x2y〉

0 x

homology groups
over Z/pZ

Z/pZ, Z/pZ, 0, 0, ...

non-homotopy equivalent spaces.
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M,
Hi(M,Z)
H∗(M,Z), H∗(M,Zp)
wi(ξ)

Persistent homology allows to estimate the homology of a space. However, over Z/2Z,
homology may not be fine enough to distinguish between non-homeomorphic spaces.

Over Z/2Z, it may not be fine enough to distinguish between non-homeomorphic spaces.

Torus Klein bottle

Z/2Z, (Z/2Z)2, Z/2Z, 0, ...

Z/pZ, (Z/pZ)2, Z/pZ, 0, ...

Z/2Z, (Z/2Z)2, Z/2Z, 0, ...

Z, Z2, Z, 0, ... Z, Z⊕ Z/2Z, 0, 0, ...

Hi(M,Z/2Z), i ≥ 0

Hi(M,Z/pZ), i ≥ 0

Hi(M,Z), i ≥ 0

H∗(M,Z/2Z)

w1(τ)

Z/2Z[x, y]/〈x2, y2〉 Z/2Z[x, y]/〈x3, y2, x2y〉

0 x

homology groups
over Z

Z/pZ, Z/pZ, 0, 0, ...

non-homotopy equivalent spaces.
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M,
Hi(M,Z)
H∗(M,Z), H∗(M,Zp)
wi(ξ)

Persistent homology allows to estimate the homology of a space. However, over Z/2Z,
homology may not be fine enough to distinguish between non-homeomorphic spaces.

Over Z/2Z, it may not be fine enough to distinguish between non-homeomorphic spaces.

Torus Klein bottle

Z/2Z, (Z/2Z)2, Z/2Z, 0, ...

Z/pZ, (Z/pZ)2, Z/pZ, 0, ...

Z/2Z, (Z/2Z)2, Z/2Z, 0, ...

Z, Z2, Z, 0, ... Z, Z⊕ Z/2Z, 0, 0, ...

Hi(M,Z/2Z), i ≥ 0

Hi(M,Z/pZ), i ≥ 0

Hi(M,Z), i ≥ 0

H∗(M,Z/2Z)

w1(τ)

Z/2Z[x, y]/〈x2, y2〉 Z/2Z[x, y]/〈x3, y2, x2y〉

0 x

cohomology
algebra over Z/2Z

Z/pZ, Z/pZ, 0, 0, ...

non-homotopy equivalent spaces.
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M,
Hi(M,Z)
H∗(M,Z), H∗(M,Zp)
wi(ξ)

Persistent homology allows to estimate the homology of a space. However, over Z/2Z,
homology may not be fine enough to distinguish between non-homeomorphic spaces.

Over Z/2Z, it may not be fine enough to distinguish between non-homeomorphic spaces.

Torus Klein bottle

Z/2Z, (Z/2Z)2, Z/2Z, 0, ...

Z/pZ, (Z/pZ)2, Z/pZ, 0, ...

Z/2Z, (Z/2Z)2, Z/2Z, 0, ...

Z, Z2, Z, 0, ... Z, Z⊕ Z/2Z, 0, 0, ...

Hi(M,Z/2Z), i ≥ 0

Hi(M,Z/pZ), i ≥ 0

Hi(M,Z), i ≥ 0

H∗(M,Z/2Z)

w1(τ)

Z/2Z[x, y]/〈x2, y2〉 Z/2Z[x, y]/〈x3, y2, x2y〉

0 x

first Stiefel-Whitney
class of tangent bundle

Z/pZ, Z/pZ, 0, 0, ...

non-homotopy equivalent spaces.
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M,
Hi(M,Z)
H∗(M,Z), H∗(M,Zp)
wi(ξ)

Persistent homology allows to estimate the homology of a space. However, over Z/2Z,
homology may not be fine enough to distinguish between non-homeomorphic spaces.

Over Z/2Z, it may not be fine enough to distinguish between non-homeomorphic spaces.

Torus Klein bottle

Z/2Z, (Z/2Z)2, Z/2Z, 0, ...

Z/pZ, (Z/pZ)2, Z/pZ, 0, ...

Z/2Z, (Z/2Z)2, Z/2Z, 0, ...

Z, Z2, Z, 0, ... Z, Z⊕ Z/2Z, 0, 0, ...

Hi(M,Z/2Z), i ≥ 0

Hi(M,Z/pZ), i ≥ 0

Hi(M,Z), i ≥ 0

H∗(M,Z/2Z)

w1(τ)

Z/2Z[x, y]/〈x2, y2〉 Z/2Z[x, y]/〈x3, y2, x2y〉

0 x

first Stiefel-Whitney
class of tangent bundle

Z/pZ, Z/pZ, 0, 0, ...

non-homotopy equivalent spaces.

Aim of this talk:
Building a persistent framework for Stiefel-Whitney classes, with
consistency and stability inspired from persistent homology.
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I - Stiefel-Whitney classes

II - Persistent Stiefel-Whitney classes

III - Algorithmic considerations



5/25 (1/2)Vector bundles

Definition:
A vector bundle (of dimension d) over X is a surjection π : E → X, with E a
topological space, such that:

the fibers π−1({x}), x ∈ X, are vector spaces of dimension d,

π satisfies a local triviality condition.

Normal bundle
of the circle

Möbius strip
(universal
bundle)

Local triviality condition: for all x ∈ X, there exists a neigborhood U ⊂ X and a
homeomorphism h : U × Rd → π−1(U) such that for all y ∈ U , h(y, ·) is an
isomorphism of vector spaces.



5/25 (2/2)Vector bundles

Definition:
A vector bundle (of dimension d) over X is a surjection π : E → X, with E a
topological space, such that:

the fibers π−1({x}), x ∈ X, are vector spaces of dimension d,

π satisfies a local triviality condition.

Local triviality condition: for all x ∈ X, there exists a neigborhood U ⊂ X and a
homeomorphism h : U × Rd → π−1(U) such that for all y ∈ U , h(y, ·) is an
isomorphism of vector spaces.

Tangent bundle
of sphere

Normal bundle
of the torus
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For every vector bundle π : E → X, there exists a sequence of cohomology classes

w0(π) ∈ H0(X,Z/2Z),

w1(π) ∈ H1(X,Z/2Z),

w2(π) ∈ H2(X,Z/2Z),

w3(π) ∈ H3(X,Z/2Z),

...

that satisfy the following axioms:

Axiom 1: w0(π) is equal to 1 ∈ H0(X,Z/2Z), and if π is of dimension d then
wi(π) = 0 for i > d.

Axiom 2: if f : π → ρ is a bundle map, then wi(π) = f∗(wi(ρ)), where
f∗ : H∗(X)← H∗(Y ) is the map induced in cohomology by f .

Axiom 3: if π, ρ are vector bundles over the same base space X, then for all
k ∈ N, wk(π ⊕ ρ) =

∑k
i=0 wi(π) ^ wk−i(ρ) (cup product).

Axiom 4: w1(γ11) 6= 0, where γ11 denotes the Möbius strip bundle over the circle.
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Basic properties:

For every vector bundle π : E → X, there exists a sequence of cohomology classes

w0(π) ∈ H0(X,Z/2Z),

w1(π) ∈ H1(X,Z/2Z),

w2(π) ∈ H2(X,Z/2Z),

w3(π) ∈ H3(X,Z/2Z),

...

Topological information:

If τ is the tangent bundle of a manifold M, then M is orientable if and only if
w1(τ) = 0.

M admits a spin structure if and only if w1(τ) = 0 and w2(τ) = 0.

If two bundles are isomorphic, then their Stiefel-Whitney classes are equal.

If π admits a (nowhere vanishing) section, then wd(π) = 0.

If π admits k independent (nowhere vanishing) sections, then
wd(π) = ...wd−k+1(π) = 0.



7/25 (1/3)The Grassmann manifolds
Let d, n ≥ 1.
The Grassmannian Gd(Rn) is the set of d-dimensional linear subspaces of Rn.
It can be endowed with a manifold structure, of dimension d(n− d).

G1(R2) G1(R3) ' G2(R3)

R2

0 = 2π

π
2

π

3π
2

0 = π

π
4

3π
4

π
2

quotient

G1(R2)

A construction of G1(R2):



7/25 (2/3)The Grassmann manifolds
Let d, n ≥ 1.
The Grassmannian Gd(Rn) is the set of d-dimensional linear subspaces of Rn.
It can be endowed with a manifold structure, of dimension d(n− d).

G1(R2) G1(R3) ' G2(R3)

Let R∞ denotes the space of sequences of real numbers that are zero from some point.
We can also define the infinite Grassmannian Gd(R∞).

The infinite Grassmannian has Z/2Z-cohomology

H∗(Gd(R∞)) = Z/2Z[w1, ..., wd]

where wi has degree i.

In particular, H∗(G1(R∞)) = Z/2Z[w1].



7/25 (3/3)The Grassmann manifolds
Let d, n ≥ 1.
The Grassmannian Gd(Rn) is the set of d-dimensional linear subspaces of Rn.
It can be endowed with a manifold structure, of dimension d(n− d).

G1(R2) G1(R3) ' G2(R3)

Let M(Rn) be the space of n× n matrices.
For every linear subspace T ⊂ Rn, let pT denotes the orthogonal projection matrix on T .

The application T ∈ Gd(Rn) 7−→ pT ∈ M(Rn) is an embedding.

Hence Gd(Rn) can be seen as a submanifold of M(Rn).



8/25Vector bundles (2nd definition)

Let X is a topological space. From any continuous map ξ : X → Gd(Rn), we can build
a d-dimensional vector bundle structure on X.

Conversely, for any vector bundle π : E → X, there exists a corresponding map
ξ : X → Gd(R∞), called a classifying map.

Moreover, if X is compact, we can choose ξ : X → Gd(Rm) for m large enough.

A vector bundle over X is a continuous map ξ : X → Gd(R∞) or ξ : X → Gd(Rm).

(Second) Definition:

Correspondence vector bundles / classifying maps:

G1(R2)
ξ

Normal bundle of the circle

0

π
4

3π
4

π
2



9/25 (1/2)Stiefel-Whitney classes (construction)

The Stiefel-Whitney classes of the vector bundle ξ : X → Gd(R∞) can be defined as

w1(ξ) = 0

H1(Gd(R∞),Z/2Z)H1(S1,Z/2Z)
ξ∗

w1

Recall that H∗(Gd(R∞)) = Z/2Z[w1, ..., wd].

w0(ξ) = ξ∗(ω0)

w1(ξ) = ξ∗(ω1)

w2(ξ) = ξ∗(ω2)
...

They satisfy the four axioms of the Stiefel-Whitney classes.

G1(R2)
ξ

Normal bundle of the circle

0

π
4

3π
4

π
2

Let ξ : X → Gd(R∞) be a vector bundle, and
ξ∗ : H∗(X,Z/2Z)← H∗(Gd(R∞),Z/2Z) the map induced in cohomology.



9/25 (2/2)Stiefel-Whitney classes (construction)

The Stiefel-Whitney classes of the vector bundle ξ : X → Gd(R∞) can be defined as

Recall that H∗(Gd(R∞)) = Z/2Z[w1, ..., wd].

w0(ξ) = ξ∗(ω0)

w1(ξ) = ξ∗(ω1)

w2(ξ) = ξ∗(ω2)
...

They satisfy the four axioms of the Stiefel-Whitney classes.

w1(ξ) = 1

H1(Gd(R∞),Z/2Z)H1(S1,Z/2Z)
ξ∗

w1

G1(R2)
ξ

Möbius strip bundle

0

π
4

3π
4

π
2

Let ξ : X → Gd(R∞) be a vector bundle, and
ξ∗ : H∗(X,Z/2Z)← H∗(Gd(R∞),Z/2Z) the map induced in cohomology.
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I - Stiefel-Whitney classes

II - Persistent Stiefel-Whitney classes

III - Algorithmic considerations



11/25 (1/3)Adopting a persistent viewpoint

Sampling model for vector bundles:

Let n,m, d > 0.
We observe a point cloud X ⊂ Rn

and a map ξ : X → Gd(Rm).



11/25 (2/3)Adopting a persistent viewpoint

Sampling model for vector bundles:

Let n,m, d > 0.
We observe a point cloud X ⊂ Rn

and a map ξ : X → Gd(Rm).

Let (Xt)t≥0 be the Čech filtration of X.
We want to define maps ξt : Xt → Gd(Rm).

Defining a vector bundle filtration:



11/25 (3/3)Adopting a persistent viewpoint

Sampling model for vector bundles:

Let n,m, d > 0.
We observe a point cloud X ⊂ Rn

and a map ξ : X → Gd(Rm).

In other words, we observe a point cloud X̌ ⊂ Rn × Gd(Rm).

Let (Xt)t≥0 be the Čech filtration of X.
We want to define maps ξt : Xt → Gd(Rm).

Defining a vector bundle filtration:

Nothing interesting to do here...



12/25 (1/3)A persistent viewpoint (2nd attempt)

Sampling model for vector bundles:

Let n,m, d > 0.
We observe a point cloud X ⊂ Rn

and a map ξ : X → Gd(Rm).
a point cloud X̌ ⊂ Rn × Gd(Rm).⇐⇒

X̌ = {(x, ξ(x)), x ∈ X}



12/25 (2/3)A persistent viewpoint (2nd attempt)

Sampling model for vector bundles:

Let n,m, d > 0.
We observe a point cloud X ⊂ Rn

and a map ξ : X → Gd(Rm).
a point cloud X̌ ⊂ Rn × Gd(Rm).⇐⇒

By embedding Gd(Rm) ↪→ M(Rm), we can see X̌ as a subset of Rn ×M(Rm).

Let (X̌t)t≥0 be the Čech filtration of X̌ in the ambient space Rn ×M(Rm), endowed

with the metric ‖(x,A)‖ =
√
‖x‖22 + ‖A‖2F.

We can define extended maps ξt as follows:

(x,A) 7−→ proj (A,Gd(Rm))

X̌t −→ Gd(Rm)

X̌ = {(x, ξ(x)), x ∈ X}

ξt :



12/25 (3/3)A persistent viewpoint (2nd attempt)

Sampling model for vector bundles:

Let n,m, d > 0.
We observe a point cloud X ⊂ Rn

and a map ξ : X → Gd(Rm).
a point cloud X̌ ⊂ Rn × Gd(Rm).⇐⇒

By embedding Gd(Rm) ↪→ M(Rm), we can see X̌ as a subset of Rn ×M(Rm).

Let (X̌t)t≥0 be the Čech filtration of X̌ in the ambient space Rn ×M(Rm), endowed

with the metric ‖(x,A)‖ =
√
‖x‖22 + ‖A‖2F.

We can define extended maps ξt as follows:

(x,A) 7−→ proj (A,Gd(Rm))

X̌t −→ Gd(Rm)

The data of (X̌t)t≥0 and (ξt : X̌t → Gd(Rm))t≥0 is called the Čech bundle filtration
of X̌.

Definition:

X̌ = {(x, ξ(x)), x ∈ X}

ξt :
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For every t ≥ 0, we have the ith Stiefel-Whitney class of (X̌t, ξt):

wi(ξ
t) = (ξt)∗(wi),

where (ξt)∗ : H∗(X̌t)← H∗(Gd(Rm)).

Definition:

The ith persistent Stiefel-Whitney class of X̌ is the collection (wi(ξ
t))t≥0.

Let X̌ ⊂ Rn × Gd(Rm),

(X̌t)t, (ξ
t)t its Čech bundle filtration,

i ≥ 0.



13/25 (2/2)Persistent Stiefel-Whitney classes

For every t ≥ 0, we have the ith Stiefel-Whitney class of (X̌t, ξt):

wi(ξ
t) = (ξt)∗(wi),

where (ξt)∗ : H∗(X̌t)← H∗(Gd(Rm)).

Definition:

The ith persistent Stiefel-Whitney class of X̌ is the collection (wi(ξ
t))t≥0.

Issue: ξt is not well-defined for every t ≥ 0...

Let X̌ ⊂ Rn × Gd(Rm),

(X̌t)t, (ξ
t)t its Čech bundle filtration,

i ≥ 0.



14/25 (1/2)Maximal filtration value

The extended maps ξt are defined as

But proj (A,Gd(Rm)) does not make sense if A lies in the medial axis of Gd(Rm).

There exists a maximal value tmax such that for all t ∈ [0, tmax), the maps ξt

are well-defined.

(x,A) 7−→ proj (A,Gd(Rm))

X̌t −→ Gd(Rm)ξt :



14/25 (2/2)Maximal filtration value

The extended maps ξt are defined as

But proj (A,Gd(Rm)) does not make sense if A lies in the medial axis of Gd(Rm).

There exists a maximal value tmax such that for all t ∈ [0, tmax), the maps ξt

are well-defined.

For any A ∈ M(Rm), let As denote the matrix As = 1
2 (A+ tA), and let

λ1(As), ..., λn(As) be the eigenvalues of As in decreasing order.

The distance from A to med (Gd(Rm)) is
√
2
2

∣∣λd(As)− λd+1(As)
∣∣.

Lemma

The persistent Stiefel-Whitney class (wi(ξ
t))t is defined for every t ∈ [0, tmax).

(x,A) 7−→ proj (A,Gd(Rm))

X̌t −→ Gd(Rm)ξt :



15/25 (1/2)Lifebar

Let X̌ ⊂ Rn ×M(Rm), and wi(X̌) its ith persistent Stiefel-Whitney class.

The lifebar of the persistent Stiefel-Whitney class wi(X̌) is the set{
t ∈ [0, tmax), wi(ξ

t) 6= 0
}
.

Definition

the lifebar is an interval!



15/25 (2/2)Lifebar

Let X̌ ⊂ Rn ×M(Rm), and wi(X̌) its ith persistent Stiefel-Whitney class.

The lifebar of the persistent Stiefel-Whitney class wi(X̌) is the set{
t ∈ [0, tmax), wi(ξ

t) 6= 0
}
.

Example: lifebars of first persistent Stiefel-Whitney classes

Definition

the lifebar is an interval!



16/25Stability

If two subsets X̌, Y̌ ⊂ Rn ×M(Rm) satisfies dH

(
X̌, Y̌

)
≤ ε, then for all i ≥ 0, the

lifebars of their ith Stiefel-Whitney classes are ε-close.

Theorem

w1(X̌)

w1(X̌)

w1(Y̌ )

w1(Y̌ )
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Normal bundle of the torus Normal bundle of the Klein bottle

Let X ⊂ Rn ×M(Rm) be any subset such that dH

(
X,M̌

)
≤ ε. Then for every

t ∈ [4ε, reach
(
M̌
)
− 3ε), the composition of inclusions M0 ↪→ M̌ ↪→ Xt induces an

isomorphism H∗(M0)← H∗(Xt) which sends the ith persistent Stiefel-Whitney
class wti(X) of the Čech bundle filtration of X to the ith Stiefel-Whitney class of
(M0, p).

If u : M0 →M⊂ Rn is an immersion and ξ : M0 → Gd(Rm) a vector bundle, consider
the set

M̌ = {(u(x0), ξ(x0)) , x0 ∈M0} ⊂ Rn ×M(Rm).

Theorem
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Normal bundle of the torus Normal bundle of the Klein bottle

Let X ⊂ Rn ×M(Rm) be any subset such that dH

(
X,M̌

)
≤ ε. Then for every

t ∈ [4ε, reach
(
M̌
)
− 3ε), the composition of inclusions M0 ↪→ M̌ ↪→ Xt induces an

isomorphism H∗(M0)← H∗(Xt) which sends the ith persistent Stiefel-Whitney
class wti(X) of the Čech bundle filtration of X to the ith Stiefel-Whitney class of
(M0, p).

If u : M0 →M⊂ Rn is an immersion and ξ : M0 → Gd(Rm) a vector bundle, consider
the set

M̌ = {(u(x0), ξ(x0)) , x0 ∈M0} ⊂ Rn ×M(Rm).

Theorem

orientable

non-orientable
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I - Stiefel-Whitney classes

II - Persistent Stiefel-Whitney classes

III - Algorithmic considerations
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Let X̌ ⊂ Rn × Gd(Rm) or X̌ ⊂ Rn ×M(Rm),

(X̌t)t, (ξ
t)t its Čech bundle filtration,

(wi(ξ
t))t its ith persistent Stiefel-Whitney class.

Problem:
Compute wi(ξ

t) on a computer.

X̌t Gd(Rm)

wi(ξ
t) wi

H∗(X̌t) H∗(Gd(Rm))

ξt :

(ξt)∗ :



19/25 (2/3)Simplicial approximation

Let X̌ ⊂ Rn × Gd(Rm) or X̌ ⊂ Rn ×M(Rm),

(X̌t)t, (ξ
t)t its Čech bundle filtration,

(wi(ξ
t))t its ith persistent Stiefel-Whitney class.

Problem:
Compute wi(ξ

t) on a computer.

Suppose that we have triangulations St of X̌t and G of Gd(Rm).

X̌t Gd(Rm)

wi(ξ
t) wi

H∗(X̌t) H∗(Gd(Rm))

ξt :

(ξt)∗ :

nerve of the union of balls see later
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∼

Let X̌ ⊂ Rn × Gd(Rm) or X̌ ⊂ Rn ×M(Rm),

(X̌t)t, (ξ
t)t its Čech bundle filtration,

(wi(ξ
t))t its ith persistent Stiefel-Whitney class.

Problem:
Compute wi(ξ

t) on a computer.

Suppose that we have triangulations St of X̌t and G of Gd(Rm).

X̌t Gd(Rm)

X̌t Gd(Rm)

|St| |G|

wi(ξ
t) wi

H∗(X̌t) H∗(Gd(Rm))

Denote their topological realizations |St| and |G|.

We look for a simplicial map pt : St → G that ‘corresponds to’ ξt.

ξt :

(ξt)∗ :

St G
?

ξt
∼
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X̌t Gd(Rm)

|St| |G| St G
?

ξt

g

The map g satisfies the star condition if:

for every vertex v ∈ St, there exists a vertex w ∈ G such that g
(∣∣St(v)

∣∣) ⊆ |St(w)|.

w

v

St G g(St)
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X̌t Gd(Rm)

|St| |G| St G

ξt

g

The map g satisfies the star condition if:

for every vertex v ∈ St, there exists a vertex w ∈ G such that g
(∣∣St(v)

∣∣) ⊆ |St(w)|.

If this is the case, let f : St → G be any map between vertex sets such that:

for every vertex v ∈ St, we have g
(∣∣St(v)

∣∣) ⊆ |St(f(v))|.

Such a map f is called a simplicial approximation to g. It is a simplicial map.
Its topological realization |f | is homotopic to g.

f

|f |

w

v



20/25 (3/3)Star condition

X̌t Gd(Rm)

|St| |G| St G

ξt

g

The map g satisfies the star condition if:

for every vertex v ∈ St, there exists a vertex w ∈ G such that g
(∣∣St(v)

∣∣) ⊆ |St(w)|.

If this is the case, let f : St → G be any map between vertex sets such that:

for every vertex v ∈ St, we have g
(∣∣St(v)

∣∣) ⊆ |St(f(v))|.

Such a map f is called a simplicial approximation to g. It is a simplicial map.
Its topological realization |f | is homotopic to g.

f

|f |

Remark:
If g does not satisfy the star condition, we can apply barycentric subdivisions to St.
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v

In practice, we cannot check whether g satisfies the star condition...

g
(∣∣St(v)

∣∣) ⊆ |St(w)|?

The map g satisfies the weak star condition if:

for every vertex v ∈ St, there exists a vertex w ∈ G such that
g
(∣∣vertices(St(v))

∣∣) ⊆ |St(w)|.

v

w

w



21/25 (2/2)Weak star condition

v

In practice, we cannot check whether g satisfies the star condition...

g
(∣∣St(v)

∣∣) ⊆ |St(w)|?

The map g satisfies the weak star condition if:

for every vertex v ∈ St, there exists a vertex w ∈ G such that
g
(∣∣vertices(St(v))

∣∣) ⊆ |St(w)|.

If this is the case, let f : St → G be any map between vertex sets such that:

for every vertex v ∈ St, we have g
(∣∣vertices(St(v))

∣∣) ⊆ |St(f(v))|.

Such a map f is called a weak simplicial approximation to g. It is a simplicial map.

Proposition:
If St is subdivised enough, then any weak simplicial approximation is a simplicial
approximation.

w



22/25 (1/2)Triangulations of the Grassmannian

The Grassmaniann Gd(Rn) has a well-known CW-complex structure.

However, I had some troubles finding explicit triangulations of Gd(Rn).

What is known: triangulations of G1(Rn), the projective spaces.

barycentric
subdivision

quotient by antipodal
relation

boundary of
n-simplex G1(Rn)



22/25 (2/2)Triangulations of the Grassmannian

The Grassmaniann Gd(Rn) has a well-known CW-complex structure.

However, I had some troubles finding explicit triangulations of Gd(Rn).

What is known: triangulations of G1(Rn), the projective spaces.

barycentric
subdivision

quotient by antipodal
relation

boundary of
n-simplex G1(Rn)

In practice, we will only consider the case d = 1.



23/25An algorithm for w1(ξ
t), t fixed

Consider the map ξt : X̌t → G1(Rm). We want to compute w1(ξt) = (ξt)∗(w1).

Compute a triangulation St of X̌t

Compute a triangulation G of G1(Rm)

Check whether ξt satisfies the weak star condition

If not, subdivise barycentric

Compute a weak simplicial approximation f to ξt

Compute the induced map in simplicial cohomology f∗ : H1(St)← H1(G)

Reminder: H1(G1(Rm)) = 〈w1〉 ' Z/2Z.

We have to find the image of (ξt)∗ : H1(Xt)← H1(G1(Rm))

The image of f∗ is w1(ξt)
(seen in simplicial cohomology)



24/25 (1/3)Computing the lifebar

Recall that the lifebar of w1(X) is the set{
t < tmax, w1(ξt) 6= 0

}
.

It is completely described by

t† = inf
{
t ∈ T,w1(ξt) 6= 0

}
,

with the convention inf(∅) = tmax.

Three possibilities for computing the lifebar:

Compute w1(ξt) for several values of t, and check whether w1(ξt) = 0 (dichotomic
search)

Use the persistent image algorithm of [Cohen-Steiner, Edelsbrunner, Harer, Morozov]

Use the formula on the next page

We have seen how to compute w1(ξt), t fixed.

Let X̌ ⊂ Rn × Gd(Rm),

(X̌t)t, (ξ
t)t its Čech bundle filtration,

(wi(ξ
t))t its ith persistent Stiefel-Whitney class.
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Let C(ξt) be the mapping cone of ξt : X̌t → G1(Rm).

Xt →M(πt)→ G1(Rm)

We have a long exact sequence

... −→ Hk(X̌t) −→ Hk+1(C(ξt)) −→ Hk+1(G1(Rm)) −→ Hk+1(X̌t) −→ ...

We deduce that

rank((ξt)∗) =
+∞∑
k=1

(−1)k
(

dimHk(X̌t)− dimHk+1(C(ξt)) + dimHk+1(G1(Rm))

)

Reminder: H1(G1(Rm)) = Z/2Z.
We have to find the image of (ξt)∗ : H1(X̌t)← H1(G1(Rm))

G1(Rm)

X̌t

C(ξt)



24/25 (3/3)Computing the lifebar

Let C(ξt) be the mapping cone of ξt : X̌t → G1(Rm).

Xt →M(πt)→ G1(Rm)

We have a long exact sequence

... −→ Hk(X̌t) −→ Hk+1(C(ξt)) −→ Hk+1(G1(Rm)) −→ Hk+1(X̌t) −→ ...

We deduce that

rank((ξt)∗) =
+∞∑
k=1

(−1)k
(

dimHk(X̌t)− dimHk+1(C(ξt)) + dimHk+1(G1(Rm))

)

Reminder: H1(G1(Rm)) = Z/2Z.
We have to find the image of (ξt)∗ : H1(X̌t)← H1(G1(Rm))

Can be computed with the persistence algorithm

G1(Rm)

X̌t

C(ξt)



25/25 (1/2)Conclusion

We defined persistent Stiefel-Whitney classes,

Proved stability and consistency results,

Proposed an algorithm when d = 1.

Need for a triangulation of Gd(Rm).

Ideas could be extended to other characteristic classes (Euler, Chern, Pontrjagin).

Perspectives:



25/25 (2/2)Conclusion

We defined persistent Stiefel-Whitney classes,

Proved stability and consistency results,

Proposed an algorithm when d = 1.

Need for a triangulation of Gd(Rm).

Ideas could be extended to other characteristic classes (Euler, Chern, Pontrjagin).

Perspectives:

Thank you!


