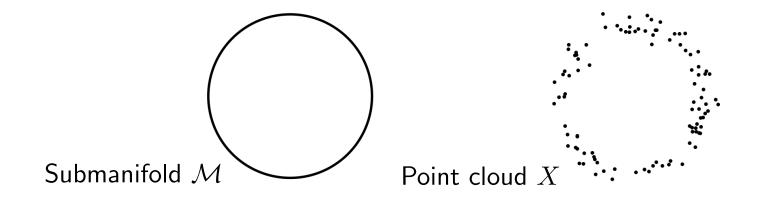
Persistent Stiefel-Whitney classes

Raphaël Tinarrage

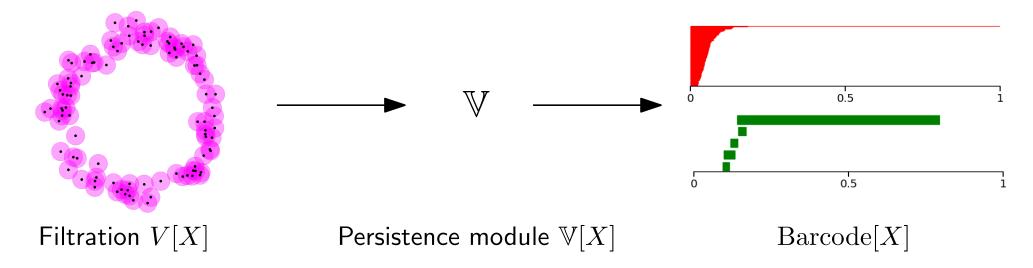
EPFL, Applied Topology Seminar, 03/11/2020

Persistent homology

We observe a point cloud X, that we suppose close to a submanifold \mathcal{M} .

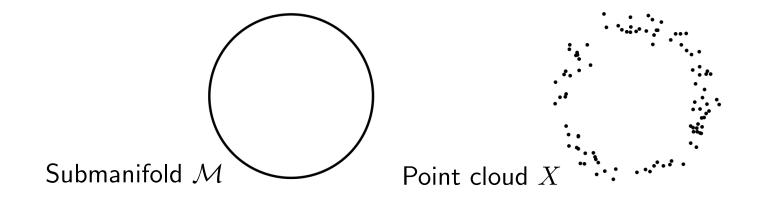


Persistent homology in practice:

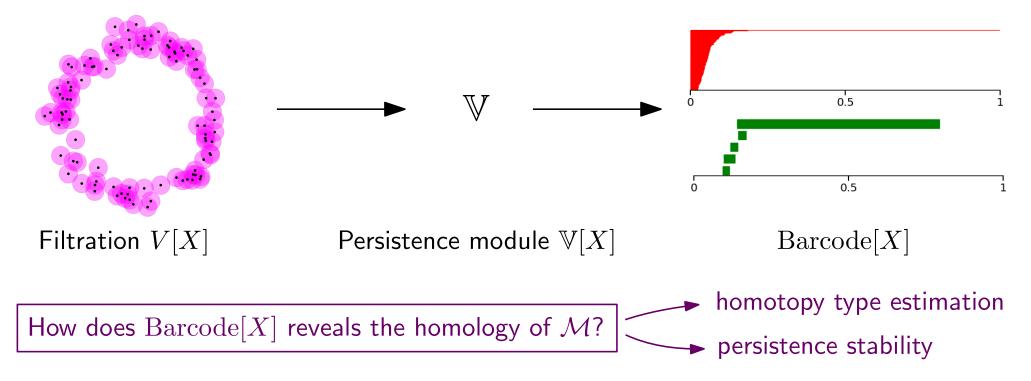


Persistent homology

We observe a point cloud X, that we suppose close to a submanifold \mathcal{M} .



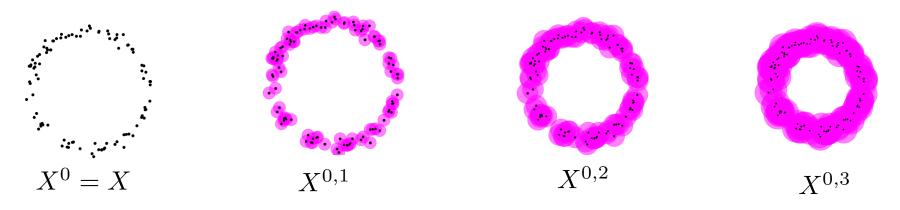
Persistent homology in practice:



2/25 (3/8)

The Čech filtration of X is the collection $V[X] = (X^t)_{t \ge 0}$ where X^t is the t-thickening of X:

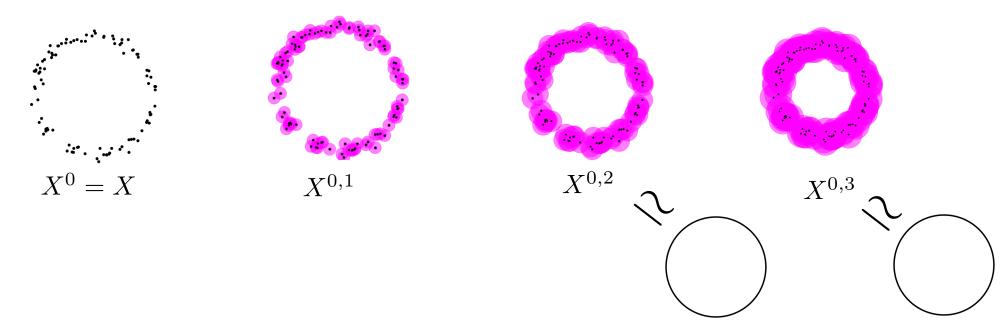
 $X^t = \{ y \in \mathbb{R}^n, \exists x \in X, \|x - y\| \le t \}.$



2/25 (4/8)

The Čech filtration of X is the collection $V[X] = (X^t)_{t \ge 0}$ where X^t is the t-thickening of X:

 $X^t = \{ y \in \mathbb{R}^n, \exists x \in X, \|x - y\| \le t \}.$



Theorem (Chazal, Cohen-Steiner, Lieutier, 2009)

Let \mathcal{M}, X be subsets of \mathbb{R}^n . Suppose that reach $(\mathcal{M}) > 0$ and $d_H(X, \mathcal{M}) \leq \frac{1}{17} \operatorname{reach}(\mathcal{M})$. Let

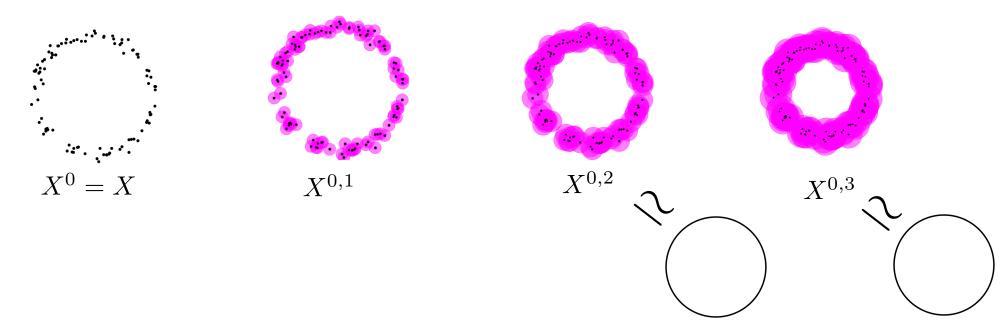
 $t \in [4d_{\mathrm{H}}(X, \mathcal{M}), \mathrm{reach}(\mathcal{M}) - 3d_{\mathrm{H}}(X, \mathcal{M})).$

Then X^t and \mathcal{M} are homotopy equivalent.

2/25 (5/8)

The Čech filtration of X is the collection $V[X] = (X^t)_{t \ge 0}$ where X^t is the t-thickening of X:

 $X^t = \{ y \in \mathbb{R}^n, \exists x \in X, \|x - y\| \le t \}.$



Theorem (Niyogi, Smale, Weinberger, 2008)

Let X and \mathcal{M} be subsets of \mathbb{R}^n , with \mathcal{M} a submanifold and $X \subset \mathcal{M}$ finite. Suppose that reach $(\mathcal{M}) > 0$. Let

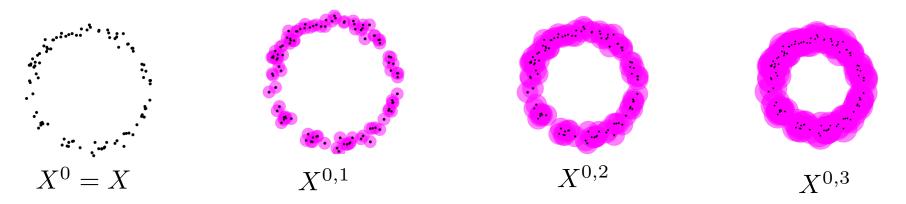
$$t \in \left[2d_{\mathrm{H}}(X, \mathcal{M}), \sqrt{\frac{3}{5}} \mathrm{reach}(\mathcal{M}) \right).$$

Then X^t and \mathcal{M} are homotopy equivalent.

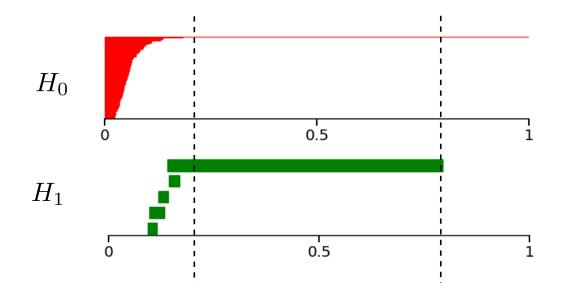
2/25 (6/8)

The Čech filtration of X is the collection $V[X] = (X^t)_{t \ge 0}$ where X^t is the t-thickening of X:

 $X^t = \{ y \in \mathbb{R}^n, \exists x \in X, \|x - y\| \le t \}.$



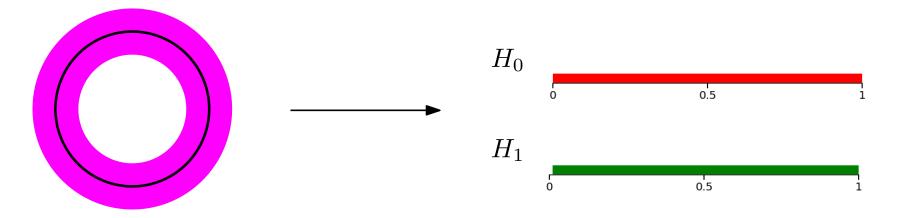
As a consequence, one reads the homology of \mathcal{M} on Barcode[X], on some interval.



Persistent homology Stability point of view

2/25 (7/8)

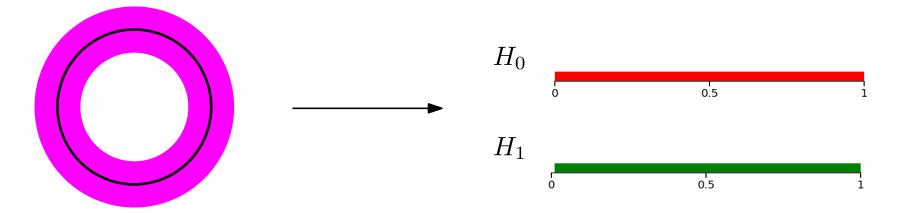
Let $V[\mathcal{M}]$ be the Čech filtration of \mathcal{M} . For every $t \in [0, \operatorname{reach}(\mathcal{M}))$, we have $\mathcal{M}^t \simeq \mathcal{M}$.



Persistent homology Stability point of view

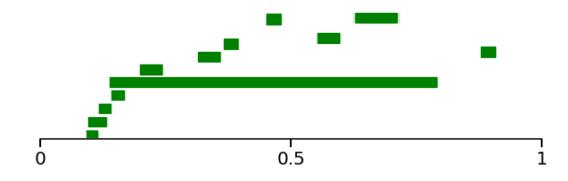
2/25 (8/8)

Let $V[\mathcal{M}]$ be the Čech filtration of \mathcal{M} . For every $t \in [0, \operatorname{reach}(\mathcal{M}))$, we have $\mathcal{M}^t \simeq \mathcal{M}$.



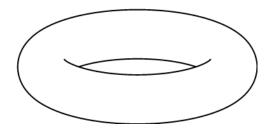
Let $\epsilon = d_H(X, \mathcal{M})$.

By stability theorem, Barcode[X] and $Barcode[\mathcal{M}]$ are ϵ -close in bottleneck distance.

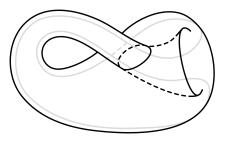


choose the largest bars!

Persistent homology allows to estimate the *homology* of a space. However, over $\mathbb{Z}/2\mathbb{Z}$, homology may not be fine enough to distinguish between non-homeomorphic spaces. non-homotopy equivalent spaces.



Torus



3/25 (1/7)

Klein bottle

 $\mathbb{Z}/2\mathbb{Z}$, $(\mathbb{Z}/2\mathbb{Z})^2$, $\mathbb{Z}/2\mathbb{Z}$, 0, ... $\mathbb{Z}/2\mathbb{Z}$, $(\mathbb{Z}/2\mathbb{Z})^2$, $\mathbb{Z}/2\mathbb{Z}$, 0, ...

3/25 (2/7)

	Torus	Klein bottle
$H_i(\mathcal{M}, \mathbb{Z}/2\mathbb{Z}), i \ge 0$	$\mathbb{Z}/2\mathbb{Z}$, $(\mathbb{Z}/2\mathbb{Z})^2$, $\mathbb{Z}/2\mathbb{Z}$, 0,	$\mathbb{Z}/2\mathbb{Z}$, $(\mathbb{Z}/2\mathbb{Z})^2$, $\mathbb{Z}/2\mathbb{Z}$, 0,
$H_i(\mathcal{M}, \mathbb{Z}/p\mathbb{Z}), i \ge 0$	$\mathbb{Z}/p\mathbb{Z}$, $(\mathbb{Z}/p\mathbb{Z})^2$, $\mathbb{Z}/p\mathbb{Z}$, 0,	$\mathbb{Z}/p\mathbb{Z}$, $\mathbb{Z}/p\mathbb{Z}$, 0, 0,
$H_i(\mathcal{M},\mathbb{Z}), i \ge 0$	\mathbb{Z} , \mathbb{Z}^2 , \mathbb{Z} , 0,	\mathbb{Z} , $\mathbb{Z}\oplus\mathbb{Z}/2\mathbb{Z}$, 0, 0,
$H^*(\mathcal{M},\mathbb{Z}/2\mathbb{Z})$	$\mathbb{Z}/2\mathbb{Z}[x,y]/\langle x^2,y^2\rangle$	$\mathbb{Z}/2\mathbb{Z}[x,y]/\langle x^3,y^2,x^2y\rangle$
$w_1(au)$	0	x

3/25 (3/7)

/	homology groups over $\mathbb{Z}/p\mathbb{Z}$	Torus	Klein bottle
	$H_i(\mathcal{M}, \mathbb{Z}/2\mathbb{Z}), i \ge 0$	$\mathbb{Z}/2\mathbb{Z}$, $(\mathbb{Z}/2\mathbb{Z})^2$, $\mathbb{Z}/2\mathbb{Z}$, 0,	$\mathbb{Z}/2\mathbb{Z}$, $(\mathbb{Z}/2\mathbb{Z})^2$, $\mathbb{Z}/2\mathbb{Z}$, 0,
	$H_i(\mathcal{M}, \mathbb{Z}/p\mathbb{Z}), i \ge 0$	$\mathbb{Z}/p\mathbb{Z}$, $(\mathbb{Z}/p\mathbb{Z})^2$, $\mathbb{Z}/p\mathbb{Z}$, 0,	$\mathbb{Z}/p\mathbb{Z}$, $\mathbb{Z}/p\mathbb{Z}$, 0, 0,
	$H_i(\mathcal{M},\mathbb{Z}), i \ge 0$	\mathbb{Z} , \mathbb{Z}^2 , \mathbb{Z} , 0,	$\mathbb{Z},\ \mathbb{Z}\oplus\mathbb{Z}/2\mathbb{Z}$, 0, 0,
	$H^*(\mathcal{M},\mathbb{Z}/2\mathbb{Z})$	$\mathbb{Z}/2\mathbb{Z}[x,y]/\langle x^2,y^2\rangle$	$\mathbb{Z}/2\mathbb{Z}[x,y]/\langle x^3,y^2,x^2y\rangle$
	$w_1(au)$	0	x

3/25 (4/7)

(homology groups over $\mathbb Z$	Torus	Klein bottle
	$H_i(\mathcal{M}, \mathbb{Z}/2\mathbb{Z}), i \ge 0$	$\mathbb{Z}/2\mathbb{Z}$, $(\mathbb{Z}/2\mathbb{Z})^2$, $\mathbb{Z}/2\mathbb{Z}$, 0,	$\mathbb{Z}/2\mathbb{Z}$, $(\mathbb{Z}/2\mathbb{Z})^2$, $\mathbb{Z}/2\mathbb{Z}$, 0,
	$H_i(\mathcal{M}, \mathbb{Z}/p\mathbb{Z}), i \ge 0$	$\mathbb{Z}/p\mathbb{Z}$, $(\mathbb{Z}/p\mathbb{Z})^2$, $\mathbb{Z}/p\mathbb{Z}$, 0,	$\mathbb{Z}/p\mathbb{Z}$, $\mathbb{Z}/p\mathbb{Z}$, 0, 0,
	$H_i(\mathcal{M},\mathbb{Z}), i \ge 0$	\mathbb{Z} , \mathbb{Z}^2 , \mathbb{Z} , 0,	$\mathbb{Z},\ \mathbb{Z}\oplus\mathbb{Z}/2\mathbb{Z}$, 0, 0,
	$H^*(\mathcal{M},\mathbb{Z}/2\mathbb{Z})$	$\mathbb{Z}/2\mathbb{Z}[x,y]/\langle x^2,y^2\rangle$	$\mathbb{Z}/2\mathbb{Z}[x,y]/\langle x^3,y^2,x^2y\rangle$
	$w_1(au)$	0	x

3/25 (5/7)

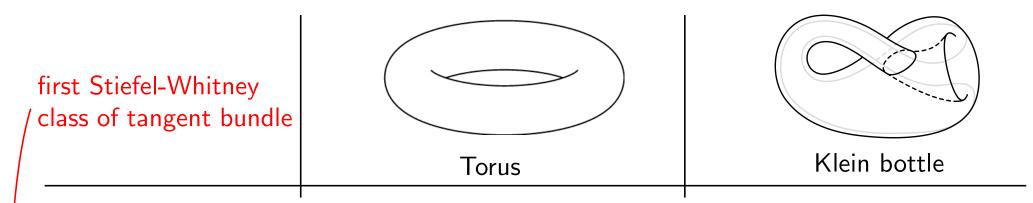
 cohomology algebra over $\mathbb{Z}/2\mathbb{Z}$	Torus	Klein bottle
$H_i(\mathcal{M}, \mathbb{Z}/2\mathbb{Z}), i \ge 0$	$\mathbb{Z}/2\mathbb{Z}$, $(\mathbb{Z}/2\mathbb{Z})^2$, $\mathbb{Z}/2\mathbb{Z}$, 0,	$\mathbb{Z}/2\mathbb{Z}$, $(\mathbb{Z}/2\mathbb{Z})^2$, $\mathbb{Z}/2\mathbb{Z}$, 0,
$H_i(\mathcal{M}, \mathbb{Z}/p\mathbb{Z}), i \ge 0$	$\mathbb{Z}/p\mathbb{Z}$, $(\mathbb{Z}/p\mathbb{Z})^2$, $\mathbb{Z}/p\mathbb{Z}$, 0,	$\mathbb{Z}/p\mathbb{Z}$, $\mathbb{Z}/p\mathbb{Z}$, 0, 0,
$H_i(\mathcal{M},\mathbb{Z}), i \ge 0$	\mathbb{Z} , \mathbb{Z}^2 , \mathbb{Z} , 0,	\mathbb{Z} , $\mathbb{Z}\oplus\mathbb{Z}/2\mathbb{Z}$, 0, 0,
$H^*(\mathcal{M},\mathbb{Z}/2\mathbb{Z})$	$\mathbb{Z}/2\mathbb{Z}[x,y]/\langle x^2,y^2\rangle$	$\mathbb{Z}/2\mathbb{Z}[x,y]/\langle x^3,y^2,x^2y\rangle$
$w_1(au)$	0	x

3/25 (6/7)

first Stiefel-Whitney class of tangent bundle	Torus	Klein bottle
$H_i(\mathcal{M}, \mathbb{Z}/2\mathbb{Z}), i \ge 0$	$\mathbb{Z}/2\mathbb{Z}$, $(\mathbb{Z}/2\mathbb{Z})^2$, $\mathbb{Z}/2\mathbb{Z}$, 0,	$\mathbb{Z}/2\mathbb{Z}$, $(\mathbb{Z}/2\mathbb{Z})^2$, $\mathbb{Z}/2\mathbb{Z}$, 0,
$H_i(\mathcal{M}, \mathbb{Z}/p\mathbb{Z}), i \ge 0$	$\mathbb{Z}/p\mathbb{Z}$, $(\mathbb{Z}/p\mathbb{Z})^2$, $\mathbb{Z}/p\mathbb{Z}$, 0,	$\mathbb{Z}/p\mathbb{Z}$, $\mathbb{Z}/p\mathbb{Z}$, 0, 0,
$H_i(\mathcal{M},\mathbb{Z}), i \ge 0$	$\mathbb{Z}, \mathbb{Z}^2, \mathbb{Z}, 0, \dots$	\mathbb{Z} , $\mathbb{Z}\oplus\mathbb{Z}/2\mathbb{Z}$, 0, 0,
$H^*(\mathcal{M},\mathbb{Z}/2\mathbb{Z})$	$\mathbb{Z}/2\mathbb{Z}[x,y]/\langle x^2,y^2\rangle$	$\mathbb{Z}/2\mathbb{Z}[x,y]/\langle x^3,y^2,x^2y\rangle$
$w_1(au)$	0	x

3/25 (7/7)

Persistent homology allows to estimate the *homology* of a space. However, over $\mathbb{Z}/2\mathbb{Z}$, homology may not be fine enough to distinguish between non-homeomorphic spaces. non-homotopy equivalent spaces.



Aim of this talk:

Building a persistent framework for Stiefel-Whitney classes, with consistency and stability inspired from persistent homology.

L			
	(π)	0	~
	$W_1(\mathcal{T})$	0	\mathcal{X}

I - Stiefel-Whitney classes

II - Persistent Stiefel-Whitney classes

III - Algorithmic considerations

Vector bundles

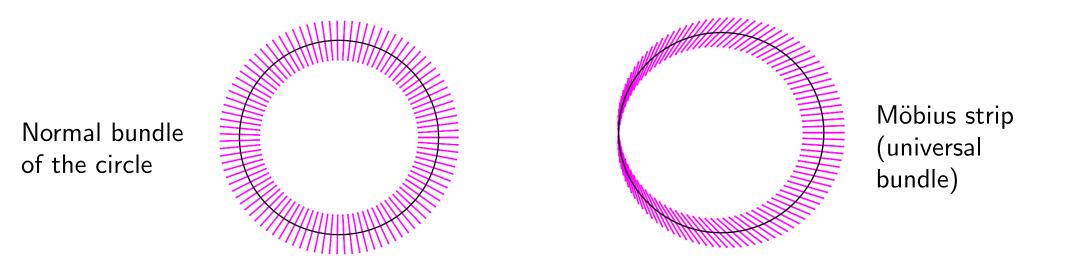
5/25 (1/2)

Definition:

A vector bundle (of dimension d) over X is a surjection $\pi: E \to X$, with E a topological space, such that:

- the fibers $\pi^{-1}(\{x\}), x \in X$, are vector spaces of dimension d,
- $\bullet~\pi$ satisfies a local triviality condition.

Local triviality condition: for all $x \in X$, there exists a neigborhood $U \subset X$ and a homeomorphism $h: U \times \mathbb{R}^d \to \pi^{-1}(U)$ such that for all $y \in U$, $h(y, \cdot)$ is an isomorphism of vector spaces.



Vector bundles

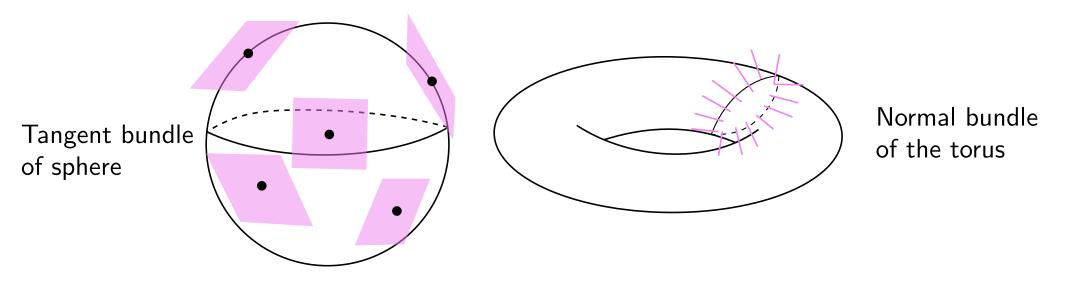
5/25 (2/2)

Definition:

A vector bundle (of dimension d) over X is a surjection $\pi: E \to X$, with E a topological space, such that:

- the fibers $\pi^{-1}(\{x\}), x \in X$, are vector spaces of dimension d,
- $\bullet~\pi$ satisfies a local triviality condition.

Local triviality condition: for all $x \in X$, there exists a neigborhood $U \subset X$ and a homeomorphism $h: U \times \mathbb{R}^d \to \pi^{-1}(U)$ such that for all $y \in U$, $h(y, \cdot)$ is an isomorphism of vector spaces.



Stiefel-Whitney classes (axioms)

6/25 (1/2)

For every vector bundle $\pi \colon E \to X$, there exists a sequence of cohomology classes

 $w_0(\pi) \in H^0(X, \mathbb{Z}/2\mathbb{Z}),$ $w_1(\pi) \in H^1(X, \mathbb{Z}/2\mathbb{Z}),$ $w_2(\pi) \in H^2(X, \mathbb{Z}/2\mathbb{Z}),$ $w_3(\pi) \in H^3(X, \mathbb{Z}/2\mathbb{Z}),$

that satisfy the following axioms:

- Axiom 1: $w_0(\pi)$ is equal to $1 \in H^0(X, \mathbb{Z}/2\mathbb{Z})$, and if π is of dimension d then $w_i(\pi) = 0$ for i > d.
- Axiom 2: if $f: \pi \to \rho$ is a bundle map, then $w_i(\pi) = f^*(w_i(\rho))$, where $f^*: H^*(X) \leftarrow H^*(Y)$ is the map induced in cohomology by f.
- Axiom 3: if π, ρ are vector bundles over the same base space X, then for all $k \in \mathbb{N}$, $w_k(\pi \oplus \rho) = \sum_{i=0}^k w_i(\pi) \smile w_{k-i}(\rho)$ (cup product).
- Axiom 4: $w_1(\gamma_1^1) \neq 0$, where γ_1^1 denotes the Möbius strip bundle over the circle.

Stiefel-Whitney classes (axioms)

6/25 (2/2)

For every vector bundle $\pi \colon E \to X$, there exists a sequence of cohomology classes

 $w_0(\pi) \in H^0(X, \mathbb{Z}/2\mathbb{Z}),$ $w_1(\pi) \in H^1(X, \mathbb{Z}/2\mathbb{Z}),$ $w_2(\pi) \in H^2(X, \mathbb{Z}/2\mathbb{Z}),$ $w_3(\pi) \in H^3(X, \mathbb{Z}/2\mathbb{Z}),$

Basic properties:

- If two bundles are isomorphic, then their Stiefel-Whitney classes are equal.
- If π admits a (nowhere vanishing) section, then $w_d(\pi) = 0$.
- If π admits k independent (nowhere vanishing) sections, then $w_d(\pi) = \dots w_{d-k+1}(\pi) = 0.$

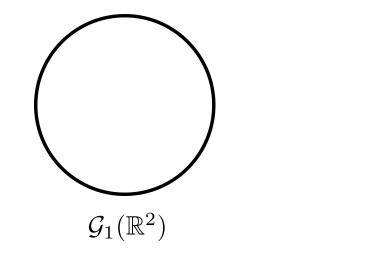
Topological information:

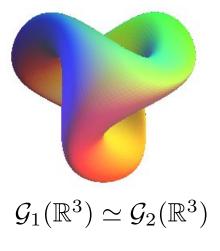
- If τ is the tangent bundle of a manifold \mathcal{M} , then \mathcal{M} is orientable if and only if $w_1(\tau) = 0$.
- \mathcal{M} admits a spin structure if and only if $w_1(\tau) = 0$ and $w_2(\tau) = 0$.

The Grassmann manifolds

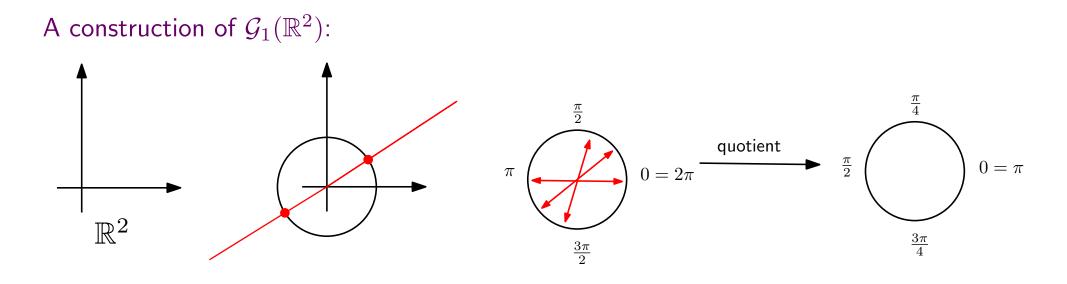
Let $d, n \ge 1$.

The *Grassmannian* $\mathcal{G}_d(\mathbb{R}^n)$ is the set of *d*-dimensional linear subspaces of \mathbb{R}^n . It can be endowed with a manifold structure, of dimension d(n-d).





7/25 (1/3)

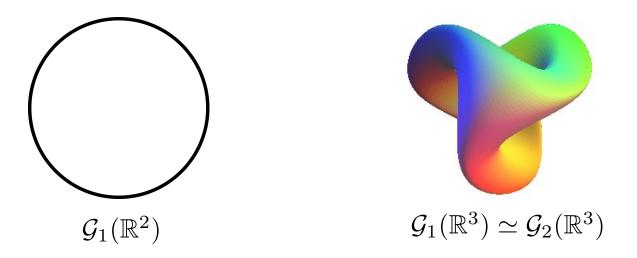


The Grassmann manifolds

7/25 (2/3)

Let $d, n \ge 1$.

The *Grassmannian* $\mathcal{G}_d(\mathbb{R}^n)$ is the set of *d*-dimensional linear subspaces of \mathbb{R}^n . It can be endowed with a manifold structure, of dimension d(n-d).



Let \mathbb{R}^{∞} denotes the space of sequences of real numbers that are zero from some point. We can also define the *infinite Grassmannian* $\mathcal{G}_d(\mathbb{R}^{\infty})$.

```
The infinite Grassmannian has \mathbb{Z}/2\mathbb{Z}-cohomology
H^*(\mathcal{G}_d(\mathbb{R}^\infty)) = \mathbb{Z}/2\mathbb{Z}[w_1, ..., w_d]
where w_i has degree i.
```

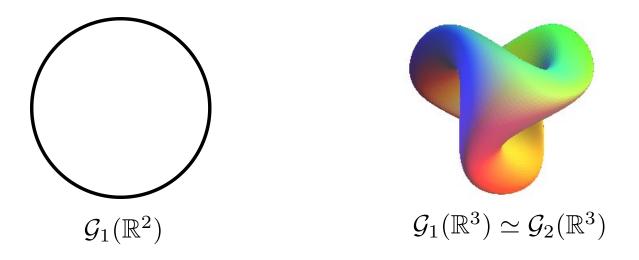
In particular, $H^*(\mathcal{G}_1(\mathbb{R}^\infty)) = \mathbb{Z}/2\mathbb{Z}[w_1].$

The Grassmann manifolds

7/25 (3/3)

Let $d, n \ge 1$.

The *Grassmannian* $\mathcal{G}_d(\mathbb{R}^n)$ is the set of *d*-dimensional linear subspaces of \mathbb{R}^n . It can be endowed with a manifold structure, of dimension d(n-d).



Let $M(\mathbb{R}^n)$ be the space of $n \times n$ matrices.

For every linear subspace $T \subset \mathbb{R}^n$, let p_T denotes the orthogonal projection matrix on T.

The application $T \in \mathcal{G}_d(\mathbb{R}^n) \longmapsto p_T \in \mathcal{M}(\mathbb{R}^n)$ is an embedding.

Hence $\mathcal{G}_d(\mathbb{R}^n)$ can be seen as a submanifold of $M(\mathbb{R}^n)$.

Vector bundles $(2^{nd} \text{ definition})$

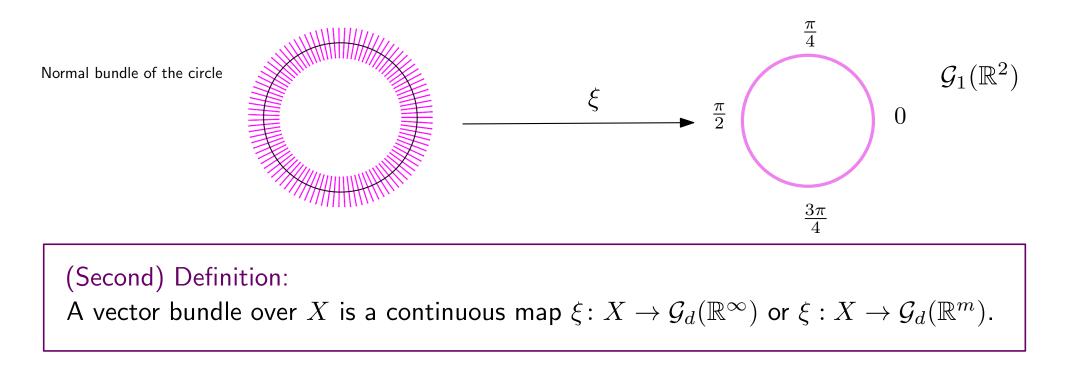
8/25

Correspondence vector bundles / classifying maps:

Let X is a topological space. From any continuous map $\xi \colon X \to \mathcal{G}_d(\mathbb{R}^n)$, we can build a *d*-dimensional vector bundle structure on X.

Conversely, for any vector bundle $\pi \colon E \to X$, there exists a corresponding map $\xi \colon X \to \mathcal{G}_d(\mathbb{R}^\infty)$, called a *classifying map*.

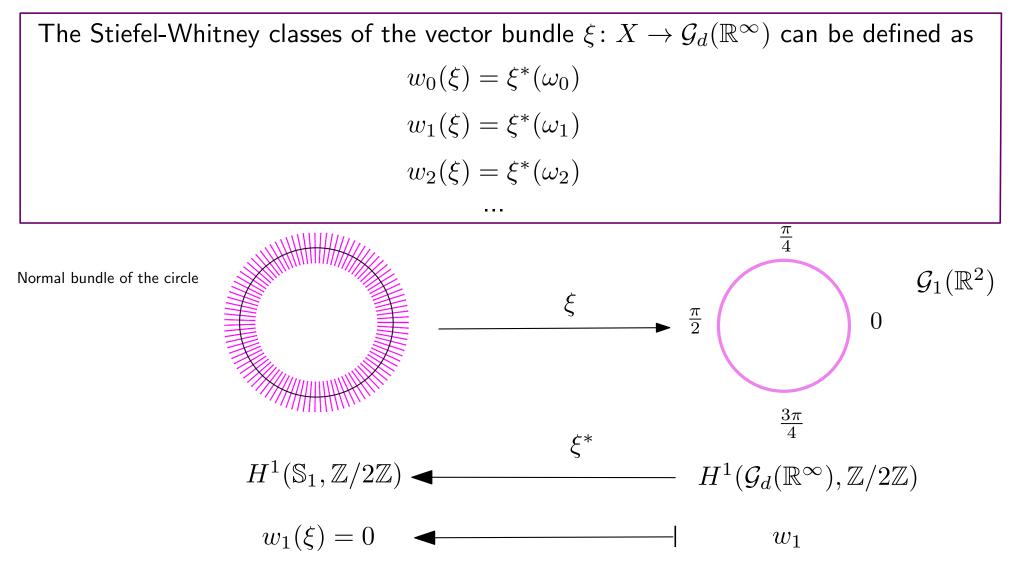
Moreover, if X is compact, we can choose $\xi \colon X \to \mathcal{G}_d(\mathbb{R}^m)$ for m large enough.



Stiefel-Whitney classes (construction) 9/25 (1/2)

Let $\xi: X \to \mathcal{G}_d(\mathbb{R}^\infty)$ be a vector bundle, and $\xi^*: H^*(X, \mathbb{Z}/2\mathbb{Z}) \leftarrow H^*(\mathcal{G}_d(\mathbb{R}^\infty), \mathbb{Z}/2\mathbb{Z})$ the map induced in cohomology.

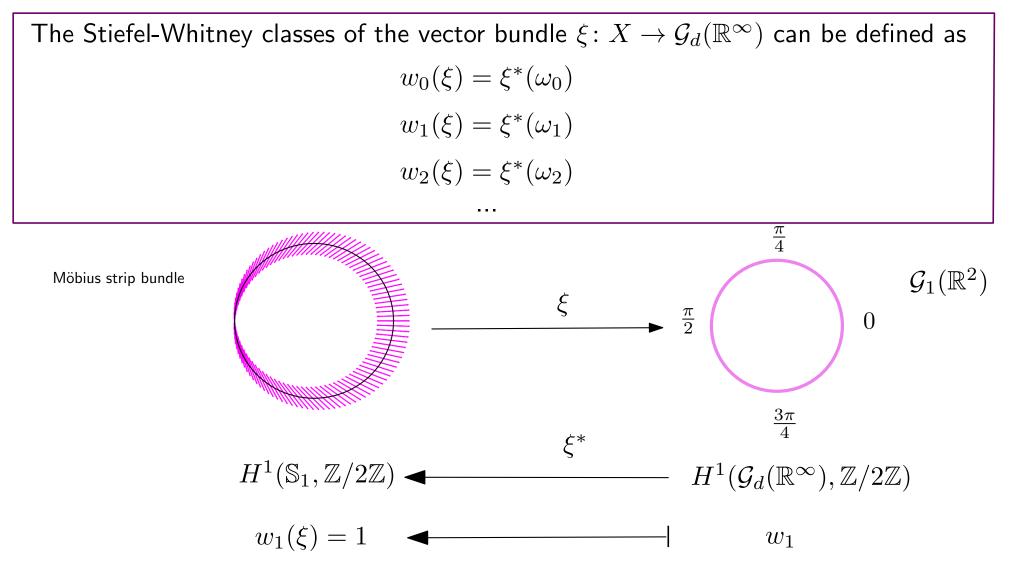
Recall that $H^*(\mathcal{G}_d(\mathbb{R}^\infty)) = \mathbb{Z}/2\mathbb{Z}[w_1, ..., w_d].$



Stiefel-Whitney classes (construction) 9/25 (2/2)

Let $\xi: X \to \mathcal{G}_d(\mathbb{R}^\infty)$ be a vector bundle, and $\xi^*: H^*(X, \mathbb{Z}/2\mathbb{Z}) \leftarrow H^*(\mathcal{G}_d(\mathbb{R}^\infty), \mathbb{Z}/2\mathbb{Z})$ the map induced in cohomology.

Recall that $H^*(\mathcal{G}_d(\mathbb{R}^\infty)) = \mathbb{Z}/2\mathbb{Z}[w_1, ..., w_d].$



I - Stiefel-Whitney classes

II - Persistent Stiefel-Whitney classes

III - Algorithmic considerations

Adopting a persistent viewpoint

11/25 (1/3)

Sampling model for vector bundles:

Let n, m, d > 0. We observe | a point cloud $X \subset \mathbb{R}^n$ and a map $\xi \colon X \to \mathcal{G}_d(\mathbb{R}^m)$.

Adopting a persistent viewpoint

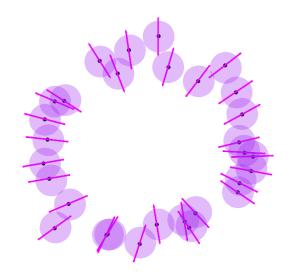
Sampling model for vector bundles:

Let n, m, d > 0. We observe | a point cloud $X \subset \mathbb{R}^n$ and a map $\xi \colon X \to \mathcal{G}_d(\mathbb{R}^m)$.

11/25 (2/3)

Defining a vector bundle filtration:

Let $(X^t)_{t\geq 0}$ be the Čech filtration of X. We want to define maps $\xi^t \colon X^t \to \mathcal{G}_d(\mathbb{R}^m)$.



Adopting a persistent viewpoint

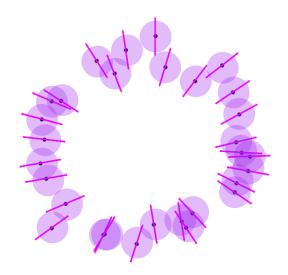
Sampling model for vector bundles:

Let n, m, d > 0. We observe | a point cloud $X \subset \mathbb{R}^n$ and a map $\xi \colon X \to \mathcal{G}_d(\mathbb{R}^m)$.

11/25 (3/3)

Defining a vector bundle filtration:

Let $(X^t)_{t\geq 0}$ be the Čech filtration of X. We want to define maps $\xi^t \colon X^t \to \mathcal{G}_d(\mathbb{R}^m)$.



Nothing interesting to do here...

A persistent viewpoint $(2^{nd} \text{ attempt})_{12/25} (1/3)$

Sampling model for vector bundles:

Let n, m, d > 0. We observe a point cloud $X \subset \mathbb{R}^n$ and a map $\xi \colon X \to \mathcal{G}_d(\mathbb{R}^m)$. \longleftrightarrow a point cloud $\check{X} \subset \mathbb{R}^n \times \mathcal{G}_d(\mathbb{R}^m)$.

$$\check{X} = \{(x,\xi(x)), x \in X\}$$

A persistent viewpoint $(2^{nd} \text{ attempt})_{12/25} (2/3)$

Sampling model for vector bundles:

Let n, m, d > 0. We observe a point cloud $X \subset \mathbb{R}^n$ and a map $\xi \colon X \to \mathcal{G}_d(\mathbb{R}^m)$. \longleftrightarrow a point cloud $\check{X} \subset \mathbb{R}^n \times \mathcal{G}_d(\mathbb{R}^m)$.

$$\check{X} = \{(x,\xi(x)), x \in X\}$$

- By embedding $\mathcal{G}_d(\mathbb{R}^m) \hookrightarrow \mathrm{M}(\mathbb{R}^m)$, we can see \check{X} as a subset of $\mathbb{R}^n \times \mathrm{M}(\mathbb{R}^m)$.
- Let $(\check{X}^t)_{t\geq 0}$ be the Čech filtration of \check{X} in the ambient space $\mathbb{R}^n \times M(\mathbb{R}^m)$, endowed with the metric $||(x, A)|| = \sqrt{||x||_2^2 + ||A||_F^2}$.
- We can define extended maps ξ^t as follows:

$$\begin{aligned} \xi^t &: \quad \check{X}^t \longrightarrow \mathcal{G}_d(\mathbb{R}^m) \\ & (x, A) \longmapsto \operatorname{proj}\left(A, \mathcal{G}_d(\mathbb{R}^m)\right) \end{aligned}$$

A persistent viewpoint $(2^{nd} \text{ attempt})_{12/25} (3/3)$

Sampling model for vector bundles:

Let n, m, d > 0. We observe a point cloud $X \subset \mathbb{R}^n$ and a map $\xi \colon X \to \mathcal{G}_d(\mathbb{R}^m)$. \longleftrightarrow a point cloud $\check{X} \subset \mathbb{R}^n \times \mathcal{G}_d(\mathbb{R}^m)$.

$$\check{X} = \{(x,\xi(x)), x \in X\}$$

- By embedding $\mathcal{G}_d(\mathbb{R}^m) \hookrightarrow \mathrm{M}(\mathbb{R}^m)$, we can see \check{X} as a subset of $\mathbb{R}^n \times \mathrm{M}(\mathbb{R}^m)$.
- Let $(\check{X}^t)_{t\geq 0}$ be the Čech filtration of \check{X} in the ambient space $\mathbb{R}^n \times M(\mathbb{R}^m)$, endowed with the metric $||(x, A)|| = \sqrt{||x||_2^2 + ||A||_F^2}$.
- We can define extended maps ξ^t as follows:

$$\xi^t \colon \check{X}^t \longrightarrow \mathcal{G}_d(\mathbb{R}^m)$$
$$(x, A) \longmapsto \operatorname{proj}\left(A, \mathcal{G}_d(\mathbb{R}^m)\right)$$

Definition:

The data of $(\check{X}^t)_{t\geq 0}$ and $(\xi^t \colon \check{X}^t \to \mathcal{G}_d(\mathbb{R}^m))_{t\geq 0}$ is called the *Čech bundle filtration* of \check{X} .

Persistent Stiefel-Whitney classes

13/25 (1/2)

Let
$$|\check{X} \subset \mathbb{R}^n \times \mathcal{G}_d(\mathbb{R}^m)$$
,
 $(\check{X}^t)_t, (\xi^t)_t$ its Čech bundle filtration,
 $i \ge 0$.

For every $t \ge 0$, we have the i^{th} Stiefel-Whitney class of (\check{X}^t, ξ^t) :

$$w_i(\xi^t) = (\xi^t)^*(w_i),$$

where $(\xi^t)^* \colon H^*(\check{X}^t) \leftarrow H^*(\mathcal{G}_d(\mathbb{R}^m)).$

Definition:

The *i*th persistent Stiefel-Whitney class of \check{X} is the collection $(w_i(\xi^t))_{t\geq 0}$.

Persistent Stiefel-Whitney classes

13/25 (2/2)

Let
$$|\check{X} \subset \mathbb{R}^n \times \mathcal{G}_d(\mathbb{R}^m)$$
,
 $(\check{X}^t)_t, (\xi^t)_t$ its Čech bundle filtration,
 $i \ge 0$.

For every $t \ge 0$, we have the i^{th} Stiefel-Whitney class of (\check{X}^t, ξ^t) :

$$w_i(\xi^t) = (\xi^t)^*(w_i),$$

where $(\xi^t)^* \colon H^*(\check{X}^t) \leftarrow H^*(\mathcal{G}_d(\mathbb{R}^m)).$

Definition:

The *i*th persistent Stiefel-Whitney class of \check{X} is the collection $(w_i(\xi^t))_{t\geq 0}$.

Issue: ξ^t is not well-defined for every $t \ge 0...$

Maximal filtration value

14/25 (1/2)

The extended maps ξ^t are defined as

$$\xi^t \colon \overset{\check{X}^t}{\longrightarrow} \mathcal{G}_d(\mathbb{R}^m) \\ (x, A) \longmapsto \operatorname{proj}\left(A, \mathcal{G}_d(\mathbb{R}^m)\right)$$

But $\operatorname{proj}(A, \mathcal{G}_d(\mathbb{R}^m))$ does not make sense if A lies in the medial axis of $\mathcal{G}_d(\mathbb{R}^m)$.

There exists a maximal value t^{\max} such that for all $t \in [0, t^{\max})$, the maps ξ^t are well-defined.

Maximal filtration value

14/25 (2/2)

The extended maps ξ^t are defined as

$$\xi^{t} \colon \overset{\check{X}^{t}}{\longrightarrow} \mathcal{G}_{d}(\mathbb{R}^{m}) \\ (x, A) \longmapsto \operatorname{proj}\left(A, \mathcal{G}_{d}(\mathbb{R}^{m})\right)$$

But $\operatorname{proj}(A, \mathcal{G}_d(\mathbb{R}^m))$ does not make sense if A lies in the medial axis of $\mathcal{G}_d(\mathbb{R}^m)$.

There exists a maximal value t^{\max} such that for all $t \in [0, t^{\max})$, the maps ξ^t are well-defined.

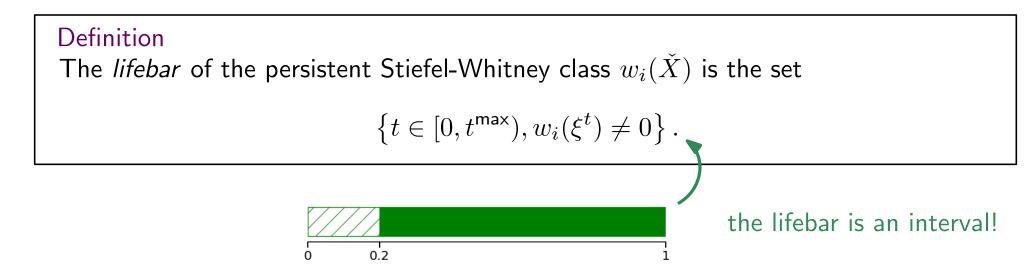
Lemma For any $A \in M(\mathbb{R}^m)$, let A^s denote the matrix $A^s = \frac{1}{2}(A + {}^tA)$, and let $\lambda_1(A^s), ..., \lambda_n(A^s)$ be the eigenvalues of A^s in decreasing order. The distance from A to med $(\mathcal{G}_d(\mathbb{R}^m))$ is $\frac{\sqrt{2}}{2} |\lambda_d(A^s) - \lambda_{d+1}(A^s)|$.

The persistent Stiefel-Whitney class $(w_i(\xi^t))_t$ is defined for every $t \in [0, t^{\max})$.

Lifebar

15/25 (1/2)

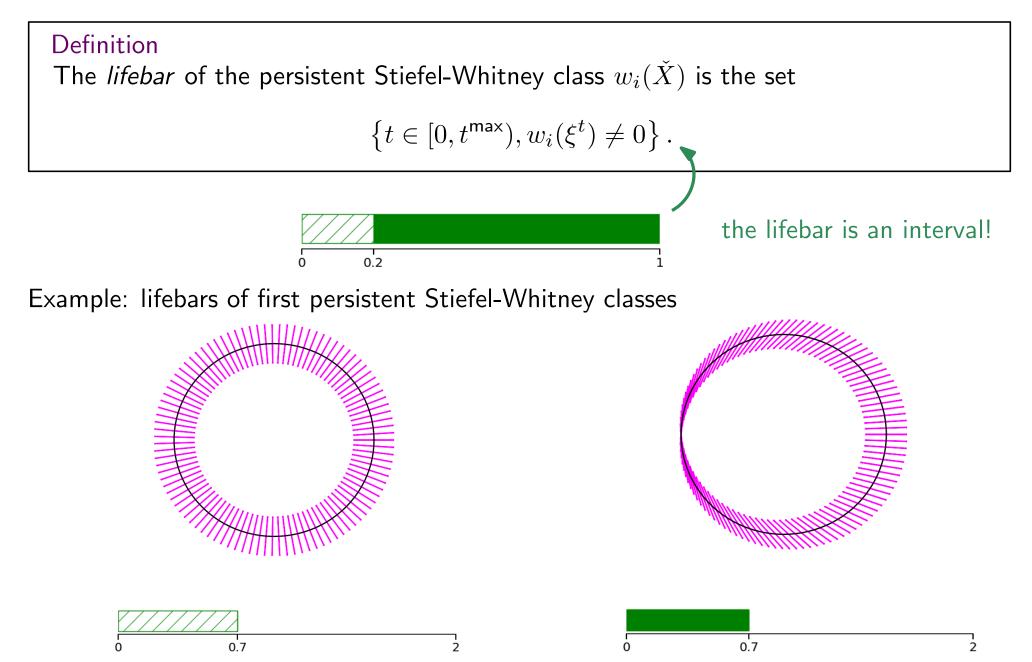
Let $\check{X} \subset \mathbb{R}^n \times M(\mathbb{R}^m)$, and $w_i(\check{X})$ its i^{th} persistent Stiefel-Whitney class.



Lifebar

15/25 (2/2)

Let $\check{X} \subset \mathbb{R}^n \times M(\mathbb{R}^m)$, and $w_i(\check{X})$ its i^{th} persistent Stiefel-Whitney class.

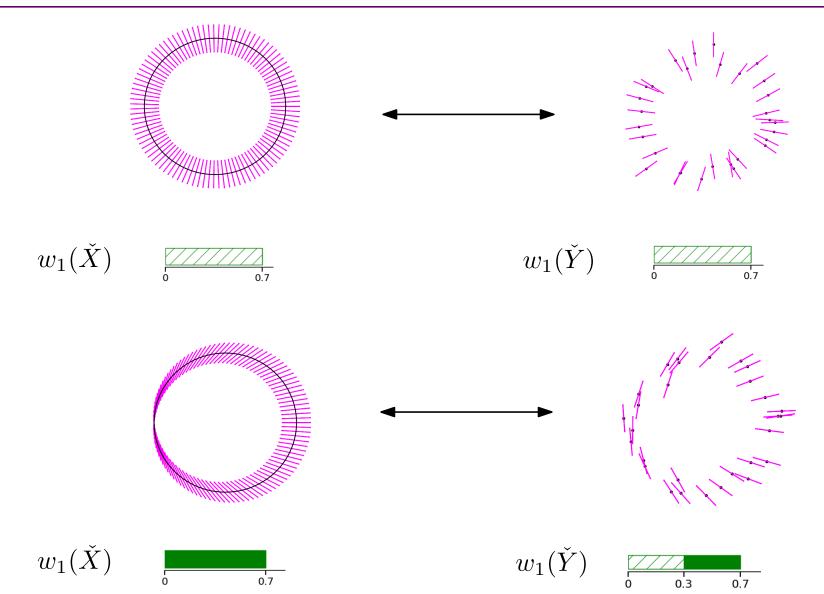


Stability

16/25

Theorem

If two subsets $\check{X}, \check{Y} \subset \mathbb{R}^n \times M(\mathbb{R}^m)$ satisfies $d_H(\check{X}, \check{Y}) \leq \epsilon$, then for all $i \geq 0$, the lifebars of their i^{th} Stiefel-Whitney classes are ϵ -close.



Consistency

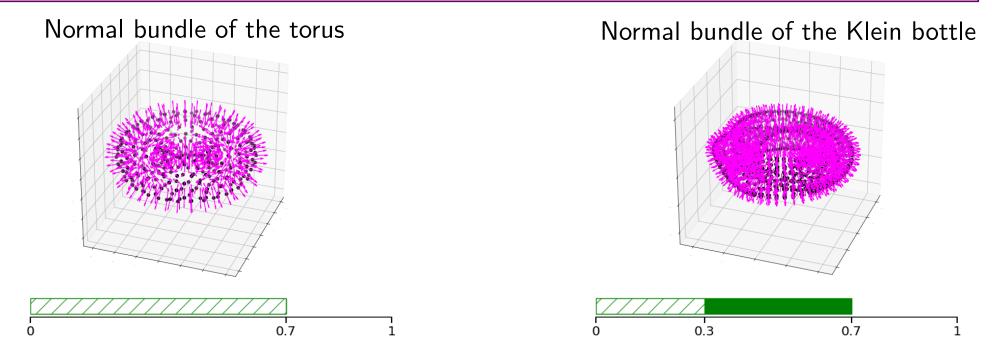
17/25 (1/2)

If $u: \mathcal{M}_0 \to \mathcal{M} \subset \mathbb{R}^n$ is an immersion and $\xi: \mathcal{M}_0 \to \mathcal{G}_d(\mathbb{R}^m)$ a vector bundle, consider the set

$$\check{\mathcal{M}} = \{ (u(x_0), \xi(x_0)), x_0 \in \mathcal{M}_0 \} \subset \mathbb{R}^n \times \mathcal{M}(\mathbb{R}^m).$$

Theorem

Let $X \subset \mathbb{R}^n \times \mathrm{M}(\mathbb{R}^m)$ be any subset such that $\mathrm{d}_{\mathrm{H}}(X, \check{\mathcal{M}}) \leq \epsilon$. Then for every $t \in [4\epsilon, \mathrm{reach}(\check{\mathcal{M}}) - 3\epsilon)$, the composition of inclusions $\mathcal{M}_0 \hookrightarrow \check{\mathcal{M}} \hookrightarrow X^t$ induces an isomorphism $H^*(\mathcal{M}_0) \leftarrow H^*(X^t)$ which sends the i^{th} persistent Stiefel-Whitney class $w_i^t(X)$ of the Čech bundle filtration of X to the i^{th} Stiefel-Whitney class of (\mathcal{M}_0, p) .



Consistency

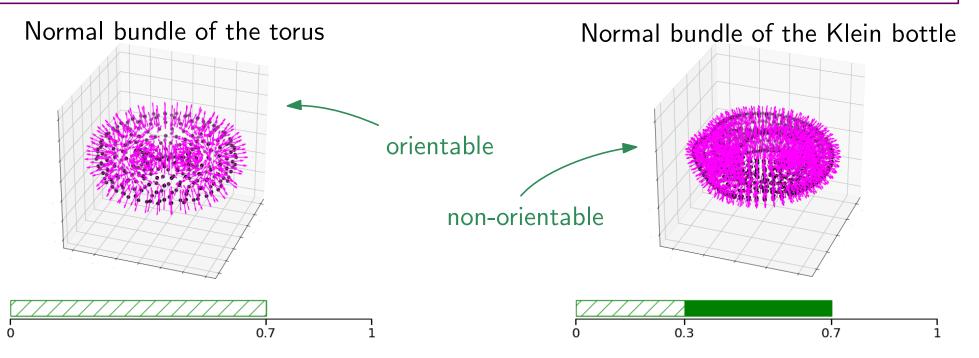
17/25 (2/2)

If $u: \mathcal{M}_0 \to \mathcal{M} \subset \mathbb{R}^n$ is an immersion and $\xi: \mathcal{M}_0 \to \mathcal{G}_d(\mathbb{R}^m)$ a vector bundle, consider the set

$$\check{\mathcal{M}} = \{ (u(x_0), \xi(x_0)), x_0 \in \mathcal{M}_0 \} \subset \mathbb{R}^n \times \mathcal{M}(\mathbb{R}^m) \}$$

Theorem

Let $X \subset \mathbb{R}^n \times \mathrm{M}(\mathbb{R}^m)$ be any subset such that $\mathrm{d}_{\mathrm{H}}(X, \check{\mathcal{M}}) \leq \epsilon$. Then for every $t \in [4\epsilon, \mathrm{reach}(\check{\mathcal{M}}) - 3\epsilon)$, the composition of inclusions $\mathcal{M}_0 \hookrightarrow \check{\mathcal{M}} \hookrightarrow X^t$ induces an isomorphism $H^*(\mathcal{M}_0) \leftarrow H^*(X^t)$ which sends the i^{th} persistent Stiefel-Whitney class $w_i^t(X)$ of the Čech bundle filtration of X to the i^{th} Stiefel-Whitney class of (\mathcal{M}_0, p) .



I - Stiefel-Whitney classes

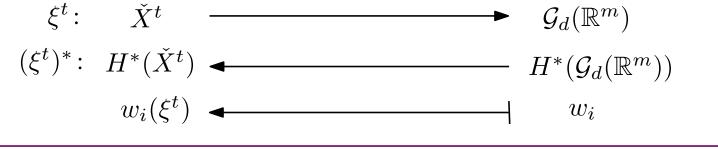
II - Persistent Stiefel-Whitney classes

III - Algorithmic considerations

Simplicial approximation

19/25 (1/3)

Let $|\check{X} \subset \mathbb{R}^n \times \mathcal{G}_d(\mathbb{R}^m)$ or $\check{X} \subset \mathbb{R}^n \times M(\mathbb{R}^m)$, $(\check{X}^t)_t, (\xi^t)_t$ its Čech bundle filtration, $(w_i(\xi^t))_t$ its i^{th} persistent Stiefel-Whitney class.

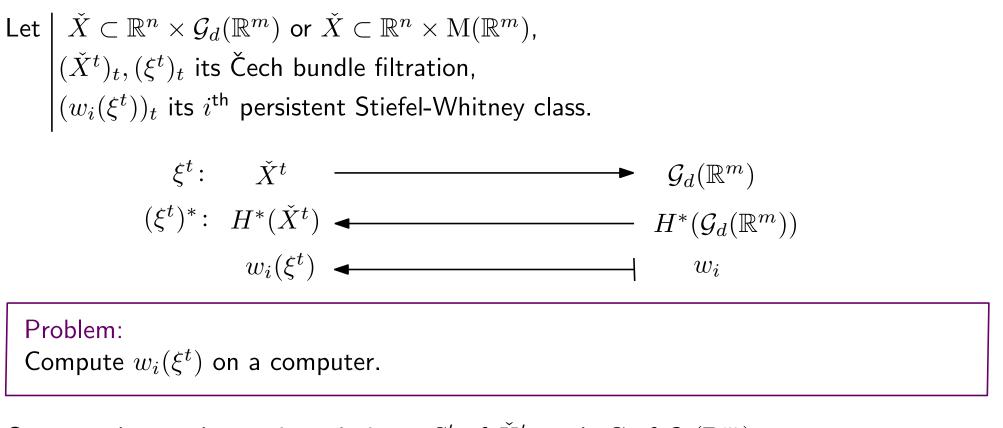


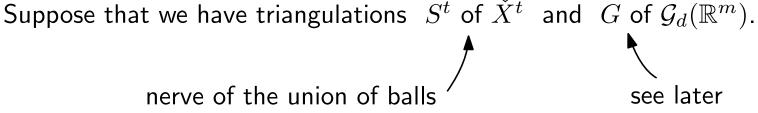
Problem:

Compute $w_i(\xi^t)$ on a computer.

Simplicial approximation

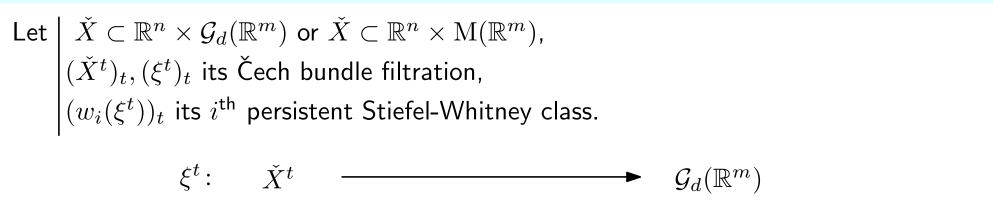
19/25 (2/3)





Simplicial approximation

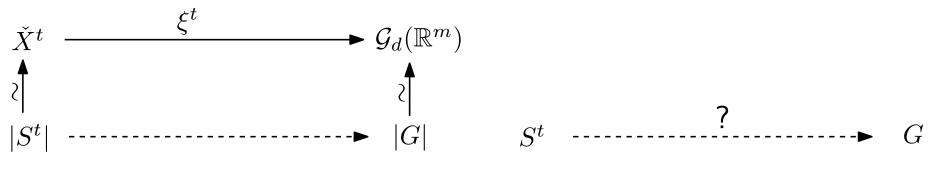
19/25 (3/3)



Problem:

Compute $w_i(\xi^t)$ on a computer.

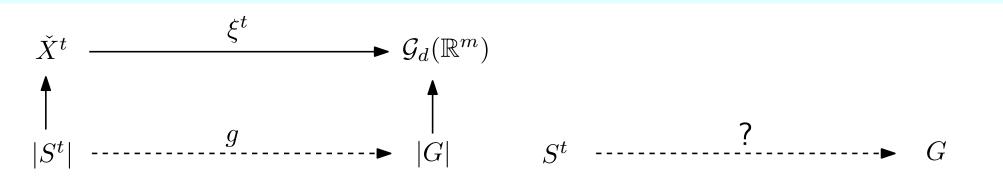
Suppose that we have triangulations S^t of \check{X}^t and G of $\mathcal{G}_d(\mathbb{R}^m)$. Denote their topological realizations $|S^t|$ and |G|.



We look for a simplicial map $p^t \colon S^t \to G$ that 'corresponds to' ξ^t .

Star condition

20/25 (1/3)

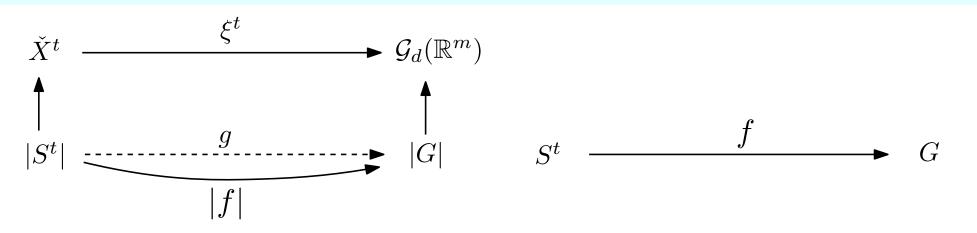


The map g satisfies the *star condition* if:

for every vertex $v \in S^t$, there exists a vertex $w \in G$ such that $g(|\overline{\mathrm{St}}(v)|) \subseteq |\mathrm{St}(w)|$. G S^t $g(S^t)$ wv

Star condition

20/25 (2/3)



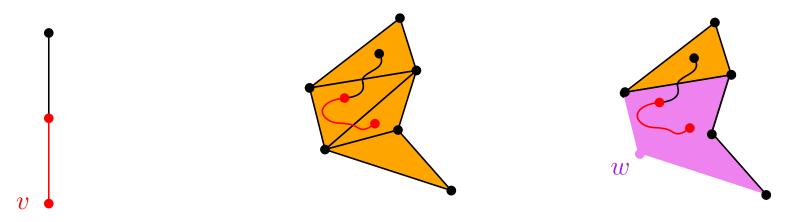
The map g satisfies the *star condition* if:

for every vertex $v \in S^t$, there exists a vertex $w \in G$ such that $g(|\overline{\operatorname{St}}(v)|) \subseteq |\operatorname{St}(w)|$.

If this is the case, let $f: S^t \to G$ be any map between vertex sets such that:

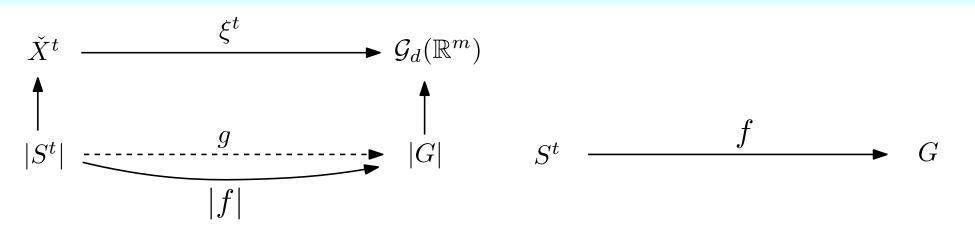
for every vertex $v \in S^t$, we have $g\left(\left|\overline{\operatorname{St}}(v)\right|\right) \subseteq |\operatorname{St}(f(v))|$.

Such a map f is called a *simplicial approximation* to g. It is a simplicial map. Its topological realization |f| is homotopic to g.



Star condition

20/25 (3/3)



The map g satisfies the *star condition* if:

for every vertex $v \in S^t$, there exists a vertex $w \in G$ such that $g(|\overline{\mathrm{St}}(v)|) \subseteq |\mathrm{St}(w)|$.

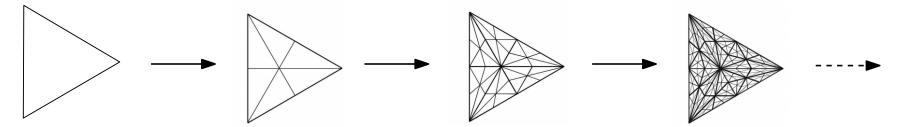
If this is the case, let $f: S^t \to G$ be any map between vertex sets such that:

for every vertex $v \in S^t$, we have $g\left(\left|\overline{\operatorname{St}}(v)\right|\right) \subseteq |\operatorname{St}(f(v))|$.

Such a map f is called a *simplicial approximation* to g. It is a simplicial map. Its topological realization |f| is homotopic to g.

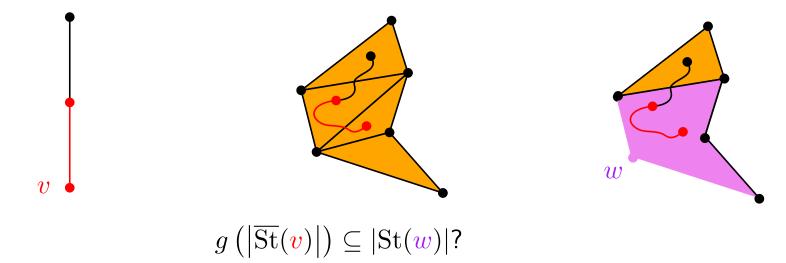
Remark:

If g does not satisfy the star condition, we can apply barycentric subdivisions to S^t .



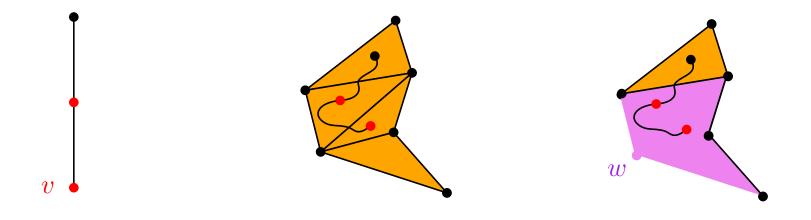
Weak star condition

In practice, we cannot check whether g satisfies the star condition...



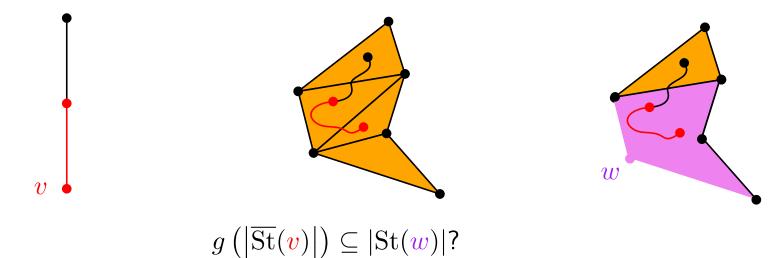
The map g satisfies the weak star condition if:

for every vertex $v \in S^t$, there exists a vertex $w \in G$ such that $g(|vertices(\overline{\operatorname{St}}(v))|) \subseteq |\operatorname{St}(w)|$.



Weak star condition

In practice, we cannot check whether g satisfies the star condition...



The map g satisfies the weak star condition if:

for every vertex $v \in S^t$, there exists a vertex $w \in G$ such that $g\left(\left|\operatorname{vertices}(\overline{\operatorname{St}}(v))\right|\right) \subseteq |\operatorname{St}(w)|$.

If this is the case, let $f: S^t \to G$ be any map between vertex sets such that:

for every vertex $v \in S^t$, we have $g(|vertices(\overline{St}(v))|) \subseteq |St(f(v))|$.

Such a map f is called a *weak simplicial approximation* to g. It is a simplicial map.

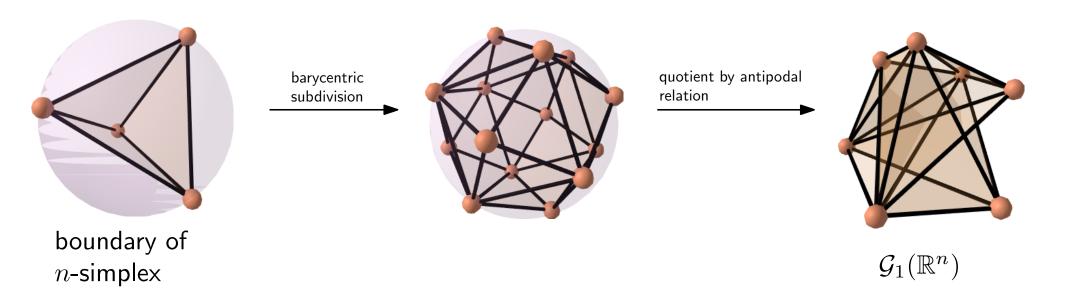
Proposition:

If S^t is subdivised enough, then any weak simplicial approximation is a simplicial approximation.

Triangulations of the Grassmannian 22/25 (1/2)

The Grassmaniann $\mathcal{G}_d(\mathbb{R}^n)$ has a well-known CW-complex structure. However, I had some troubles finding explicit triangulations of $\mathcal{G}_d(\mathbb{R}^n)$.

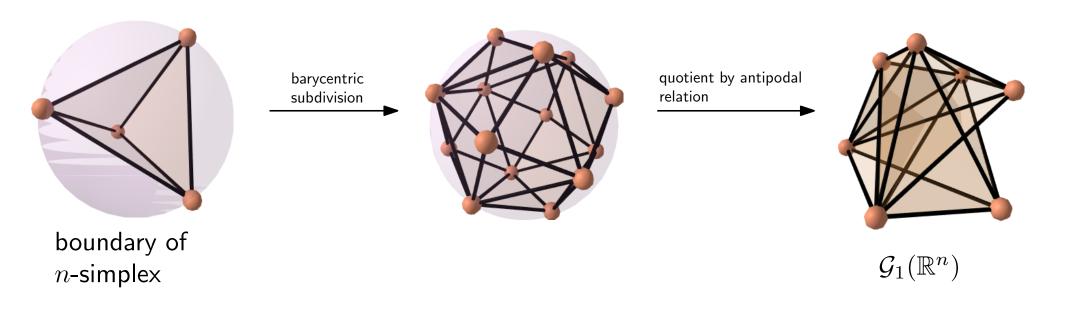
What is known: triangulations of $\mathcal{G}_1(\mathbb{R}^n)$, the *projective spaces*.



Triangulations of the Grassmannian 22/25 (2/2)

The Grassmaniann $\mathcal{G}_d(\mathbb{R}^n)$ has a well-known CW-complex structure. However, I had some troubles finding explicit triangulations of $\mathcal{G}_d(\mathbb{R}^n)$.

What is known: triangulations of $\mathcal{G}_1(\mathbb{R}^n)$, the *projective spaces*.



An algorithm for $w_1(\xi^t)$, t fixed

23/25

Consider the map $\xi^t \colon \check{X}^t \to \mathcal{G}_1(\mathbb{R}^m)$. We want to compute $w_1(\xi^t) = (\xi^t)^*(w_1)$. Reminder: $H^1(\mathcal{G}_1(\mathbb{R}^m)) = \langle w_1 \rangle \simeq \mathbb{Z}/2\mathbb{Z}$. We have to find the image of $(\xi^t)^* \colon H^1(X^t) \leftarrow H^1(\mathcal{G}_1(\mathbb{R}^m))$

- Compute a triangulation S^t of \check{X}^t
- Compute a triangulation G of $\mathcal{G}_1(\mathbb{R}^m)$
- \blacktriangleright Check whether ξ^t satisfies the weak star condition
- \sim \bullet If not, subdivise barycentric
 - ${\scriptstyle \bullet}$ Compute a weak simplicial approximation f to ξ^t
 - ${\scriptstyle \bullet}$ Compute the induced map in simplicial cohomology $f^* \colon H^1(S^t) \leftarrow H^1(G)$

► The image of f* is w₁(ξ^t) (seen in simplicial cohomology)

Computing the lifebar

24/25(1/3)

Let $|\check{X} \subset \mathbb{R}^n \times \mathcal{G}_d(\mathbb{R}^m)$, $(\check{X}^t)_t, (\xi^t)_t$ its Čech bundle filtration, $(w_i(\xi^t))_t$ its i^{th} persistent Stiefel-Whitney class.

We have seen how to compute $w_1(\xi^t)$, t fixed.

Recall that the lifebar of $w_1(X)$ is the set

 $\{t < t_{\max}, w_1(\xi^t) \neq 0\}.$

Three possibilities for computing the lifebar:

• Compute $w_1(\xi^t)$ for several values of t, and check whether $w_1(\xi^t) = 0$ (dichotomic search)

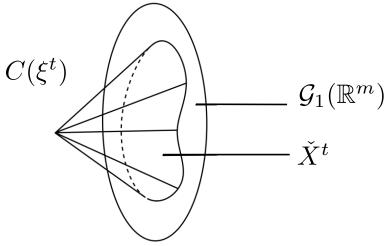
- Use the persistent image algorithm of [Cohen-Steiner, Edelsbrunner, Harer, Morozov]
- Use the formula on the next page

Computing the lifebar

24/25 (2/3)

Reminder: $H^1(\mathcal{G}_1(\mathbb{R}^m)) = \mathbb{Z}/2\mathbb{Z}$. We have to find the image of $(\xi^t)^* \colon H^1(\check{X}^t) \leftarrow H^1(\mathcal{G}_1(\mathbb{R}^m))$

Let $C(\xi^t)$ be the mapping cone of $\xi^t \colon \check{X}^t \to \mathcal{G}_1(\mathbb{R}^m)$.



We have a long exact sequence

$$\dots \longrightarrow H^k(\check{X}^t) \longrightarrow H^{k+1}(C(\xi^t)) \longrightarrow H^{k+1}(\mathcal{G}_1(\mathbb{R}^m)) \longrightarrow H^{k+1}(\check{X}^t) \longrightarrow \dots$$

We deduce that

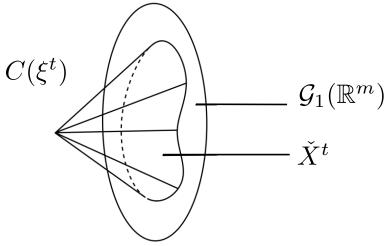
$$\operatorname{rank}((\xi^{t})^{*}) = \sum_{k=1}^{+\infty} (-1)^{k} \left(\dim H^{k}(\check{X}^{t}) - \dim H^{k+1}(C(\xi^{t})) + \dim H^{k+1}(\mathcal{G}_{1}(\mathbb{R}^{m})) \right)$$

Computing the lifebar

24/25 (3/3)

Reminder: $H^1(\mathcal{G}_1(\mathbb{R}^m)) = \mathbb{Z}/2\mathbb{Z}$. We have to find the image of $(\xi^t)^* \colon H^1(\check{X}^t) \leftarrow H^1(\mathcal{G}_1(\mathbb{R}^m))$

Let $C(\xi^t)$ be the mapping cone of $\xi^t \colon \check{X}^t \to \mathcal{G}_1(\mathbb{R}^m)$.



We have a long exact sequence

$$\dots \longrightarrow H^k(\check{X}^t) \longrightarrow H^{k+1}(C(\xi^t)) \longrightarrow H^{k+1}(\mathcal{G}_1(\mathbb{R}^m)) \longrightarrow H^{k+1}(\check{X}^t) \longrightarrow \dots$$

We deduce that

$$\operatorname{rank}((\xi^{t})^{*}) = \sum_{k=1}^{+\infty} (-1)^{k} \left(\dim H^{k}(\check{X}^{t}) - \dim H^{k+1}(C(\xi^{t})) + \dim H^{k+1}(\mathcal{G}_{1}(\mathbb{R}^{m})) \right)$$

Can be computed with the persistence algorithm

Conclusion

- We defined persistent Stiefel-Whitney classes,
- Proved stability and consistency results,
- Proposed an algorithm when d = 1.

Perspectives:

- Ideas could be extended to other characteristic classes (Euler, Chern, Pontrjagin).
- Need for a triangulation of $\mathcal{G}_d(\mathbb{R}^m)$.

Conclusion

- We defined persistent Stiefel-Whitney classes,
- Proved stability and consistency results,
- Proposed an algorithm when d = 1.

Perspectives:

- Ideas could be extended to other characteristic classes (Euler, Chern, Pontrjagin).
- Need for a triangulation of $\mathcal{G}_d(\mathbb{R}^m)$.

