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2/28 (1/2)Introduction to topological inference

We aim at studying datasets represented as point clouds.

R262

R72

[Nicolau, Levine and Carlsson. Topology
based data analysis identifies a subgroup of
breast cancers with a unique mutational
profile and excellent survival. 2011]

[Martin, Thompson, Coutsias and
Watson. Topology of cyclo-octane
energy landscape. 2010]

Breast cancer

Conformation of
cyclo-octane



2/28 (2/2)Introduction to topological inference

Principle of topological inference: The data is sampled near a shape whose topology is
worth understanding.

We aim at studying datasets represented as point clouds.

R262

R72

[Nicolau, Levine and Carlsson. Topology
based data analysis identifies a subgroup of
breast cancers with a unique mutational
profile and excellent survival. 2011]

[Martin, Thompson, Coutsias and
Watson. Topology of cyclo-octane
energy landscape. 2010]

Breast cancer

Conformation of
cyclo-octane



3/28 (1/3)Algebraic invariants

Algebraic topology allows to transform topological problems into algebraic ones.

Algebraic topology

πi(X)

Hi(X)

H∗(X)

w(ξ)

Topological
spaces

Algebraic
structures

Algebraic topology

X

circle

torus
projective plane

fundamental group

homology groups

cohomology algebra

characteristic classes



3/28 (2/3)Algebraic invariants

Algebraic topology allows to transform topological problems into algebraic ones.

Algebraic topology

Topological
spaces

Algebraic
structures

Algebraic topology

But it does not work anymore if the input is a sample.

not interesting

not interesting

not interesting

not interesting



3/28 (3/3)Algebraic invariants

Algebraic topology allows to transform topological problems into algebraic ones.

Algebraic topology

Topological
spaces

Algebraic
structures

Algebraic topology

But it does not work anymore if the input is a sample.

not interesting

not interesting

not interesting

not interesting

Persistent homology

This is where persistent homology comes in.

persistence
module



4/28 (1/2)Thickenings

Let M⊂ Rn be a submanifold, and X ⊂ Rn a point cloud.
How to recover the homotopy type of M from X?

M X

For all t ≥ 0, define the t-thickening of X:

Xt = {y ∈ Rn,∃x ∈ X, ‖x− y‖ ≤ t}

X0 = X X0,1 X0,2



4/28 (2/2)Thickenings

Let M, X be subsets of Rn.
Suppose that reach (M) > 0 and dH (X,M) ≤ 1

17 reach (M). Let

t ∈ [4dH (X,M) , reach (M)− 3dH (X,M)) .

Then Xt and M are homotopy equivalent.

'
X0.2

The Čech filtration of X is the collection:

V [X] =
(
Xt
)
t≥0

.

Definition

Theorem (Chazal, Cohen-Steiner, Lieutier, 2009)

M



5/28 (1/2)Construction of persistence modules

We compute the singular homology of the thickenings of X over Z/2Z.

H0(Xt)

H1(Xt)

(Z/2Z)100

0

X0 = X X0,1 X0,2 X0,3

Xt

(Z/2Z)5 Z/2Z

0

X1

Z/2Z Z/2Z

Z/2Z Z/2Z 0



5/28 (2/2)Construction of persistence modules

We compute the singular homology of the thickenings of X over Z/2Z.

H0(Xt)

H1(Xt)

(Z/2Z)100

0

X0 = X X0,1 X0,2 X0,3

Xt

(Z/2Z)5 Z/2Z

0

The data of (Hi(X
t))t≥0 and ((its)∗)s≤t, is called a persistence module.

X1

Z/2Z Z/2Z

Z/2Z Z/2Z 0

i0.10 i0.20.1 i0.30.2 i10.3

(i0.10 )∗ (i0.20.1)∗ (i0.30.2)∗ (i10.3)∗

inclusions its



6/28 (1/2)Persistence modules

A persistence module V over R+ is a family of Z/2Z-vector spaces (V t)t≥0, and a
family of a family of linear maps (vts : V s → V t)0≤s≤t such that:

for every t ≥ 0, vtt : V t → V t is the identity map,
for every r, s, t ≥ 0 such that r ≤ s ≤ t, we have vts ◦ vsr = vtr.

A filtration of Rn is a collection of subsets (Xt)t≥0 such that Xs ⊂ Xt when s ≤ t.

Xt1 Xt2 Xt3 Xt4

Hi(Xt1) Hi(Xt2) Hi(Xt3) Hi(Xt4)

f−1([0, t1]) f−1([0, t2]) f−1([0, t3]) f−1([0, t4])

i
t2
t1

i
t3
t2

i
t4
t3

(it2t1)∗ (it3t2)∗ (it4t3)∗

Applying the ith singular homology functor give rise to a persistence module.

Main construction of persistence modules:

Definition

Given any map f : Rn → R+, the collection of sublevel sets
(
f−1([0, t])

)
t≥0

.

Main construction of filtrations:

V r V s V t
vsr vts

vtr



6/28 (2/2)Persistence modules

A (pointwise finite-dimensional) persistence module is isomorphic to a unique sum of
interval modules.

Theorem (Crawley-Boevey, 2015)

This multi-set of intervals is called the persistence barcode. It is a complete invariant of
pointwise finite dimensional persistence modules.

VPersistence module:

Barcode:

Graphical representation:

{
[0.171, 0.897), [0.035, 0.049), [0.037, 0.046), [0.072, 0.078),

[0.077, 0.083), [0.046, 0.050), [0.050, 0.054), [0.036, 0.040),
[0.089, 0.092)

}



7/28Persistence barcodes



8/28 (1/3)Stability of persistence modules

Filtration Persistence module BarcodeSubset

(Xt)t≥0 (V t)t≥0

Interleaving distance
for filtrations di

Interleaving distance for
persistence modules di

Hausdorff distance dH Bottleneck distance db



8/28 (2/3)Stability of persistence modules

Filtration Persistence module Barcode

Isometry theorem (Chazal, Cohen-Steiner, Glisse, Guibas, Oudot, 2009 - Lesnik 2011)

Stability theorem (Edelsbrunner, Harer, Cohen-Steiner, 2005)

Subset

(Xt)t≥0 (V t)t≥0

Between pointwise finite-dimensional persistence modules, the bottleneck distance
and the interleaving distance are equal.

Let X,Y ⊂ Rn be two compact subsets, and denote V,W the persistence modules
of ith homology of their Čech filtrations. Then db (V,W) ≤ dH (X,Y ).

Interleaving distance
for filtrations di

Interleaving distance for
persistence modules di

Hausdorff distance dH Bottleneck distance db



8/28 (3/3)Stability of persistence modules

Stability theorem (Edelsbrunner, Harer, Cohen-Steiner, 2005)

Barcode of the
persistence module
associated to the Čech
filtration

Let X,Y ⊂ Rn be two compact subsets, and denote V,W the persistence modules
of ith homology of their Čech filtrations. Then db (V,W) ≤ dH (X,Y ).

H0

H1



9/28Contributions

Usual framework of persistent homology:

Problems studied in this thesis:

Sample of a submanifold

Sample of a submanifold
with anomalous points

Sample of an immersed
manifold

Sample of a vector bundle



10/28DTM-Filtrations

Joint work with Hirokazu Anai, Frédéric Chazal, Marc Glisse,
Yuichi Ike, Hiroya Inakoshi and Yuhei Umeda

Published in the proceedings of Symposium of Computational
Geometry (June 2019) and in the proceedings of Abel
Symposium (2018)

Experimented in the setting of an industrial research project

DTM-based filtrations



11/28 (1/2)Statement of the problem

Persistent
homology of the
Čech filtration

Stability theorem

S1 ⊂ R2 Sample of S1 with
anomalous points

Sample of S1 with
outliers

H0

H1



11/28 (2/2)Statement of the problem
Sample of S1 with
anomalous points

Goal: build a filtration that is robust to anomalous
points.
Two ingredients:

Weighted Čech filtration
Distance-to-measure

H0

H1



12/28 (1/3)Weighted Čech filtration

Input point cloud: X ⊂ Rn

Reminder: The Čech filtration of X is the collection V [X] = (Xt)t≥0, where

Xt =
⋃
x∈X
B (x, t) .

The weighted Čech filtration of X with parameter f is the collection
V [X, f ] = (V t[X, f ])t≥0, where

V t[X, f ] =
⋃
x∈X
B (x, t− f(x)) .

Let f : X → R+ be any map.

t 7→ t− f(x)

Definition



12/28 (2/3)Weighted Čech filtration

Input point cloud: X ⊂ Rn

Reminder: The Čech filtration of X is the collection V [X] = (Xt)t≥0, where

Xt =
⋃
x∈X
B (x, t) .

Let f : X → R+ be any map.

t 7→ t− f(x)

The weighted Čech filtration of X with parameter f is the collection
V [X, f ] = (V t[X, f ])t≥0, where

V t[X, f ] =
⋃
x∈X
B
(
x,
√
t2 − f(x)2

)
.

t 7→
√
t2 − f(x)2

[Buchet et al., SODA 2015]

Definition



12/28 (3/3)Weighted Čech filtration

Input point cloud: X ⊂ Rn

Reminder: The Čech filtration of X is the collection V [X] = (Xt)t≥0, where

Xt =
⋃
x∈X
B (x, t) .

Let f : X → R+ be any map.

t 7→ t− f(x) t 7→
√
t2 − f(x)2

The weighted Čech filtration of X with parameters p and f is the collection
V [X, f, p] = (V t[X, f, p])t≥0, where

V t[X, f, p] =
⋃
x∈X
B
(
x, (tp − f(x)p)

1
p

)
.

t 7→
(
t30 − f(x)30

) 1
30

[Buchet et al., SODA 2015]

, and p ∈ [1,+∞).

Definition



13/28 (1/3)Distance-to-measure (DTM)

dµ,m with m = 0.1

Introduced in [Chazal, Cohen-Steiner, Mérigot. Geometric inference for probability
measures, 2011].

µ empirical measure on X

Let m ∈ [0, 1[. The DTM µ with parameter m is the function:

dµ,m : Rn −→ R
x 7−→

√
1
m

∫m
0
δ2
µ,t(x)dt

Definition

Let µ be a probability measure. For x ∈ Rn and t ∈ [0, 1), define

δµ,t(x) = inf{r ≥ 0, µ(B (x, r) > t}.



13/28 (2/3)Distance-to-measure (DTM)

Introduced in [Chazal, Cohen-Steiner, Mérigot. Geometric inference for probability
measures, 2011].

Let m ∈ [0, 1[. The DTM µ with parameter m is the function:

dµ,m : Rn −→ R
x 7−→

√
1
m

∫m
0
δ2
µ,t(x)dt

Definition

Let µ be a probability measure. For x ∈ Rn and t ∈ [0, 1), define

δµ,t(x) = inf{r ≥ 0, µ(B (x, r) > t}.

Theorem (Chazal, Cohen-Steiner, Mérigot, 2011)

For every probability measures µ, ν and m ∈ (0, 1), we have

‖dµ,m − dν,m‖∞ ≤ m−
1
2 W2 (µ, ν) ,

where W2 denotes the Wasserstein distance.



13/28 (3/3)Distance-to-measure (DTM)

We shall now adopt a measure point of view. It requires to see our subsets as
probability measures.

X finite µ = 1
|X|
∑
x∈X δx

empirical measure

M submanifold ν = 1
Hd(M)

Hd|M
Hausdorff measure

X and M are not close in Hausdorff distance...

But µ and ν are close in Wasserstein distance!



14/28 (1/4)DTM-filtrations

Explicitely, W [µ,m, p] = (W t[µ,m, p])t≥0 with:

W t[µ,m, p] =
⋃

x∈supp(µ)

B
(
x, (tp − dµ,m(x)p)

1
p

)

Let µ be a probability measure, m ∈ [0, 1) and p ≥ 1.
The DTM-filtration with parameters µ,m and p is the weighted Čech filtration
V [X, f, p] with parameters:

X = supp(µ)
f = dµ,m

It is denoted W [µ,m, p].

Definition



14/28 (2/4)DTM-filtrations



14/28 (3/4)DTM-filtrations

Case p = 1: W t[µ,m, p] =
⋃
B (x, t− dµ,m(x))

Define c(µ,m, p) = supx∈supp(µ) dµ,m(x).

The quantity c is small if the measure µ is close to the Hausdorff measure restricted to a
submanifold.

µ νν′

Let µ, ν be probability measures. Let ν′ be any probability measure with compact
support included in supp(ν).
The interleaving distance between the (set) filtrations W [µ,m, p] and W [ν,m, p] is
bounded by:

m−
1
2 W2 (µ, ν′) +m−

1
2 W2 (ν′, ν) + c(µ,m, p) + c(ν′,m, p)

Theorem (Anai, Chazal, Glisse, Ike, Inakoshi, T. and Umeda, 2020)



14/28 (4/4)DTM-filtrations

Define c(µ,m, p) = supx∈supp(µ) dµ,m(x).

The quantity c is small if the measure µ is close to the Hausdorff measure restricted to a
submanifold.

µ νν′

Case p > 1: W t[µ,m, p] =
⋃
B
(
x, (tp − dµ,m(x)p)

1
p

)
+2(1− 1

p )diam(supp(µ))

persistence modules

Let µ, ν be probability measures. Let ν′ be any probability measure with compact
support included in supp(ν).
The interleaving distance between the (set) filtrations W [µ,m, p] and W [ν,m, p] is
bounded by:

m−
1
2 W2 (µ, ν′) +m−

1
2 W2 (ν′, ν) + c(µ,m, p) + c(ν′,m, p)

Theorem (Anai, Chazal, Glisse, Ike, Inakoshi, T. and Umeda, 2020)



15/28Immersed manifold

Presented at the Young Researcher Forum of Symposium of
Computational Geometry (June 2020)

Recovering the homology of
immersed manifolds



16/28 (1/3)Statement of the problem

We are observing an immersed manifold M⊂ Rn.

Abstract manifold Immersed manifold

M0 M = u(M0)

Immersion

u
⊂ Rn



16/28 (2/3)Statement of the problem

We are observing an immersed manifold M⊂ Rn.

Abstract manifold Immersed manifold

M0 M = u(M0)

Immersion

u

Klein bottle

⊂ Rn



16/28 (3/3)Statement of the problem

We are observing an immersed manifold M⊂ Rn.

Abstract manifold Immersed manifold

M0 M = u(M0)

Immersion

u
⊂ Rn

Problem:

Given a point cloud X ⊂ Rn close to M, compute the homology groups of M0.

H0 = Z/2Z
H1 = Z/2Z

X

Homology groups

M



17/28 (1/4)Our method

We will use persistent homology.

Unfortunately, the persistent homology of the Čech filtration of M does not reveal the
homology of M0.

H0

H1

Barcodes

H0

We will lift M in a higher dimensional space, where the Čech filtration reveals a circle.



17/28 (2/4)Our method

How to lift M?

M0 M⊂ Rn

x0 u(x0)

(u(x0),

Choose f such that ǔ is an embedding.

u

ǔM0 M̌ ⊂ Rn

x0 f(x0))

×Rm



17/28 (3/4)Our method

How to lift M?

M0 M⊂ Rn

x0 u(x0)

(u(x0),

Choose f such that ǔ is an embedding.

u

ǔM0 M̌ ⊂ Rn

x0 f(x0))

×Rm

Our choice is

ǔ is an embedding under a reasonable assumption

we are actually estimating the tangent bundle of M0

f : x0 7−→ Tx0
M0 (tangent space of M0 at x0)Our choice is



17/28 (4/4)Our method

Notations:
u : M0 →M⊂ Rn is an immersion

For x0 ∈M0, x = u(x0)

For x0 ∈M0, TxM denotes the tangent space of M0 seen in Rn

M(Rn) denotes the space of n× n matrices

pTxM ∈ M(Rn) denotes the orthogonal projection matrix on TxM

Lift space: Rn ×M(Rn)

Lifted manifold : M̌ = {(x, pTxM) , x0 ∈M0} ⊂ Rn ×M(Rn)

Lifting map: ǔ : M0 → M̌

M0

(x, pTxM)

M̌ ⊂ Rn ×M(Rn)

M⊂ Rn
u

ǔ

ǔ : x0



18/28 (1/3)Recipe in practice

We observe a point cloud X ⊂ Rn close to M.

Let r > 0 be a parameter.
For every x ∈ X, compute a local covariance matrix

ΣX(x, r) =
1

|X ∩ B (x, r) |

∑
y∈X∩B(x,r)

(x− y)
⊗2

Consider the set
X̌ = {(x,ΣX(x, r)) , x ∈ X} ⊂ Rn ×M(Rn).

∈ M(Rn)

x

r

We aim at estimating the set

M̌ = {(x, pTxM) , x0 ∈M0} ⊂ Rn ×M(Rn).

X



18/28 (2/3)Recipe in practice

We observe a point cloud X ⊂ Rn close to M.

Let r > 0 be a parameter.
For every x ∈ X, compute a local covariance matrix

ΣX(x, r) =
1

|X ∩ B (x, r) |

∑
y∈X∩B(x,r)

(x− y)
⊗2

Consider the set
X̌ = {(x,ΣX(x, r)) , x ∈ X} ⊂ Rn ×M(Rn).

∈ M(Rn)

x

r

x

r

bad estimation of
tangent space

We aim at estimating the set

M̌ = {(x, pTxM) , x0 ∈M0} ⊂ Rn ×M(Rn).

X



18/28 (3/3)Recipe in practice

M̌ and X̌ are not close in Hausdorff distance...

M̌ = {(x, pTxM), x0 ∈M0} X̌ = {(x,ΣX(x, r)), x ∈M}

But they are in Wasserstein distance!



19/28 (1/4)A measure-theoretic setting

M0
M⊂ Rn

µ0 measure on M0

u

µ push-forward
measure on M

M̌ ⊂ Rn ×M(Rm)

ǔ

µ̌0 push-forward
measure on M̌where ǔ : x0 7−→

(
x, 1

d+2pTxM

)
µ̌0 can be defined as follows: for every test function φ : Rn ×M(Rn)→ R,∫

φ(x,A) · dµ̌0(x,A) =

∫
φ

(
x,

1

d+ 2
pTxM

)
· dµ0(x0).

ν measure on Rn



19/28 (2/4)A measure-theoretic setting

M0
M⊂ Rn

µ0 measure on M0

u

µ push-forward
measure on M

M̌ ⊂ Rn ×M(Rm)

ǔ

µ̌0 push-forward
measure on M̌where ǔ : x0 7−→

(
x, 1

d+2pTxM

)
µ̌0 can be defined as follows: for every test function φ : Rn ×M(Rn)→ R,∫

φ(x,A) · dµ̌0(x,A) =

∫
φ

(
x,

1

d+ 2
pTxM

)
· dµ0(x0).

Now, we are observing a measure ν close to µ

Define ν̌ as follows: for every test function φ : Rn ×M(Rn)→ R,∫
φ(x,A) · dν̌(x,A) =

∫
φ

(
x,

1

r2
Σν(x, r)

)
· dν(x),

where Σν(x, r) is the local covariance matrix.

ν measure on Rn



19/28 (3/4)A measure-theoretic setting

µ̌0 can be defined as follows: for every test function φ : Rn ×M(Rn)→ R,∫
φ(x,A) · dµ̌0(x,A) =

∫
φ

(
x,

1

d+ 2
pTxM

)
· dµ0(x0).

Now, we are observing a measure ν close to µ

Define ν̌ as follows: for every test function φ : Rn ×M(Rn)→ R,∫
φ(x,A) · dν̌(x,A) =

∫
φ

(
x,

1

r2
Σν(x, r)

)
· dν(x),

where Σν(x, r) is the local covariance matrix.

Theorem

Let ν be any probability measure on Rn. Suppose that W1(µ, ν) and r are small
enough. Under technical assumptions on M0 and µ0, we have

Wp(ν̌, µ̌0) ≤ constant · r
1
p

where Wp denote the p-Wasserstein distance.



19/28 (4/4)A measure-theoretic setting

Theorem

Let ν be any probability measure on Rn. Suppose that W1(µ, ν) and r are small
enough. Under technical assumptions on M0 and µ0, we have

Wp(ν̌, µ̌0) ≤ constant · r
1
p

where Wp denote the p-Wasserstein distance.

Let ν be any probability measure on Rn. Suppose that W2(µ, ν) and r are small
enough.
Under technical assumptions on M0 and µ0, there exists ε > 0 such that, for every
t ∈
[
4ε, reach

(
M̌
)
− 3ε

]
, the sublevel set of the DTM d−1

ν̌,m([0, t]) is homotopy
equivalent to M0.

Corollary



20/28DTM-Filtration on the lifted measure

observation X ⊂ R2

lift in R6

H0

H1

DTM-filtration

Let ν̌ be the lifted measure, on Rn ×M(Rn). We apply the DTM-filtration to it.



21/28Persistent Stiefel-Whitney classes

Persistent Stiefel-Whitney classes



22/28Statement of the problem

Persistent homology allows to estimate the homology of a space.

Over Z/2Z, homology may not be fine enough to distinguish between
non-homeomorphic spaces.

Torus Klein bottle

The Stiefel-Whitney classes are a refinement of cohomology, that allows to differenciate
such spaces.

They are defined for any topological space X endowed with a vector bundle ξ. For all
i ∈ N, the ith Stiefel-Whitney class is denoted

wi(ξ) ∈ Hi(X).

How to estimate the Stiefel-Whitney classes from a point cloud?



23/28 (1/2)A practical definition of vector bundles

(First) Definition: A vector bundle over X is a surjection π : E → X whose fibers are
vector spaces and which satisfies a local triviality condition.

Thanks to the correspondance between vector bundles and classifying maps, we have an
alternative definition.

A vector bundle over X is a continuous map π : X → Gd(R∞) or π : X → Gd(Rm).

If V is a vector space, the Grassmannian of d-planes of V is denoted Gd(V ).
It is the set of d-dimensional subspaces of V .

(Second) Definition

Let R∞ denote the space of sequences of R that are 0 from some point.

Normal bundle of
the circle

Möbius strip



23/28 (2/2)A practical definition of vector bundles

Recall that the Grassmannian has Z/2Z-cohomology

H∗(Gd(R∞)) = Z/2Z[w1, ..., wd]

where wi has degree i.

The Stiefel-Whitney classes of the vector bundle ξ : X → Gd(R∞) can be defined as

wi(ξ) = ξ∗(ωi).

Normal bundle of the circle

w1(ξ) = 0

G1(R2)

H∗(Gd(R∞))H∗(S1)

ξ

ξ∗

w1



24/28 (1/3)Filtrations of vector bundles

Suppose that X ⊂ Rn. For any vector bundle ξ : X → Gd(Rm), consider the lifted space

X̌ = {(x, ξ(x)) , x ∈ X} .

It is a subset of Rn × Gd(Rm).

We embed Gd(Rm) in M(Rm) via

T 7→ projection matrix onto T.

Then X̌ can be seen as a subset of Rn ×M(Rm).

Let V [X̌] =
(
X̌t
)
t≥0

be the Čech filtration of X̌ in the space Rn ×M(Rm) endowed

with the norm ‖(x,A)‖ =
√
‖x‖2 + ‖A‖2F.

The thickening X̌t is endowed with a natural vector bundle structure
ξt : X̌t → Gd(Rm) defined as

(x,A) ∈ X̌t → proj (A,Gd(Rm)) .



24/28 (2/3)Filtrations of vector bundles

The thickening X̌t is endowed with a natural vector bundle structure
ξt : X̌t → Gd(Rm) defined as

(x,A) ∈ X̌t → proj (A,Gd(Rm)) .

The ith persistent Stiefel-Whitney class of X̌ is the collection

wi(X̌) =
(
wti(X̌)

)
t

where wti(X̌) = (ξt)∗(ωi) is the ith Stiefel-Whitney class of the vector bundle
ξt : X̌t → Gd(Rm).

Issue: the map ξt is not well-defined for every value of t ≥ 0: A must not be in the
medial axis of Gd(Rm) in M(Rm).

Definition



24/28 (3/3)Filtrations of vector bundles

The thickening X̌t is endowed with a natural vector bundle structure
ξt : X̌t → Gd(Rm) defined as

(x,A) ∈ X̌t → proj (A,Gd(Rm)) .

The ith persistent Stiefel-Whitney class of X̌ is the collection

wi(X̌) =
(
wti(X̌)

)
t

where wti(X̌) = (ξt)∗(ωi) is the ith Stiefel-Whitney class of the vector bundle
ξt : X̌t → Gd(Rm).

Issue: the map ξt is not well-defined for every value of t ≥ 0: A must not be in the
medial axis of Gd(Rm) in M(Rm).

For any A ∈ M(Rm), let As denote the matrix As = 1
2 (A+ tA), and let

λ1(As), ..., λn(As) be the eigenvalues of As in decreasing order. The distance from

A to med (Gd(Rm)) is
√

2
2

∣∣λd(As)− λd+1(As)
∣∣.

Definition

Lemma



25/28Lifebar of a persistent class

Let X ⊂ Rn ×M(Rm) and wi(X).

The lifebar of the persistent Stiefel-Whitney class wi(X) is the set{
t < tmax, w

t
i(X) 6= 0

}
.

Example: lifebars of first persistent Stiefel-Whitney classes

Definition

the lifebar is an interval!



26/28Stability

If two subsets X,Y ⊂ Rn ×M(Rm) satisfies dH (X,Y ) ≤ ε, then for all i ≥ 0, the
lifebars of their ith Stiefel-Whitney classes are ε-close.

Theorem



27/28Consistency

Normal bundle of the torus Normal bundle of the Klein bottle

Let X ⊂ Rn ×M(Rm) be any subset such that dH

(
X,M̌

)
≤ ε. Then for every

t ∈ [4ε, reach
(
M̌
)
− 3ε), the composition of inclusions M0 ↪→ M̌ ↪→ Xt induces an

isomorphism H∗(M0)← H∗(Xt) which sends the ith persistent Stiefel-Whitney
class wti(X) of the Čech bundle filtration of X to the ith Stiefel-Whitney class of
(M0, p).

If u : M0 →M⊂ Rn is an immersion and ξ : M0 → Gd(Rm) a vector bundle, consider
the set

M̌ = {(u(x0), ξ(x0)) , x0 ∈M0} ⊂ Rn ×M(Rm).

Theorem



28/28 (1/2)Conclusion

Persistent homology for point clouds with
anomalous points

Persistent homology for point clouds lying on
immersed manifolds

Persistent homology for vector bundles

(normal reach, tangent space estimation via local
stability of measures)

(weak star condition, triangulation of the
projective spaces)

Perspectives:
Study of stratified spaces
Study of more general fiber bundles, triangulation of Grassmann manifolds



28/28 (2/2)Conclusion

Persistent homology for point clouds with
anomalous points

Persistent homology for point clouds lying on
immersed manifolds

Persistent homology for vector bundles

Thank you

(normal reach, tangent space estimation via local
stability of measures)

(weak star condition, triangulation of the
projective spaces)

Perspectives:
Study of stratified spaces
Study of more general fiber bundles, triangulation of Grassmann manifolds
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