Dynamical Systems \& Applications - 03/10/23

An introduction to Topological Data Analysis

Part III/IV: Persistent homology

https://raphaeltinarrage.github.io

Part I/IV: Topological invariants

 Tuesday 26th
Part II/IV: Homology

Thursday 28th
Part III/IV: Persistent Homology
Tuesday 3rd
Part IV/IV: Python tutorial
Thursday 5th

O problema da inferência homológica $3 / 46(1 / 13)$

Let $X \subset \mathbb{R}^{n}$ finite. We want to estimate the homology groups of the 'underlying shape'. Pipeline of homology inference: - select a thickening X^{t}

- compute its homology via $\operatorname{Čech}^{t}(X)$ or $\operatorname{Rips}^{t}(X)$

O problema da inferência homológica $3 / 46(2 / 13)$

Let $X \subset \mathbb{R}^{n}$ finite. We want to estimate the homology groups of the 'underlying shape'. Pipeline of homology inference: • select a thickening X^{t}

- compute its homology via $\operatorname{Cech}^{t}(X)$ or $\operatorname{Rips}^{t}(X)$

O problema da inferência homológica $3 / 46(3 / 13)$

Let $X \subset \mathbb{R}^{n}$ finite. We want to estimate the homology groups of the 'underlying shape'. Pipeline of homology inference: • select a thickening X^{t}

- compute its homology via $\operatorname{Cech}^{t}(X)$ or $\operatorname{Rips}^{t}(X)$

O problema da inferência homológica $3 / 46(4 / 13)$

Let $X \subset \mathbb{R}^{n}$ finite. We want to estimate the homology groups of the 'underlying shape'.
Pipeline of homology inference: • select a thickening X^{t}

- compute its homology via $\operatorname{Čech}^{t}(X)$ or $\operatorname{Rips}^{t}(X)$

O problema da inferência homológica $3 / 46(5 / 13)$

Let $X \subset \mathbb{R}^{n}$ finite. We want to estimate the homology groups of the 'underlying shape'.
Pipeline of homology inference: • select a thickening X^{t}

- compute its homology via $\operatorname{Čech}^{t}(X)$ or $\operatorname{Rips}^{t}(X)$

O problema da inferência homológica
 3/46 (6/13)

Let $X \subset \mathbb{R}^{n}$ finite. We want to estimate the homology groups of the 'underlying shape'. Pipeline of homology inference: • select a thickening X^{t}

- compute its homology via $\operatorname{Cech}^{t}(X)$ or $\operatorname{Rips}^{t}(X)$

O problema da inferência homológica

Let $X \subset \mathbb{R}^{n}$ finite. We want to estimate the homology groups of the 'underlying shape'. Pipeline of homology inference: \bullet select a thickening X^{t}

O problema da inferência homológica

Let $X \subset \mathbb{R}^{n}$ finite. We want to estimate the homology groups of the 'underlying shape'. Pipeline of homology inference: \bullet select a thickening X^{t}

O problema da inferência homológica

Let $X \subset \mathbb{R}^{n}$ finite. We want to estimate the homology groups of the 'underlying shape'. Pipeline of homology inference oselect a thickening X^{t} homology via $\operatorname{Cech}^{t}(X)$ or $\operatorname{Rips}^{t}(X)$

O problema da inferência homológica ${ }_{3 / 46}(10 / 13)$

Let $X \subset \mathbb{R}^{n}$ finite. We want to estimate the homology groups of the 'underlying shape'. Pipeline of homology inference oselect a thickening X^{t}

O problema da inferência homológica

Let $X \subset \mathbb{R}^{n}$ finite. We want to estimate the homology groups of the 'underlying shape'.
Pipeline of homology infer
ening X^{t}

O problema da inferência homológica $3 / 46(12 / 13)$

Let $X \subset \mathbb{R}^{n}$ finite. We want to estimate the homology groups of the 'underlying shape'.

Pipeline of homology infer

ning X^{t}

problema da inferência homológica $_{3 / 46}(13 / 13)$

How to choose a value of t such that the t-thickening has the homotopy type of the underlying object?

Data analyst

I - Decomposition of persistence modules
1 - Simplicial filtrations
2 - Persistence modules
3 - Barcodes
II - Stability of persistence modules
1 - Bottleneck distance
2 - Interleaving distance
3 - Stability
III - Persistent homology in practice
1 - Data analysis
2 - Machine learning
3 - Variations on persistent homology

I - Decomposition of persistence modules
1 - Simplicial filtrations
2 - Persistence modules
3 - Barcodes
II - Stability of persistence modules
1 - Bottleneck distance
2 - Interleaving distance
3 - Stability
III - Persistent homology in practice
1 - Data analysis
2 - Machine learning
3 - Variations on persistent homology

Funtorialidade singular

We have seen that (singular) homology transforms topological spaces into vector spaces

$$
\begin{aligned}
H_{i}: \text { Top } & \longrightarrow \text { Vect } \\
X & \longmapsto H_{i}(X)
\end{aligned}
$$

and transforms continous maps into linear maps

$$
(f: X \rightarrow Y) \longmapsto\left(f_{*}: H_{i}(X) \rightarrow H_{i}(Y)\right)
$$

We will adopt a simplicial point of view (simplicial homology).

$$
\begin{aligned}
H_{i}: \text { SimpComp } & \longrightarrow \text { Vect } \\
K & \longmapsto H_{i}(K) \\
(f: K \rightarrow L) & \longmapsto\left(f_{*}: H_{i}(K) \rightarrow H_{i}(L)\right)
\end{aligned}
$$

Funtorialidade singular

We have seen that (singular) homology transforms topological spaces into vector spaces

$$
\begin{aligned}
H_{i}: \text { Top } & \longrightarrow \text { Vect } \\
X & \longmapsto H_{i}(X)
\end{aligned}
$$

and transforms continous maps into linear maps

$$
(f: X \rightarrow Y) \longmapsto\left(f_{*}: H_{i}(X) \rightarrow H_{i}(Y)\right)
$$

We will adopt a simplicial point of view (simplicial homology).

$$
H_{i}: \text { SimpComp } \longrightarrow \text { Vect }
$$

$$
K \longmapsto H_{i}(K)
$$

$$
(f: K \rightarrow L) \mapsto\left(f_{*}: H_{i}(K) \rightarrow H_{i}(L)\right)
$$

what is a map between simplicial complexes?

Mapas simpliciais

Definition: Let K and L be two simplicial complexes, and V_{K}, V_{L} their set of vertices. A simplicial map between K and L is a map $f: V_{K} \rightarrow V_{L}$ such that

$$
\forall \sigma \in K, f(\sigma) \in L
$$

We may denote a simplicial map $f: K \rightarrow L$ instead of $f: V_{K} \rightarrow V_{L}$.

Example: Let $K=\{[0],[1],[0,1]\}, L=\{[0],[1],[2],[0,1],[0,2],[1,2]\}$ and

$$
\begin{aligned}
f:\{0,1\} & \rightarrow\{0,1,2\} \\
0 & \mapsto 0 \\
1 & \mapsto 1
\end{aligned}
$$

It is simplicial since $f([0,1])=[0,1]$ is a simplex of L.

Mapas simpliciais

Definition: Let K and L be two simplicial complexes, and V_{K}, V_{L} their set of vertices. A simplicial map between K and L is a map $f: V_{K} \rightarrow V_{L}$ such that

$$
\forall \sigma \in K, f(\sigma) \in L
$$

We may denote a simplicial map $f: K \rightarrow L$ instead of $f: V_{K} \rightarrow V_{L}$.

Example: Let $K=\{[0],[1],[2],[0,1],[0,2],[1,2]\}, L=\{[0],[1],[2],[0,1],[0,2]\}$ and

$$
\begin{aligned}
f:\{0,1\} & \rightarrow\{0,1,2\} \\
0 & \mapsto 0 \\
1 & \mapsto 1 \\
2 & \mapsto 2
\end{aligned}
$$

It is not simplicial since $f([1,2])=[1,2]$ is not a simplex of L.

Mapas simpliciais

Definition: Let K and L be two simplicial complexes, and V_{K}, V_{L} their set of vertices. A simplicial map between K and L is a map $f: V_{K} \rightarrow V_{L}$ such that

$$
\forall \sigma \in K, f(\sigma) \in L
$$

We may denote a simplicial map $f: K \rightarrow L$ instead of $f: V_{K} \rightarrow V_{L}$.

Example: Let $X \subset \mathbb{R}^{n}$ and $s, t \geq 0$ such that $s \leq t$. Consider the Čech complexes $\operatorname{Čech}^{s}(X)$ and $\operatorname{Čech}^{t}(X)$.
The inclusion map $i:$ Cech $^{s}(X) \rightarrow \operatorname{Cech}^{t}(X)$ is a simplicial map.

Indeed, the sequence of simplicial complexes $\left(\check{\operatorname{Cech}}^{t}(X)\right)_{t \geq 0}$ is non-decreasing.
Reminder: Čech ${ }^{s}(X)$ is the nerve of the cover given by the balls $\{B(x, s), x \in X\}$.

Mapa linear induzido

Let $f: K \rightarrow L$ be a simplicial map. Let $n \geq 0$, and consider the groups of chains of K and L :

$$
\begin{aligned}
C_{n}(K) & =\left\{\sum_{\sigma \in K_{(n)}} \epsilon_{\sigma} \cdot \sigma \mid \forall \sigma \in K_{(n)}, \epsilon_{\sigma} \in \mathbb{Z} / 2 \mathbb{Z}\right\} \\
C_{n}(L) & =\left\{\sum_{\sigma \in K_{(n)}} \epsilon_{\sigma} \cdot \sigma \mid \forall \sigma \in L_{(n)}, \epsilon_{\sigma} \in \mathbb{Z} / 2 \mathbb{Z}\right\}
\end{aligned}
$$

We define a linear map as follows:

$$
\begin{aligned}
& f_{n}: C_{n}(K) \longrightarrow C_{n}(L) \\
& \sigma \longmapsto f(\sigma) \text { if } \operatorname{dim}(f(\sigma))=n, \\
& 0 \quad \text { else. }
\end{aligned}
$$

Mapa linear induzido

Let $f: K \rightarrow L$ be a simplicial map. Let $n \geq 0$, and consider the groups of chains of K and L :

$$
\begin{aligned}
C_{n}(K) & =\left\{\sum_{\sigma \in K_{(n)}} \epsilon_{\sigma} \cdot \sigma \mid \forall \sigma \in K_{(n)}, \epsilon_{\sigma} \in \mathbb{Z} / 2 \mathbb{Z}\right\} \\
C_{n}(L) & =\left\{\sum_{\sigma \in K_{(n)}} \epsilon_{\sigma} \cdot \sigma \mid \forall \sigma \in L_{(n)}, \epsilon_{\sigma} \in \mathbb{Z} / 2 \mathbb{Z}\right\}
\end{aligned}
$$

We define a linear map as follows:

Mapa linear induzido

8/46 (3/11)

Lemma: For every $n \geq 0$, we have $\partial_{n} \circ f_{n}=f_{n-1} \circ \partial_{n}$.

Proof: Let $\sigma \in K_{(n)}$. We have the equalities

$$
\begin{aligned}
\partial_{n} \circ f_{n}(\sigma) & =\sum_{\substack{\mu \subset f(\sigma) \\
|\mu|=|\sigma|-1}} \mu \\
f_{n-1} \circ \partial_{n}(\sigma) & =\sum_{\substack{\tau \subset \sigma \\
|\tau|=|\sigma|-1}} f_{n}(\tau)
\end{aligned}
$$

We should distinguish three cases:

- $|f(\sigma)|=|\sigma|$ (i.e. f is injective on σ),
- $|f(\sigma)|<|\sigma|-1$,
- $|f(\sigma)|=|\sigma|-1$.

Mapa linear induzido

8/46 (4/11)

Lemma: For every $n \geq 0$, we have $\partial_{n} \circ f_{n}=f_{n-1} \circ \partial_{n}$.
Proposition: For every $c \in Z_{n}(K)$, we have $f_{n}(c) \in Z_{n}(L)$.
For every $c \in B_{n}(K)$, we also have $f_{n}(c) \in B_{n}(L)$.
Proof: First, let $c \in Z_{n}(K)$. We have

$$
\partial_{n} \circ f_{n}(c)=f_{n-1} \circ \partial_{n}(c)=f_{n-1}(0)=0
$$

hence $f_{n}(c) \in Z_{n}(L)$.
Secondly, let $c \in B_{n}(K)$, and write $c=\partial_{n+1}\left(c^{\prime}\right)$ with $c^{\prime} \in C_{n+1}(K)$. We get

$$
f_{n}(c)=f_{n} \circ \partial_{n+1}\left(c^{\prime}\right)=\partial_{n+1} \circ f_{n+1}\left(c^{\prime}\right),
$$

hence $f_{n}(c) \in B_{n}(L)$.

Mapa linear induzido

Lemma: For every $n \geq 0$, we have $\partial_{n} \circ f_{n}=f_{n-1} \circ \partial_{n}$.
Proposition: For every $c \in Z_{n}(K)$, we have $f_{n}(c) \in Z_{n}(L)$.
For every $c \in B_{n}(K)$, we also have $f_{n}(c) \in B_{n}(L)$.

The fact that $f\left(Z_{n}(K)\right) \subset Z_{n}(L)$ and $f\left(B_{n}(K)\right) \subset B_{n}(L)$ allows to define a linear map between quotient vector spaces:

$$
\left(f_{n}\right)_{*}: Z_{n}(K) / B_{n}(K) \longrightarrow Z_{n}(L) / B_{n}(L) .
$$

By definition of the homology groups, we have defined a map

$$
\left(f_{n}\right)_{*}: H_{n}(K) \longrightarrow H_{n}(L) .
$$

It is called the induced map in homology.

Mapa linear induzido

8/46 (6/11)

Lemma: For every $n \geq 0$, we have $\partial_{n} \circ f_{n}=f_{n-1} \circ \partial_{n}$.
Proposition: For every $c \in Z_{n}(K)$, we have $f_{n}(c) \in Z_{n}(L)$.
For every $c \in B_{n}(K)$, we also have $f_{n}(c) \in B_{n}(L)$.

$\left(f_{n}\right)_{*}$ can be defined as

$$
c=\sum_{\sigma \in K_{(n)}} \epsilon_{\sigma} \cdot \sigma \longmapsto \sum_{\sigma \in K_{(n)}} \epsilon_{\sigma} \cdot f_{n}(\sigma)
$$

Mapa linear induzido

Example: Consider the simplicial complexes $K=L=\{[0],[1],[2],[0,1],[0,2],[1,2]\}$.
The inclusion $i: K \rightarrow L$ induces the identity in H_{0} :

$$
\begin{aligned}
\left(i_{0}\right)_{*}: H_{0}(K) \simeq \mathbb{Z} / 2 \mathbb{Z} & \longrightarrow H_{0}(L) \simeq \mathbb{Z} / 2 \mathbb{Z} \\
1 & \longmapsto 1
\end{aligned}
$$

The inclusion $i: K \rightarrow L$ induces the identity in H_{1} :

$$
\begin{aligned}
\left(i_{1}\right)_{*}: H_{1}(K) \simeq \mathbb{Z} / 2 \mathbb{Z} & \longrightarrow H_{1}(L) \simeq \mathbb{Z} / 2 \mathbb{Z} \\
1 & \longmapsto 1
\end{aligned}
$$

$\left(f_{n}\right)_{*}$ can be defined as

$$
c=\sum_{\sigma \in K_{(n)}} \epsilon_{\sigma} \cdot \sigma \longmapsto \sum_{\sigma \in K_{(n)}} \epsilon_{\sigma} \cdot f_{n}(\sigma)
$$

Mapa linear induzido

Example: Consider the simplicial complexes $K=\{[0],[1],[2],[0,1],[0,2],[1,2]\}$ and $L=\{[0],[1],[2],[0,1],[0,2],[1,2],[0,1,2]\}$.
The inclusion $i: K \rightarrow L$ induces the zero map in H^{1} :

$$
\begin{array}{rl}
\left(i_{1}\right)_{*}: H_{1}(K) \simeq \mathbb{Z} / 2 \mathbb{Z} & \longrightarrow H_{1}(L) \simeq\{0\} \\
1 & 0
\end{array}
$$

$\left(f_{n}\right)_{*}$ can be defined as

$$
c=\sum_{\sigma \in K_{(n)}} \epsilon_{\sigma} \cdot \sigma \longmapsto \sum_{\sigma \in K_{(n)}} \epsilon_{\sigma} \cdot f_{n}(\sigma)
$$

Mapa linear induzido

Example: Consider the simplicial complexes $K=\{[0],[1],[2],[0,1],[0,2],[1,2]\}$ and $L=\{[0],[1],[2],[3],[0,1],[0,2],[1,2],[1,3],[2,3]\}$.
The homology group $H_{1}(L)$ is isomorphic to the vector space $(\mathbb{Z} / 2 \mathbb{Z})^{2}$ by identifying $[0,1]+[0,2]+[1,2] \mapsto(1,0)$ and $[1,2]+[2,3]+[1,3] \mapsto(0,1)$.
The inclusion $i: K \rightarrow L$ induces the following map between $1^{\text {st }}$ homology groups:

$$
\begin{aligned}
\left(i_{1}\right)_{*}: H_{1}(K) \simeq \mathbb{Z} / 2 \mathbb{Z} & \longrightarrow H_{1}(L) \simeq(\mathbb{Z} / 2 \mathbb{Z})^{2} \\
1 & \longmapsto(1,0)
\end{aligned}
$$

It can be represented as the matrix $\left(\begin{array}{ll}1 & 0 \\ 0 & 0\end{array}\right)$.

$\left(f_{n}\right)_{*}$ can be defined as

$$
c=\sum_{\sigma \in K_{(n)}} \epsilon_{\sigma} \cdot \sigma \longmapsto \sum_{\sigma \in K_{(n)}} \epsilon_{\sigma} \cdot f_{n}(\sigma)
$$

Mapa linear induzido

Example: Let $K=\{[0],[1],[2],[3],[4],[5],[0,1],[1,2],[2,3],[3,4],[4,5],[5,0]\}$ and $L=\{[0],[1],[2],[0,1],[1,2],[2,0]\}$.
Consider the simplical map $f: i \mapsto i$ (modulo 3).
The induced map $\left(f_{1}\right)_{*}$ is

$$
\begin{gathered}
\left(f_{1}\right)_{*}: H_{1}(K) \simeq \mathbb{Z} / 2 \mathbb{Z} \longrightarrow H_{1}(L) \simeq \mathbb{Z} / 2 \mathbb{Z} \\
? \longmapsto ?
\end{gathered}
$$

$\left(f_{n}\right)_{*}$ can be defined as

$$
c=\sum_{\sigma \in K_{(n)}} \epsilon_{\sigma} \cdot \sigma \longmapsto \sum_{\sigma \in K_{(n)}} \epsilon_{\sigma} \cdot f_{n}(\sigma)
$$

Mapa linear induzido

Example: Let $K=\{[0],[1],[2],[3],[4],[5],[0,1],[1,2],[2,3],[3,4],[4,5],[5,0]\}$ and $L=\{[0],[1],[2],[0,1],[1,2],[2,0]\}$.
Consider the simplical map $f: i \mapsto i$ (modulo 3).
The induced map $\left(f_{1}\right)_{*}$ is zero

$$
\left(f_{1}\right)_{*}: H_{1}(K) \simeq \mathbb{Z} / 2 \mathbb{Z} \longrightarrow H_{1}(L) \simeq \mathbb{Z} / 2 \mathbb{Z}
$$

$$
1 \longmapsto 0
$$

$\left(f_{n}\right)_{*}$ can be defined as

$\ln \mathbb{Z} / 2 \mathbb{Z}$, we have $2=0$

$$
c=\sum_{\sigma \in K_{(n)}} \epsilon_{\sigma} \cdot \sigma \longmapsto \sum_{\sigma \in K_{(n)}} \epsilon_{\sigma} \cdot f_{n}(\sigma)
$$

Funtorialidade simplicial

Proposition: Let K, L, M be three simplicial complexes, and consider two simplicial maps $f: K \rightarrow L$ and $g: L \rightarrow M$.

For any $n \geq 0$, the induced $\operatorname{map}\left((g \circ f)_{n}\right)_{*}: H_{n}(K) \rightarrow H_{n}(M)$ and $\left(g_{n}\right)_{*} \circ\left(f_{n}\right)_{*}: H_{n}(K) \rightarrow H_{n}(M)$ are equal.

Funtorialidade simplicial

Proposition: Let K, L, M be three simplicial complexes, and consider two simplicial maps $f: K \rightarrow L$ and $g: L \rightarrow M$.

For any $n \geq 0$, the induced $\operatorname{map}\left((g \circ f)_{n}\right)_{*}: H_{n}(K) \rightarrow H_{n}(M)$ and $\left(g_{n}\right)_{*} \circ\left(f_{n}\right)_{*}: H_{n}(K) \rightarrow H_{n}(M)$ are equal.

Proof: Let $\sigma \in K_{(n)}$. The image $(g \circ f)_{n}(\sigma)$ is

- $(g \circ f)(\sigma)$ if $g \circ f$ is injective on σ,
- 0 else.

If $g \circ f$ is injective on σ, then f is injective on σ and g is injective on $f(\sigma)$, hence $g_{n} \circ f_{n}(\sigma)=g \circ f(\sigma)$, and we deduce the result.

If $g \circ f$ is not injective on σ, then f is not injective on σ or g is not injective on $f(\sigma)$, hence $g_{n} \circ f_{n}(\sigma)=0$, and we deduce the result.

I - Decomposition of persistence modules
1 - Simplicial filtrations
2 - Persistence modules
3 - Barcodes
II - Stability of persistence modules
1 - Bottleneck distance
2 - Interleaving distance
3 - Stability
III - Persistent homology in practice
1 - Data analysis
2 - Machine learning
3 - Variations on persistent homology

Acompanhar os ciclos ao longo do temp9/46 (1/4)

Let $X \subset \mathbb{R}^{n}$. The collection its thickenings is an increasing sequence of subsets

$$
\ldots \subset X^{t_{1}} \subset X^{t_{2}} \subset X^{t_{3}} \subset \ldots
$$

By considering the corresponding Čech complexes, we obtain an non-decreasing sequence of simplicial complexes

$$
\ldots \subset \check{\operatorname{Cech}}{ }^{t_{1}}(X) \subset \operatorname{Cech}^{t_{2}}(X) \subset \operatorname{Cech}^{t_{3}}(X) \subset \ldots
$$

Let us denote i_{s}^{t} the inclusion map corresponding to $\operatorname{Cech}^{s}(X) \subset \operatorname{Cech}^{t}(X)$. We write

Applying the $i^{\text {th }}$ homology functor yields a diagram of vector spaces

$$
------->H_{i}\left(\operatorname{Cech}^{t_{1}}(X)\right) \xrightarrow{\left(i_{t_{1}}^{t_{2}}\right)_{*}} H_{i}\left(\operatorname{Cech}^{t_{2}}(X)\right) \xrightarrow{\left(i_{t_{2}}^{t_{3}}\right)_{*}} H_{i}\left(\operatorname{Cech}^{t_{3}}(X)\right)
$$

where the maps $\left(i_{s}^{t}\right)_{*}$ are those induced in homology by the inclusions i_{s}^{t}.

Acompanhar os ciclos ao longo do temp./46 (2/4)

$$
\cdots-\cdots--->H_{i}\left(\operatorname{Cech}^{t_{1}}(X)\right) \xrightarrow{\left(i_{t_{1}}^{t_{2}}\right)_{*}} H_{i}\left(\check{\operatorname{Cech}}^{t_{2}}(X)\right) \xrightarrow{\left(i_{t_{2}}^{t_{3}}\right)_{*}} H_{i}\left(\operatorname{Cech}^{t_{3}}(X)\right)-\cdots--
$$

Let $i \geq 0, t_{0} \geq 0$ and consider a cycle $c \in H_{i}\left(\right.$ Čech $\left.^{t_{0}}(X)\right)$.
Its death time is: $\sup \left\{t \geq t_{0} \mid\left(i_{t_{0}}^{t}\right)(c) \neq 0\right\}$,
its birth time is: $\inf \left\{t \geq t_{0} \mid\left(i_{t}^{t_{0}}\right)^{-1}(\{c\}) \neq \emptyset\right\}$,
its persistence is the difference.

Acompanhar os ciclos ao longo do temp./46 (3/4)

$$
\ldots----->H_{i}\left(\operatorname{Cech}^{t_{1}}(X)\right) \xrightarrow{\left(i_{t_{1}}^{t_{2}}\right)_{*}} H_{i}\left(\check{\operatorname{Cech}}^{t_{2}}(X)\right) \xrightarrow{\left(i_{t_{2}}^{t_{3}}\right)_{*}} H_{i}\left(\operatorname{Čch}^{t_{3}}(X)\right)-----
$$

Let $i \geq 0, t_{0} \geq 0$ and consider a cycle $c \in H_{i}\left(\right.$ Čech $\left.^{t_{0}}(X)\right)$. Its death time is: $\sup \left\{t \geq t_{0} \mid\left(i_{t_{0}}^{t}\right)(c) \neq 0\right\}$, its birth time is: $\inf \left\{t \geq t_{0} \mid\left(i_{t}^{t_{0}}\right)^{-1}(\{c\}) \neq \emptyset\right\}$, its persistence is the difference.

Acompanhar os ciclos ao longo do tempp//46 (4/4)

 $\cdots----->H_{i}\left(\operatorname{Cech}^{t_{1}}(X)\right) \xrightarrow{\left(i_{t_{1}}^{t_{2}}\right)_{*}} H_{i}\left(\check{\operatorname{Cech}}^{t_{2}}(X)\right) \xrightarrow{\left(i_{t_{2}}^{t_{3}}\right)_{*}} H_{i}\left(\operatorname{Cech}^{t_{3}}(X)\right) \cdots----$Let $i \geq 0, t_{0} \geq 0$ and consider a cycle $c \in H_{i}\left(\right.$ Čech $\left.^{t_{0}}(X)\right)$.
Its death time is: $\sup \left\{t \geq t_{0} \mid\left(i_{t_{0}}^{t}\right)(c) \neq 0\right\}$,
its birth time is: $\inf \left\{t \geq t_{0} \mid\left(i_{t}^{t_{0}}\right)^{-1}(\{c\}) \neq \emptyset\right\}$,
its persistence is the difference.

As a rule of thumb:

- cycles with large persistence correspond to important topological features of the dataset,
- cycles with short persistence corresponds to topological noise.

Módulos de persistência

Definition: A persistence module \mathbb{V} over \mathbb{R}^{+}with coefficients in $\mathbb{Z} / 2 \mathbb{Z}$ is a pair (\mathbb{V}, v) where $\mathbb{V}=\left(V^{t}\right)_{t \in \mathbb{R}^{+}}$is a family of $\mathbb{Z} / 2 \mathbb{Z}$-vector spaces, and $v=\left(v_{s}^{t}: V^{s} \rightarrow V^{t}\right)_{s \leq t \in \mathbb{R}^{+}}$ a family of linear maps such that:

- for every $t \in \mathbb{R}^{+}, v_{t}^{t}: V^{t} \rightarrow V^{t}$ is the identity map,
- for every $r, s, t \in \mathbb{R}^{+}$such that $r \leq s \leq t$, we have $v_{s}^{t} \circ v_{r}^{s}=v_{r}^{t}$.

In practice, one builds persistence modules from filtrations, that is, non-decreasing families of simplicial complexes $\mathbb{S}=\left(S^{t}\right)_{t \in \mathbb{R}^{+}}$. For instance, the Čech complex, or the Rips complex.

By applying the $i^{\text {th }}$ homology functor to a filtration, we obtain a persistence module $\mathbb{V}[\mathbb{S}]=\left(H_{i}\left(S^{t}\right)\right)_{t \in \mathbb{R}^{+}}$, with maps $\left(\left(i_{s}^{t}\right)_{*}: H_{i}\left(S^{s}\right) \rightarrow H_{i}\left(S^{t}\right)\right)_{s \leq t}$ induced by the inclusions.

Isomorfismos de módulos

Definition: An isomorphism between two persistence modules (\mathbb{V}, v) and ($\mathbb{W}, w)$ is a family of isomorphisms of vector spaces $\phi=\left(\phi_{t}: V^{t} \rightarrow W^{t}\right)_{t \in \mathbb{R}^{+}}$such that the following diagram commutes for every $s \leq t \in \mathbb{R}^{+}$:

I - Decomposition of persistence modules
1 - Simplicial filtrations
2 - Persistence modules
3 - Barcodes
II - Stability of persistence modules
1 - Bottleneck distance
2 - Interleaving distance
3 - Stability
III - Persistent homology in practice
1 - Data analysis
2 - Machine learning
3 - Variations on persistent homology

Decomponibilidade

Definition: Let (\mathbb{V}, v) and (\mathbb{W}, w) be two persistence modules.
Their sum is the persistence module $\mathbb{V} \oplus \mathbb{W}$ defined with the vector spaces $(V \oplus W)^{t}=V^{t} \oplus W^{t}$ and the linear maps

$$
(v \oplus w)_{s}^{t}:(x, y) \in(V \oplus W)^{s} \longmapsto\left(v_{s}^{t}(x), w_{s}^{t}(y)\right) \in(V \oplus W)^{t} .
$$

A persistence module \mathbb{U} is indecomposable if for every pair of persistence modules \mathbb{V} and \mathbb{W} such that \mathbb{U} is isomorphic to the sum $\mathbb{V} \oplus \mathbb{W}$, then one of the summands has to be a trivial persistence module, that is, equal to zero for every $t \in \mathbb{R}^{+}$. In other words,

$$
\mathbb{U} \simeq \mathbb{V} \oplus \mathbb{W} \Longrightarrow \mathbb{V}=0 \text { or } \mathbb{W}=0
$$

Otherwise, \mathbb{U} is said decomposable.

Módulos intervalo

Definition: Let $I \subset \mathbb{R}^{+}$be an interval: $[a, b],(a, b],[a, b)$ or (a, b), with $a, b \in \mathbb{R}^{+}$such that $a \leq b$, and potentially $a=-\infty$ or $b=+\infty$.

The interval module associated to I is the persistence module $\mathbb{B}[I]$ with vector spaces $\mathbb{B}^{t}[I]$ and linear maps $v_{s}^{t}: \mathbb{B}^{s}[I] \rightarrow \mathbb{B}^{t}[I]$ defined as

$$
\mathbb{B}^{t}[I]=\left\{\begin{array}{ll}
\mathbb{Z} / 2 \mathbb{Z} & \text { if } t \in I, \\
0 & \text { otherwise, }
\end{array} \quad \text { and } \quad v_{s}^{t}= \begin{cases}\text { id } & \text { if } s, t \in I \\
0 & \text { otherwise }\end{cases}\right.
$$

Módulos intervalo

Definition: Let $I \subset \mathbb{R}^{+}$be an interval: $[a, b],(a, b],[a, b)$ or (a, b), with $a, b \in \mathbb{R}^{+}$such that $a \leq b$, and potentially $a=-\infty$ or $b=+\infty$.

The interval module associated to I is the persistence module $\mathbb{B}[I]$ with vector spaces $\mathbb{B}^{t}[I]$ and linear maps $v_{s}^{t}: \mathbb{B}^{s}[I] \rightarrow \mathbb{B}^{t}[I]$ defined as

$$
\mathbb{B}^{t}[I]=\left\{\begin{array}{ll}
\mathbb{Z} / 2 \mathbb{Z} & \text { if } t \in I, \\
0 & \text { otherwise, }
\end{array} \quad \text { and } \quad v_{s}^{t}= \begin{cases}\text { id } & \text { if } s, t \in I \\
0 & \text { otherwise }\end{cases}\right.
$$

Lemma: Interval modules are indecomposable.

Módulos intervalo

Definition: Let $I \subset \mathbb{R}^{+}$be an interval: $[a, b],(a, b],[a, b)$ or (a, b), with $a, b \in \mathbb{R}^{+}$such that $a \leq b$, and potentially $a=-\infty$ or $b=+\infty$.

The interval module associated to I is the persistence module $\mathbb{B}[I]$ with vector spaces $\mathbb{B}^{t}[I]$ and linear maps $v_{s}^{t}: \mathbb{B}^{s}[I] \rightarrow \mathbb{B}^{t}[I]$ defined as

$$
\mathbb{B}^{t}[I]=\left\{\begin{array}{ll}
\mathbb{Z} / 2 \mathbb{Z} & \text { if } t \in I, \\
0 & \text { otherwise, }
\end{array} \quad \text { and } \quad v_{s}^{t}= \begin{cases}\text { id } & \text { if } s, t \in I, \\
0 & \text { otherwise }\end{cases}\right.
$$

We can sum interval modules:

Módulos intervalo

Definition: Let $I \subset \mathbb{R}^{+}$be an interval: $[a, b],(a, b],[a, b)$ or (a, b), with $a, b \in \mathbb{R}^{+}$such that $a \leq b$, and potentially $a=-\infty$ or $b=+\infty$.

The interval module associated to I is the persistence module $\mathbb{B}[I]$ with vector spaces $\mathbb{B}^{t}[I]$ and linear maps $v_{s}^{t}: \mathbb{B}^{s}[I] \rightarrow \mathbb{B}^{t}[I]$ defined as

$$
\mathbb{B}^{t}[I]=\left\{\begin{array}{ll}
\mathbb{Z} / 2 \mathbb{Z} & \text { if } t \in I, \\
0 & \text { otherwise, }
\end{array} \quad \text { and } \quad v_{s}^{t}= \begin{cases}\text { id } & \text { if } s, t \in I \\
0 & \text { otherwise }\end{cases}\right.
$$

Barcodes

A persistence module \mathbb{V} decomposes into interval module if there exists a multiset \mathcal{I} of intervals of T such that

$$
\mathbb{V} \simeq \bigoplus_{I \in \mathcal{I}} \mathbb{B}[I]
$$

Multiset means that \mathcal{I} may contain several copies of the same interval I.
Theorem (consequence of Krull-Remak-Schmidt-Azumaya): If a persistence module decomposes into interval modules, then the multiset \mathcal{I} of intervals is unique.

In this case, \mathcal{I} is called the persistence barcode of \mathbb{V}. It is written Barcode (\mathbb{V}).

Barcodes

A persistence module \mathbb{V} decomposes into interval module if there exists a multiset \mathcal{I} of intervals of T such that

$$
\mathbb{V} \simeq \bigoplus_{I \in \mathcal{I}} \mathbb{B}[I]
$$

Multiset means that \mathcal{I} may contain several copies of the same interval I.
Theorem (consequence of Krull-Remak-Schmidt-Azumaya): If a persistence module decomposes into interval modules, then the multiset \mathcal{I} of intervals is unique.

In this case, \mathcal{I} is called the persistence barcode of \mathbb{V}. It is written Barcode (\mathbb{V}).
For every $[a, b],(a, b],[a, b)$ or (a, b) in Barcode (\mathbb{V}), consider the point (a, b) of \mathbb{R}^{2}. The collection of all such points is the persistence diagram of \mathbb{V}.

Barcodes

A persistence module \mathbb{V} decomposes into interval module if there exists a multiset \mathcal{I} of intervals of T such that

$$
\mathbb{V} \simeq \bigoplus_{I \in \mathcal{I}} \mathbb{B}[I]
$$

Multiset means that \mathcal{I} may contain several copies of the same interval I.
Theorem (consequence of Krull-Remak-Schmidt-Azumaya): If a persistence module decomposes into interval modules, then the multiset \mathcal{I} of intervals is unique.

In this case, \mathcal{I} is called the persistence barcode of \mathbb{V}. It is written Barcode (\mathbb{V}).
For every $[a, b],(a, b],[a, b)$ or (a, b) in Barcode (\mathbb{V}), consider the point (a, b) of \mathbb{R}^{2}. The collection of all such points is the persistence diagram of \mathbb{V}.

Barcodes

A persistence module \mathbb{V} is said pointwise finite dimensional if $\operatorname{dim} V^{t}<+\infty$ for all t.
Theorem (Crawley-Boevey, 2015): Every pointwise finite-dimensional persistence module decomposes into interval modules.

Barcodes

A persistence module \mathbb{V} is said pointwise finite dimensional if $\operatorname{dim} V^{t}<+\infty$ for all t.
Theorem (Crawley-Boevey, 2015): Every pointwise finite-dimensional persistence module decomposes into interval modules.

Proof (Zomorodian, Carlsson, 2005): Simpler case: the persistence module is finite-dimensional and has finitely many terms.
We can write our persistence module as

$$
V^{1} \xrightarrow{v_{1}^{2}} V^{2} \xrightarrow{v_{2}^{3}} V^{3} \xrightarrow{v_{3}^{4}} V^{4}------>\ldots------>V^{n}
$$

Consider the vector space $\mathcal{V}=\bigotimes_{1 \leq i \leq n} V^{i}=V^{1} \times \cdots \times V^{n}$.
Let $\mathbb{Z} / 2 \mathbb{Z}[x]$ denote the space of polynomials with coefficients in $\mathbb{Z} / 2 \mathbb{Z}$. We give \mathcal{V} an action of $\mathbb{Z} / 2 \mathbb{Z}[x]$ via

$$
x \cdot\left(a^{1}, a^{2}, \ldots, a^{n}\right)=\left(0, v_{1}^{2}\left(a^{1}\right), v_{2}^{3}\left(a^{2}\right), \ldots, v_{n-1}^{n}\left(a^{n-1}\right)\right) .
$$

Hence \mathcal{V} can be seen as a finitely generated module over the principal ideal domain $\mathbb{Z} / 2 \mathbb{Z}[x]$. By classification, \mathcal{V} is isomorphic to a sum

$$
\mathcal{V} \simeq \bigoplus_{i \in I} \mathbb{Z} / 2 \mathbb{Z}[x] / x^{i} \cdot \mathbb{Z} / 2 \mathbb{Z}[x]
$$

We identify the components $\mathbb{Z} / 2 \mathbb{Z}[x] / x^{i} \cdot \mathbb{Z} / 2 \mathbb{Z}[x]$ with bars of the barcode of length i.

Barcodes

Barcodes

On a barcode we can read homology at each step, and see how it evolves.

Algoritmo

The Čech or the Rips filtration define an increasing sequence of simplices

$$
\ldots \subset \operatorname{Cech}^{t_{1}}(X) \subset \check{\operatorname{Cech}}^{t_{2}}(X) \subset \check{\operatorname{Cech}}^{t_{3}}(X) \subset \ldots
$$

We can turn it consistently into an ordering of the simplices, by inserting the simplices by order of apparition in the filtration.

$$
\sigma^{1}<\sigma^{2}<\ldots<\sigma^{n}
$$

Denote $t(\sigma)$ the time of apparition of the simplex σ in the filtration. The total order on the simplices satisfies

$$
t\left(\sigma^{i}\right)<t\left(\sigma^{j}\right) \text { for all } i<j
$$

In practice several simplices may appear at the same time. If this occurs, choose an order of the simplices.
\longrightarrow Consider the boundary matrix, and compute a Gauss reduction.

Algoritmo

$$
\begin{array}{llllllllll}
\sigma^{1} & \sigma^{2} & \sigma^{3} & \sigma^{4} & \sigma^{5} & \sigma^{6} & \sigma^{7} & \sigma^{8} & \sigma^{9} & \sigma^{10}
\end{array}
$$

σ^{1}
σ^{2}
σ^{3}
σ^{4}
σ^{5}
σ^{6}
σ^{7}
σ^{8}
σ^{9}
$\sigma^{10}$$\left(\begin{array}{llllllllll}0 & 0 & 0 & 1 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 1 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 1 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 1 & 1 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0\end{array}\right)$

$$
\begin{aligned}
& \sigma^{1} \\
& \sigma^{2} \\
& \sigma^{3} \\
& \sigma^{4} \\
& \sigma^{5} \\
& \sigma^{6} \\
& \sigma^{7} \\
& \sigma^{8} \\
& \sigma^{9} \\
& \sigma^{9} \\
& \sigma^{10}
\end{aligned} \sigma^{2} \quad \sigma^{3}
$$

Algoritmo

	$\begin{array}{lllllllllll}\sigma^{1} & \sigma^{2} & \sigma^{3} & \sigma^{4} & \sigma^{5} & \sigma^{6} & \sigma^{7} & \sigma^{8} & \sigma^{9} & \sigma^{10}\end{array}$	For any $j \in \llbracket 1, n \rrbracket$,
σ^{1} σ^{2}	$\left(\begin{array}{llllllllll}0 & 0 & 0 & 0 & 1 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 1 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 & 1 & 0 & 0 & 0\end{array}\right.$	$\delta^{(j)}=\max \left\{i \in \llbracket 1, n \rrbracket \mid \Delta_{i, j} \neq 0\right\}$,
σ^{3}	$\begin{array}{llllllllll}0 & 0 & 0 & 0 & 0 & 1 & 1 & 0 & 0 & 0\end{array}$	
σ^{4}	$\begin{array}{llllllllll}0 & 0 & 0 & 0 & 0 & 0 & 1 & 1 & 1 & 0\end{array}$	and $\Delta_{i, j}=0$ for all j, then $\delta(j)$ is undefined.
σ^{5}	$\begin{array}{llllllllll}0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1\end{array}$	
σ^{6}	$\begin{array}{llllllllll}0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0\end{array}$	
σ^{7}	$\begin{array}{llllllllll}0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0\end{array}$	
σ^{8}	$\begin{array}{llllllllll}0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1\end{array}$	$\begin{array}{lllllllllllllllll}\sigma^{1} & \sigma^{2} & \sigma^{3} & \sigma^{4} & \sigma^{5} & \sigma^{6} & \sigma^{7} & \delta^{\circ} & 8^{\times} \times \sigma^{10}\end{array}$
σ^{9}	$\left(\begin{array}{llllllllll}0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1\end{array}\right.$	$\sigma^{1}\left(\begin{array}{llllllllll}0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0\end{array}\right)$
	$\left(\begin{array}{llllllllll}0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0\end{array}\right)$	$\sigma^{2}\left(\begin{array}{llllllllll}0 & 0 & 0 & 0 & 1 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 & 1 & 0 & 0 & 0\end{array}\right.$
-		σ^{3}
		$\sigma^{6} \quad 0 \begin{array}{llllllllll} \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0\end{array}$
		σ^{7}
		σ^{8}
		$\sigma^{9}\left(\begin{array}{llllllllll}0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1\end{array}\right.$
		$\sigma^{10}\left(\begin{array}{llllllllll}0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0\end{array}\right)$

Algoritmo

Now, for all j such that $\delta(j)$ is defined, consider the pair of simplices

$$
\left(\sigma^{\delta(j)}, \sigma^{j}\right)
$$

Also, for the values $i \notin \operatorname{Im}(\delta)$, we set: $\left(\sigma^{i},+\infty\right)$.
The pairs of simplices (σ, τ) are called persistence pairs.

$$
\begin{aligned}
& \begin{array}{l}
\sigma^{\sigma^{1}} \\
\sigma^{2} \\
\sigma^{2} \\
\sigma^{3} \\
\sigma^{4} \\
\sigma^{5} \\
\sigma^{6} \\
\sigma^{7} \\
\sigma^{7} \\
\sigma^{9}
\end{array}\left(\begin{array}{llllllllll}
0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 1 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0
\end{array}\right)
\end{aligned}
$$

Algoritmo

Now, for all j such that $\delta(j)$ is defined, consider the pair of simplices

$$
\left(\sigma^{\delta(j)}, \sigma^{j}\right)
$$

Also, for the values $i \notin \operatorname{Im}(\delta)$, we set: $\left(\sigma^{i},+\infty\right)$.
The pairs of simplices (σ, τ) are called persistence pairs.

Algoritmo

Now, for all j such that $\delta(j)$ is defined, consider the pair of simplices

$$
\left(\sigma^{\delta(j)}, \sigma^{j}\right)
$$

Also, for the values $i \notin \operatorname{Im}(\delta)$, we set: $\left(\sigma^{i},+\infty\right)$.
The pairs of simplices (σ, τ) are called persistence pairs.

Algoritmo

Now, for all j such that $\delta(j)$ is defined, consider the pair of simplices

$$
\left(\sigma^{\delta(j)}, \sigma^{j}\right)
$$

Also, for the values $i \notin \operatorname{Im}(\delta)$, we set: $\left(\sigma^{i},+\infty\right)$.
The pairs of simplices (σ, τ) are called persistence pairs.

Algoritmo

Now, for all j such that $\delta(j)$ is defined, consider the pair of simplices

$$
\left(\sigma^{\delta(j)}, \sigma^{j}\right)
$$

Also, for the values $i \notin \operatorname{Im}(\delta)$, we set: $\left(\sigma^{i},+\infty\right)$.
The pairs of simplices (σ, τ) are called persistence pairs.

Algoritmo

Now, for all j such that $\delta(j)$ is defined, consider the pair of simplices

$$
\left(\sigma^{\delta(j)}, \sigma^{j}\right)
$$

Also, for the values $i \notin \operatorname{Im}(\delta)$, we set: $\left(\sigma^{i},+\infty\right)$.
The pairs of simplices (σ, τ) are called persistence pairs.

Algoritmo

Now, for all j such that $\delta(j)$ is defined, consider the pair of simplices

$$
\left(\sigma^{\delta(j)}, \sigma^{j}\right)
$$

Also, for the values $i \notin \operatorname{Im}(\delta)$, we set: $\left(\sigma^{i},+\infty\right)$.
The pairs of simplices (σ, τ) are called persistence pairs.

Algoritmo

Now, for all j such that $\delta(j)$ is defined, consider the pair of simplices

$$
\left(\sigma^{\delta(j)}, \sigma^{j}\right)
$$

Also, for the values $i \notin \operatorname{Im}(\delta)$, we set: $\left(\sigma^{i},+\infty\right)$.
The pairs of simplices (σ, τ) are called persistence pairs.

Algoritmo

Proposition: The barcodes of the filtration consists in the intervals $\mathcal{I}=\{(t(\sigma), t(\tau))$ for all persistence pair (σ, τ) such that $t(\sigma) \neq t(\tau)\}$.

I - Decomposition of persistence modules

1 - Simplicial filtrations
2 - Persistence modules
3 - Barcodes
II - Stability of persistence modules
1 - Bottleneck distance
2 - Interleaving distance
3 - Stability
III - Persistent homology in practice
1 - Data analysis
2 - Machine learning
3 - Variations on persistent homology

O problema da estabilidade

Let $X \subset \mathbb{R}^{n}$ finite, seen as a sample of \mathcal{M}.

Barcodes of the Čech filtration

H_{0}

H_{1}

I - Decomposition of persistence modules

1 - Simplicial filtrations
2 - Persistence modules
3 - Barcodes
II - Stability of persistence modules
1 - Bottleneck distance
2 - Interleaving distance
3 - Stability
III - Persistent homology in practice
1 - Data analysis
2 - Machine learning
3 - Variations on persistent homology

Distância bottleneck

Consider two barcodes P and Q, that is, multisets of intervals $\left\{\left(a_{i}, b_{i}\right), i \in \mathcal{I}\right\}$ of $\left(\overline{\mathbb{R}^{+}}\right)^{2}$ such that $a_{i} \leq b_{i}$ for all $i \in \mathcal{I}$.

Distância bottleneck

Consider two barcodes P and Q, that is, multisets of intervals $\left\{\left(a_{i}, b_{i}\right), i \in \mathcal{I}\right\}$ of $\left(\overline{\mathbb{R}^{+}}\right)^{2}$ such that $a_{i} \leq b_{i}$ for all $i \in \mathcal{I}$.

A partial matching between the barcodes is a subset $M \subset P \times Q$ such that

- for every $p \in P$, there exists at most one $q \in Q$ such that $(p, q) \in M$,
- for every $q \in Q$, there exists at most one $p \in P$ such that $(p, q) \in M$.

The bars $p \in P($ resp. $q \in Q)$ such that there exists $q \in Q$ (resp. $p \in P$) with $(p, q) \in M$ are said matched by M.

Distância bottleneck

Consider two barcodes P and Q, that is, multisets of intervals $\left\{\left(a_{i}, b_{i}\right), i \in \mathcal{I}\right\}$ of $\left(\overline{\mathbb{R}^{+}}\right)^{2}$ such that $a_{i} \leq b_{i}$ for all $i \in \mathcal{I}$.

A partial matching between the barcodes is a subset $M \subset P \times Q$ such that

- for every $p \in P$, there exists at most one $q \in Q$ such that $(p, q) \in M$,
- for every $q \in Q$, there exists at most one $p \in P$ such that $(p, q) \in M$.

The bars $p \in P$ (resp. $q \in Q$) such that there exists $q \in Q$ (resp. $p \in P$) with $(p, q) \in M$ are said matched by M.

Distância bottleneck

Consider two barcodes P and Q, that is, multisets of intervals $\left\{\left(a_{i}, b_{i}\right), i \in \mathcal{I}\right\}$ of $\left(\overline{\mathbb{R}^{+}}\right)^{2}$ such that $a_{i} \leq b_{i}$ for all $i \in \mathcal{I}$.

A partial matching between the barcodes is a subset $M \subset P \times Q$ such that

- for every $p \in P$, there exists at most one $q \in Q$ such that $(p, q) \in M$,
- for every $q \in Q$, there exists at most one $p \in P$ such that $(p, q) \in M$.

The bars $p \in P$ (resp. $q \in Q$) such that there exists $q \in Q$ (resp. $p \in P$) with $(p, q) \in M$ are said matched by M.

Distância bottleneck

Consider two barcodes P and Q, that is, multisets of intervals $\left\{\left(a_{i}, b_{i}\right), i \in \mathcal{I}\right\}$ of $\left(\overline{\mathbb{R}^{+}}\right)^{2}$ such that $a_{i} \leq b_{i}$ for all $i \in \mathcal{I}$.

A partial matching between the barcodes is a subset $M \subset P \times Q$ such that

- for every $p \in P$, there exists at most one $q \in Q$ such that $(p, q) \in M$,
- for every $q \in Q$, there exists at most one $p \in P$ such that $(p, q) \in M$.

The bars $p \in P$ (resp. $q \in Q$) such that there exists $q \in Q$ (resp. $p \in P$) with $(p, q) \in M$ are said matched by M.

Distância bottleneck

Consider two barcodes P and Q, that is, multisets of intervals $\left\{\left(a_{i}, b_{i}\right), i \in \mathcal{I}\right\}$ of $\left(\overline{\mathbb{R}^{+}}\right)^{2}$ such that $a_{i} \leq b_{i}$ for all $i \in \mathcal{I}$.

A partial matching between the barcodes is a subset $M \subset P \times Q$ such that

- for every $p \in P$, there exists at most one $q \in Q$ such that $(p, q) \in M$,
- for every $q \in Q$, there exists at most one $p \in P$ such that $(p, q) \in M$.

The bars $p \in P$ (resp. $q \in Q$) such that there exists $q \in Q$ (resp. $p \in P$) with $(p, q) \in M$ are said matched by M.
If a bar $p \in P$ (resp. $q \in Q$) is not matched by M, we consider that it is matched with the singleton $\bar{p}=\left[\frac{p_{1}+p_{2}}{2}, \frac{p_{1}+p_{2}}{2}\right]$ (resp. $\bar{q}=\left[\frac{q_{1}+q_{2}}{2}, \frac{q_{1}+q_{2}}{2}\right]$).

Distância bottleneck

Consider two barcodes P and Q, that is, multisets of intervals $\left\{\left(a_{i}, b_{i}\right), i \in \mathcal{I}\right\}$ of $\left(\overline{\mathbb{R}^{+}}\right)^{2}$ such that $a_{i} \leq b_{i}$ for all $i \in \mathcal{I}$.

A partial matching between the barcodes is a subset $M \subset P \times Q$ such that

- for every $p \in P$, there exists at most one $q \in Q$ such that $(p, q) \in M$,
- for every $q \in Q$, there exists at most one $p \in P$ such that $(p, q) \in M$.

The bars $p \in P$ (resp. $q \in Q$) such that there exists $q \in Q$ (resp. $p \in P$) with $(p, q) \in M$ are said matched by M.

If a bar $p \in P($ resp. $q \in Q)$ is not matched by M, we consider that it is matched with the singleton $\bar{p}=\left[\frac{p_{1}+p_{2}}{2}, \frac{p_{1}+p_{2}}{2}\right]\left(\right.$ resp. $\bar{q}=\left[\frac{q_{1}+q_{2}}{2}, \frac{q_{1}+q_{2}}{2}\right]$).

The cost of a matched pair (p, q) (resp. (p, \bar{p}), resp. $(\bar{q}, q))$ is the sup norm $\|p-q\|_{\infty}=\sup \left\{\left|p_{1}-q_{1}\right|,\left|p_{2}-q_{2}\right|\right\}\left(\right.$ resp. $\|p-\bar{p}\|_{\infty}$, resp. $\left.\|\bar{q}-q\|_{\infty}\right)$.

The cost of the partial matching M, denoted $\operatorname{cost}(M)$, is the supremum of all costs.

Distância bottleneck

Consider two barcodes P and Q, that is, multisets of intervals $\left\{\left(a_{i}, b_{i}\right), i \in \mathcal{I}\right\}$ of $\left(\overline{\mathbb{R}^{+}}\right)^{2}$ such that $a_{i} \leq b_{i}$ for all $i \in \mathcal{I}$.

Definition: The bottleck distance between P and Q is defined as the infimum of costs over all the partial matchings:

$$
\mathrm{d}_{\mathrm{b}}(P, Q)=\inf \{\operatorname{cost}(M) \mid M \text { is a partial matching between } P \text { and } Q\} .
$$

Distância bottleneck

Consider two barcodes P and Q, that is, multisets of intervals $\left\{\left(a_{i}, b_{i}\right), i \in \mathcal{I}\right\}$ of $\left(\overline{\mathbb{R}^{+}}\right)^{2}$ such that $a_{i} \leq b_{i}$ for all $i \in \mathcal{I}$.

Definition: The bottleck distance between P and Q is defined as the infimum of costs over all the partial matchings:

$$
\mathrm{d}_{\mathrm{b}}(P, Q)=\inf \{\operatorname{cost}(M) \mid M \text { is a partial matching between } P \text { and } Q\} .
$$

Distância bottleneck

Consider two barcodes P and Q, that is, multisets of intervals $\left\{\left(a_{i}, b_{i}\right), i \in \mathcal{I}\right\}$ of $\left(\overline{\mathbb{R}^{+}}\right)^{2}$ such that $a_{i} \leq b_{i}$ for all $i \in \mathcal{I}$.

Definition: The bottleck distance between P and Q is defined as the infimum of costs over all the partial matchings:

$$
\mathrm{d}_{\mathrm{b}}(P, Q)=\inf \{\operatorname{cost}(M) \mid M \text { is a partial matching between } P \text { and } Q\} .
$$

If \mathbb{U} and \mathbb{V} are two decomposable persistence modules, we define their bottleneck distance as

$$
\mathrm{d}_{\mathrm{b}}(\mathbb{U}, \mathbb{V})=\mathrm{d}_{\mathrm{b}}(\operatorname{Barcode}(\mathbb{U}), \operatorname{Barcode}(\mathbb{V}))
$$

Distância bottleneck

Example: Consider $a \leq b, a^{\prime} \leq b^{\prime}$, and the barcodes $P=\{[a, b]\}$ and $Q=\left\{\left[a^{\prime}, b^{\prime}\right]\right\}$.

First maching: the empty matching $M=\emptyset$. The intervals are matched to their midpoint, and the cost is

$$
\left|(a, b)-\left(\frac{a+b}{2}, \frac{a+b}{2}\right)\right|_{\infty}=\frac{b-a}{2}, \quad\left|\left(a^{\prime}, b^{\prime}\right)-\left(\frac{a^{\prime}+b^{\prime}}{2}, \frac{a^{\prime}+b^{\prime}}{2}\right)\right|_{\infty}=\frac{b^{\prime}-a^{\prime}}{2}
$$

The total cost is $\operatorname{cost}(M)=\max \left\{\frac{b-a}{2}, \frac{b^{\prime}-a^{\prime}}{2}\right\}$.
Second maching: $M^{\prime}=\left\{\left((a, b),\left(a^{\prime}, b^{\prime}\right)\right)\right\}$. The intervals are matched together, and the cost of the pair is

$$
\left|(a, b)-\left(a^{\prime}, b^{\prime}\right)\right|_{\infty}=\max \left\{\left|a-a^{\prime}\right|,\left|b-b^{\prime}\right|\right\}
$$

which is also $\operatorname{cost}\left(M^{\prime}\right)$.
These are the only two partial matchings, and we deduce the bottleneck distance

$$
\mathrm{d}_{\mathrm{b}}(P, Q)=\min \left\{\max \left\{\frac{b-a}{2}, \frac{b^{\prime}-a^{\prime}}{2}\right\}, \max \left\{\left|a-a^{\prime}\right|,\left|b-b^{\prime}\right|\right\}\right\}
$$

Distância bottleneck

Example: Consider $a \leq b, a^{\prime} \leq b^{\prime}$, and the barcodes $P=\{[a, b]\}$ and $Q=\left\{\left[a^{\prime}, b^{\prime}\right]\right\}$.

We have

$$
\mathrm{d}_{\mathrm{b}}(P, Q)=\min \left\{\max \left\{\frac{b-a}{2}, \frac{b^{\prime}-a^{\prime}}{2}\right\}, \max \left\{\left|a-a^{\prime}\right|,\left|b-b^{\prime}\right|\right\}\right\} .
$$

Example: Consider the interval-modules $\mathbb{B}[a, b]$ and $\mathbb{B}\left[a^{\prime}, b^{\prime}\right]$.
Their barcodes are the sets P and Q of the previous example, from which we deduce

$$
\mathrm{d}_{\mathrm{b}}\left(\mathbb{B}[a, b], \mathbb{B}\left[a^{\prime}, b^{\prime}\right]\right)=\min \left\{\max \left\{\frac{b-a}{2}, \frac{b^{\prime}-a^{\prime}}{2}\right\}, \max \left\{\left|a-a^{\prime}\right|,\left|b-b^{\prime}\right|\right\}\right\} .
$$

I - Decomposition of persistence modules

1 - Simplicial filtrations
2 - Persistence modules
3 - Barcodes
II - Stability of persistence modules
1 - Bottleneck distance
2 - Interleaving distance
3 - Stability
III - Persistent homology in practice
1 - Data analysis
2 - Machine learning
3 - Variations on persistent homology

Distância de entrelaçamento

Consider two persistence modules \mathbb{V} and \mathbb{W} :

Given $\epsilon \geq 0$, an ϵ-morphism between \mathbb{V} and \mathbb{W} is a family of linear maps $\phi=\left(\phi_{t}: V^{t} \rightarrow W^{t+\epsilon}\right)_{t \in \mathbb{R}^{+}}$such that the following diagram commutes for every $s \leq t \in \mathbb{R}^{+}$:

Distância de entrelaçamento

Consider two persistence modules \mathbb{V} and \mathbb{W} :

Given $\epsilon \geq 0$, an ϵ-morphism between \mathbb{V} and \mathbb{W} is a family of linear maps $\phi=\left(\phi_{t}: V^{t} \rightarrow W^{t+\epsilon}\right)_{t \in \mathbb{R}^{+}}$such that the following diagram commutes for every $s \leq t \in \mathbb{R}^{+}$:

An ϵ-interleaving between \mathbb{V} and \mathbb{W} is a pair of ϵ-morphisms $\left(\phi_{t}: V^{t} \rightarrow W^{t+\epsilon}\right)_{t \in \mathbb{R}^{+}}$ and $\left(\psi_{t}: W^{t} \rightarrow V^{t+\epsilon}\right)_{t \in \mathbb{R}^{+}}$such that the following diagrams commute for every $t \in \mathbb{R}^{+}$:

Distância de entrelaçamento

Consider two persistence modules \mathbb{V} and \mathbb{W} :

Given $\epsilon \geq 0$, an ϵ-morphism between \mathbb{V} and \mathbb{W} is a family of linear maps $\phi=\left(\phi_{t}: V^{t} \rightarrow W^{t+\epsilon}\right)_{t \in \mathbb{R}^{+}}$such that the following diagram commutes for every $s \leq t \in \mathbb{R}^{+}$:

An ϵ-interleaving between \mathbb{V} and \mathbb{W} is a pair of ϵ-morphisms $\left(\phi_{t}: V^{t} \rightarrow W^{t+\epsilon}\right)_{t \in \mathbb{R}^{+}}$ and $\left(\psi_{t}: W^{t} \rightarrow V^{t+\epsilon}\right)_{t \in \mathbb{R}^{+}}$such that the following diagrams commute for every $t \in \mathbb{R}^{+}$:

The interleaving distance is: $\quad d_{i}(\mathbb{V}, \mathbb{W})=\inf \{\epsilon \geq 0 \mid \mathbb{V}$ and \mathbb{W} are ϵ-interleaved $\}$.

Distância de entrelaçamento

Example: Let $a, a^{\prime}, b, b^{\prime} \in \mathbb{R}^{+}$such that $a \leq b$ and $a^{\prime} \leq b^{\prime}$. Consider the interval-modules $\mathbb{B}[a, b]$ and $\mathbb{B}\left[a^{\prime}, b^{\prime}\right]$.

Let us find an ϵ-interleaving.

$$
\mathbb{R}^{+}
$$

Distância de entrelaçamento

Example: Let $a, a^{\prime}, b, b^{\prime} \in \mathbb{R}^{+}$such that $a \leq b$ and $a^{\prime} \leq b^{\prime}$. Consider the interval-modules $\mathbb{B}[a, b]$ and $\mathbb{B}\left[a^{\prime}, b^{\prime}\right]$.

Let us find an ϵ-interleaving.

Given $\epsilon \geq 0$, an ϵ-morphism between \mathbb{V} and \mathbb{W} is a family of linear maps $\phi=\left(\phi_{t}: V^{t} \rightarrow W^{t+\epsilon}\right)_{t \in \mathbb{R}^{+}}$such that the following diagram commutes for every $s \leq t \in \mathbb{R}^{+}$:

Distância de entrelaçamento

Example: Let $a, a^{\prime}, b, b^{\prime} \in \mathbb{R}^{+}$such that $a \leq b$ and $a^{\prime} \leq b^{\prime}$. Consider the interval-modules $\mathbb{B}[a, b]$ and $\mathbb{B}\left[a^{\prime}, b^{\prime}\right]$.

Let us find an ϵ-interleaving.

Given $\epsilon \geq 0$, an ϵ-morphism between \mathbb{V} and \mathbb{W} is a family of linear maps $\phi=\left(\phi_{t}: V^{t} \rightarrow W^{t+\epsilon}\right)_{t \in \mathbb{R}^{+}}$such that the following diagram commutes for every $s \leq t \in \mathbb{R}^{+}$:

Distância de entrelaçamento

Example: Let $a, a^{\prime}, b, b^{\prime} \in \mathbb{R}^{+}$such that $a \leq b$ and $a^{\prime} \leq b^{\prime}$. Consider the interval-modules $\mathbb{B}[a, b]$ and $\mathbb{B}\left[a^{\prime}, b^{\prime}\right]$.

Let us find an ϵ-interleaving.

Given $\epsilon \geq 0$, an ϵ-morphism between \mathbb{V} and \mathbb{W} is a family of linear maps $\phi=\left(\phi_{t}: V^{t} \rightarrow W^{t+\epsilon}\right)_{t \in \mathbb{R}^{+}}$such that the following diagram commutes for every $s \leq t \in \mathbb{R}^{+}:$

Distância de entrelaçamento

Example: Let $a, a^{\prime}, b, b^{\prime} \in \mathbb{R}^{+}$such that $a \leq b$ and $a^{\prime} \leq b^{\prime}$. Consider the interval-modules $\mathbb{B}[a, b]$ and $\mathbb{B}\left[a^{\prime}, b^{\prime}\right]$.

Let us find an ϵ-interleaving.

Given $\epsilon \geq 0$, an ϵ-morphism between \mathbb{V} and \mathbb{W} is a family of linear maps $\phi=\left(\phi_{t}: V^{t} \rightarrow W^{t+\epsilon}\right)_{t \in \mathbb{R}^{+}}$such that the following diagram commutes for every $s \leq t \in \mathbb{R}^{+}$:

\rightarrow Only two possibilities for ϕ :

- always the zero map
- always nonzero when V^{t} and $W^{t+\epsilon}$ are nonzero

Distância de entrelaçamento

Example: Let $a, a^{\prime}, b, b^{\prime} \in \mathbb{R}^{+}$such that $a \leq b$ and $a^{\prime} \leq b^{\prime}$. Consider the interval-modules $\mathbb{B}[a, b]$ and $\mathbb{B}\left[a^{\prime}, b^{\prime}\right]$.

Let us find an ϵ-interleaving.

An ϵ-interleaving between \mathbb{V} and \mathbb{W} is a pair of ϵ-morphisms $\left(\phi_{t}: V^{t} \rightarrow W^{t+\epsilon}\right)_{t \in \mathbb{R}^{+}}$ and $\left(\psi_{t}: W^{t} \rightarrow V^{t+\epsilon}\right)_{t \in \mathbb{R}^{+}}$such that the following diagrams commute for every $t \in \mathbb{R}^{+}$:

$\longrightarrow \psi_{t+\epsilon} \circ \phi_{t}$ must be nonzero when $[t, t+\epsilon] \subset[a, b]$

Distância de entrelaçamento

Example: Let $a, a^{\prime}, b, b^{\prime} \in \mathbb{R}^{+}$such that $a \leq b$ and $a^{\prime} \leq b^{\prime}$. Consider the interval-modules $\mathbb{B}[a, b]$ and $\mathbb{B}\left[a^{\prime}, b^{\prime}\right]$.

Let us find an ϵ-interleaving.

An ϵ-interleaving between \mathbb{V} and \mathbb{W} is a pair of ϵ-morphisms $\left(\phi_{t}: V^{t} \rightarrow W^{t+\epsilon}\right)_{t \in \mathbb{R}^{+}}$ and $\left(\psi_{t}: W^{t} \rightarrow V^{t+\epsilon}\right)_{t \in \mathbb{R}^{+}}$such that the following diagrams commute for every $t \in \mathbb{R}^{+}$:

$\longrightarrow \psi_{t+\epsilon} \circ \phi_{t}$ must be nonzero when $[t, t+\epsilon] \subset[a, b]$

Distância de entrelaçamento

Example: Let $a, a^{\prime}, b, b^{\prime} \in \mathbb{R}^{+}$such that $a \leq b$ and $a^{\prime} \leq b^{\prime}$. Consider the interval-modules $\mathbb{B}[a, b]$ and $\mathbb{B}\left[a^{\prime}, b^{\prime}\right]$.

Let us find an ϵ-interleaving.

An ϵ-interleaving between \mathbb{V} and \mathbb{W} is a pair of ϵ-morphisms $\left(\phi_{t}: V^{t} \rightarrow W^{t+\epsilon}\right)_{t \in \mathbb{R}^{+}}$ and $\left(\psi_{t}: W^{t} \rightarrow V^{t+\epsilon}\right)_{t \in \mathbb{R}^{+}}$such that the following diagrams commute for every $t \in \mathbb{R}^{+}$:

$\longrightarrow \psi_{t+\epsilon} \circ \phi_{t}$ must be nonzero when $[t, t+\epsilon] \subset[a, b]$ $\phi_{t+\epsilon} \circ \psi_{t}$ must be nonzero when $[t, t+\epsilon] \subset\left[a^{\prime}, b^{\prime}\right]$

Distância de entrelaçamento

Example: Let $a, a^{\prime}, b, b^{\prime} \in \mathbb{R}^{+}$such that $a \leq b$ and $a^{\prime} \leq b^{\prime}$. Consider the interval-modules $\mathbb{B}[a, b]$ and $\mathbb{B}\left[a^{\prime}, b^{\prime}\right]$.

Let us find an ϵ-interleaving.
\longrightarrow Only two possibilities for $\phi: \bullet$ always the zero map

- always nonzero when V^{t} and $W^{t+\epsilon}$ are nonzero
$\longrightarrow \psi_{t+\epsilon} \circ \phi_{t}$ must be nonzero when $[t, t+\epsilon] \subset[a, b]$ $\phi_{t+\epsilon} \circ \psi_{t}$ must be nonzero when $[t, t+\epsilon] \subset\left[a^{\prime}, b^{\prime}\right]$

We deduce that either

- $|a-b| \leq 2 \epsilon$ and $\left|a^{\prime}-b^{\prime}\right| \leq 2 \epsilon$, or
- $\left|a-a^{\prime}\right| \leq \epsilon$ and $\left|b-b^{\prime}\right| \leq \epsilon$

Conclusion: $\quad \mathrm{d}_{\mathrm{i}}\left(\mathbb{B}[a, b], \mathbb{B}\left[a^{\prime}, b^{\prime}\right]\right)=\min \left\{\max \left\{\frac{b-a}{2}, \frac{b^{\prime}-a^{\prime}}{2}\right\}, \max \left\{\left|a-a^{\prime}\right|,\left|b-b^{\prime}\right|\right\}\right\}$

Teorema de isometria

Theorem (Chazal, de Silva, Glisse, Oudot, 2009): If the persistence modules \mathbb{U} and \mathbb{V} are interval-decomposable, then $\mathrm{d}_{\mathrm{i}}(\mathbb{U}, \mathbb{V})=\mathrm{d}_{\mathrm{b}}(\mathbb{U}, \mathbb{V})$.
$\begin{array}{ll}\longrightarrow \text { Stability: } & d_{i}(\mathbb{U}, \mathbb{V}) \geq d_{b}(\mathbb{U}, \mathbb{V}) \\ \longrightarrow \text { Converse stability: } d_{i}(\mathbb{U}, \mathbb{V}) \leq d_{b}(\mathbb{U}, \mathbb{V})\end{array}$

Teorema de isometria

Theorem (Chazal, de Silva, Glisse, Oudot, 2009): If the persistence modules \mathbb{U} and \mathbb{V} are interval-decomposable, then $d_{i}(\mathbb{U}, \mathbb{V})=d_{b}(\mathbb{U}, \mathbb{V})$.
Proof: Let us write the decomposition of the persistence modules in intervals:

$$
\mathbb{V} \simeq \bigoplus_{I \in \mathcal{I}} \mathbb{B}[I]
$$

$$
\mathbb{W} \simeq \bigoplus_{J \in \mathcal{J}} \mathbb{B}[J]
$$

Suppose that we have a ϵ-partial matching $M \subset \mathcal{I} \times \mathcal{J}$. This gives a matching of some intervals (I, J), where $I=(a, b)$ and $J=\left(a^{\prime}, b^{\prime}\right)$, such that $\left|a-a^{\prime}\right| \leq \epsilon$ and $\left|b-b^{\prime}\right| \leq \epsilon$.

We can build an ϵ-interleaving between $\mathbb{B}[I]$ and $\mathbb{B}[J]$, that we denote $\left(\phi_{(I, J)}, \psi_{(I, J)}\right)$.
Some intervals I (resp. J) are not matched, in which case their length is not greater than 2ϵ, and we can build an ϵ-interleaving with the zero persistence module. We denote this interleaving $\left(\phi_{(I, 0)}, \psi_{(I, 0)}\right)$ (resp. $\left(\phi_{(0, J)}, \psi_{(0, J)}\right)$).
Now, let us consider the sums of all these linear maps:

$$
\bar{\phi}=\bigoplus_{(I, J) \text { matched }} \phi_{(I, J)} \bigoplus_{I \text { not matched }} \phi_{(I, 0)}, \quad \bar{\psi}=\bigoplus_{(I, J) \text { matched }} \psi_{(I, J)} \bigoplus_{J \text { not matched }} \phi_{(0, J)}
$$

$$
\longrightarrow(\bar{\phi}, \bar{\psi}) \text { is an } \epsilon \text {-interleaving } \longrightarrow \mathrm{d}_{\mathrm{i}}(\mathbb{U}, \mathbb{V}) \leq \mathrm{d}_{\mathrm{b}}(\mathbb{U}, \mathbb{V})
$$

Teorema de isometria

Theorem (Chazal, de Silva, Glisse, Oudot, 2009): If the persistence modules \mathbb{U} and \mathbb{V} are interval-decomposable, then $\mathrm{d}_{\mathrm{i}}(\mathbb{U}, \mathbb{V})=\mathrm{d}_{\mathrm{b}}(\mathbb{U}, \mathbb{V})$.

\longrightarrow Stability: \quad| $\mathrm{d}_{\mathrm{i}}(\mathbb{U}, \mathbb{V}) \geq \mathrm{d}_{\mathrm{b}}(\mathbb{U}, \mathbb{V})$ |
| :--- |
| \longrightarrow Converse stability: $\mathrm{d}_{\mathrm{i}}(\mathbb{U}, \mathbb{V}) \leq \mathrm{d}_{\mathrm{b}}(\mathbb{U}, \mathbb{V})$ |

The stability part is more difficult.

A first strategy uses the interpolation lemma, and concludes with the box lemma.
Interpolation lemma: If \mathbb{U} and \mathbb{V} are δ-interleaved, then there exists a family of persistence modules $\left(\mathbb{U}_{t}\right)_{t \in[0, \delta]}$ such that $\mathbb{U}_{0}=\mathbb{U}, \mathbb{U}_{\delta}=\mathbb{V}$ and $\mathrm{d}_{\mathrm{i}}\left(\mathbb{U}_{s}, \mathbb{U}_{t}\right) \leq|s-t|$ for every $s, t \in[0, \delta]$.

Another proof builds an explicit partial matching from an interleaving (Bauer, Lesnick, 2013).

I - Decomposition of persistence modules

1 - Simplicial filtrations
2 - Persistence modules
3 - Barcodes
II - Stability of persistence modules
1 - Bottleneck distance
2 - Interleaving distance
3 - Stability
III - Persistent homology in practice
1 - Data analysis
2 - Machine learning
3 - Variations on persistent homology

De volta aos espessamentos

Let X and Y be two subets of \mathbb{R}^{n}. Define $\epsilon=\mathrm{d}_{\mathrm{H}}(X, Y)$ (Hausdorff distance).
We have seen that $X \subset Y^{\epsilon}$ and $Y \subset X^{\epsilon}$. We even have that $X^{t} \subset Y^{t+\epsilon}$ and $Y^{t} \subset X^{t+\epsilon}$ for all $t \geq 0$.

By denoting j and k these inclusions, we have a commutative diagram

De volta aos espessamentos

Let X and Y be two subets of \mathbb{R}^{n}. Define $\epsilon=\mathrm{d}_{\mathrm{H}}(X, Y)$ (Hausdorff distance).
We have seen that $X \subset Y^{\epsilon}$ and $Y \subset X^{\epsilon}$. We even have that $X^{t} \subset Y^{t+\epsilon}$ and $Y^{t} \subset X^{t+\epsilon}$ for all $t \geq 0$.

By denoting j and k these inclusions, we have a commutative diagram

This also gives inclusions between Čech complexes:

De volta aos espessamentos

[...] This also gives inclusions between Čech complexes:

Now, we apply the $i^{\text {th }}$ homology functor.

De volta aos espessamentos

[...] This also gives inclusions between Čech complexes:

Now, we apply the $i^{\text {th }}$ homology functor.

$$
H_{i}\left(\operatorname{Cech}^{t}(X)\right) \longrightarrow H_{i}\left(\operatorname{Cech}^{t+2 \epsilon}(X)\right) \longrightarrow H_{i}\left(\operatorname{Cech}^{t+4 \epsilon}(X)\right)-\cdots H^{\left(k_{t+\epsilon}\right)_{*}}
$$

\rightarrow persistence module of Čech complex of X
\longrightarrow persistence module of Čech complex of Y

De volta os espessamentos

[...] This also gives inclusions between Čech complexes:

Now, we apply the $i^{\text {th }}$ homology functor.

(X))

persistence module of Čech complex of X
persistence module of Čech complex of Y
ϵ-interleaving between the persistence modules

De volta aos espessamentos

[...]
Hence the persistence modules $\left(H_{i}\left(\operatorname{Čech}^{t}(X)\right)\right)_{t \geq 0}$ and $\left(H_{i}\left(\text { Čech }^{t}(Y)\right)\right)_{t \geq 0}$ are ϵ-interleaved.

Hence $\mathrm{d}_{\mathrm{i}}(\mathbb{U}, \mathbb{V}) \leq \epsilon$.

De volta aos espessamentos

[...]
Hence the persistence modules $\left(H_{i}\left(\text { Čech }^{t}(X)\right)\right)_{t \geq 0}$ and $\left(H_{i}\left(\text { Čech }^{t}(Y)\right)\right)_{t \geq 0}$ are ϵ-interleaved.

Hence $\mathrm{d}_{\mathrm{i}}(\mathbb{U}, \mathbb{V}) \leq \epsilon$.

We use the isometry theorem: $\mathrm{d}_{\mathrm{b}}(\mathbb{U}, \mathbb{V})=\mathrm{d}_{\mathrm{i}}(\mathbb{U}, \mathbb{V}) \leq \epsilon$.

De volta aos espessamentos

[...]
Hence the persistence modules $\left(H_{i}\left(\text { Čech }^{t}(X)\right)\right)_{t \geq 0}$ and $\left(H_{i}\left(\text { Čech }^{t}(Y)\right)\right)_{t \geq 0}$ are ϵ-interleaved.

Hence $\mathrm{d}_{\mathrm{i}}(\mathbb{U}, \mathbb{V}) \leq \epsilon$.

We use the isometry theorem: $\mathrm{d}_{\mathrm{b}}(\mathbb{U}, \mathbb{V})=\mathrm{d}_{\mathrm{i}}(\mathbb{U}, \mathbb{V}) \leq \epsilon$.

Theorem (Cohen-Steiner, Edelsbrunner, Harer, 2005): Let X and Y be two subsets of \mathbb{R}^{n}. Consider their Čech (resp. Rips) filtrations, and the corresponding $i^{\text {th }}$ homology persistence modules, \mathbb{U} and \mathbb{V}. Suppose that they are interval-decomposables. Then $\mathrm{d}_{\mathrm{b}}(\mathbb{U}, \mathbb{V}) \leq \mathrm{d}_{\mathrm{H}}(X, Y)$.

Resumo
28/46 (1/2)

Resumo

28/46 (2/2)

I - Decomposition of persistence modules

1 - Simplicial filtrations
2 - Persistence modules
3 - Barcodes
II - Stability of persistence modules
1 - Bottleneck distance
2 - Interleaving distance
3 - Stability
III - Persistent homology in practice
1 - Data analysis
2 - Machine learning
3 - Variations on persistent homology

Topological inference I

S. Martin, A. Thompson, E. A. Coutsias, and J-P. Watson, Topology of cyclo-octane energy landscape, 2010
https://www.researchgate.net/publication/44697030_Topology_of_Cyclooctane_Energy_Landscape
The cyclo-octane molecule $\mathrm{C}_{8} \mathrm{H}_{16}$ contains 24 atoms.
By generating many of these molecules, we obtain a point cloud in $\mathbb{R}^{72}(3 \times 24=72)$.
We obtain the barcodes:

Topological inference I

S. Martin, A. Thompson, E. A. Coutsias, and J-P. Watson, Topology of cyclo-octane energy landscape, 2010
https://www.researchgate.net/publication/44697030_Topology_of_Cyclooctane_Energy_Landscape
The cyclo-octane molecule $\mathrm{C}_{8} \mathrm{H}_{16}$ contains 24 atoms.
By generating many of these molecules, we obtain a point cloud in $\mathbb{R}^{72}(3 \times 24=72)$.
We obtain the barcodes:

We deduce : $H_{0}=\mathbb{Z} / 2 \mathbb{Z}, \quad H_{1}=\mathbb{Z} / 2 \mathbb{Z}, \quad H_{2}=(\mathbb{Z} / 2 \mathbb{Z})^{2}$

Topological inference II

G. Carlsson, T. Ishkhanov, V. de Silva, and A. Zomorodian, On the Local Behavior of Spaces of Natural Images, 2008
https://link.springer.com/article/10.1007/s11263-007-0056-x
From a large collection of natural images, the authors extract 3×3 patches. Since it consists of 9 pixels, each of these patches can be seen as a 9 -dimensional vector, and the whole set as a point cloud in \mathbb{R}^{9}.

We get the barcodes:

Topological inference II

G. Carlsson, T. Ishkhanov, V. de Silva, and A. Zomorodian, On the Local Behavior of Spaces of Natural Images, 2008
https://link.springer.com/article/10.1007/s11263-007-0056-x
From a large collection of natural images, the authors extract 3×3 patches. Since it consists of 9 pixels, each of these patches can be seen as a 9 -dimensional vector, and the whole set as a point cloud in \mathbb{R}^{9}.

We get the barcodes:

We deduce:

$H_{0}=\mathbb{Z} / 2 \mathbb{Z}$,
$H_{1}=(\mathbb{Z} / 2 \mathbb{Z})^{2}$,
$H_{2}=\mathbb{Z} / 2 \mathbb{Z}$.

Inferência topológica III

[Richard J. Gardner et al, Toroidal topology of population activity in grid cells, 2022]
The authors recorded spikes from rat grid-cells, and applied dimensionality reduction to the firing matrix. By applying persistent homology, they observed the homology of a torus.

Multiscale analysis I

T. Sousbie, The persistent cosmic web and its filamentary structure, 2011
https://www.giss.nasa.gov/staff/mway/cluster/sousbie2011mnras.pdf

seen as an object of dimension 1

of dimension 2

of dimension 3
P. Pranav, H. Edelsbrunner, R. de Weygaert, G. Vegter, M. Kerber, B. Jones and M. Wintraecken, The topology of the cosmic web in terms of persistent Betti numbers, 2016 https://arxiv.org/pdf/1608.04519.pdff

Average persistence diagrams (log-scale) for a Voronoï evolution model

Multiscale analysis II

Hyekyoung Lee, Hyejin Kang, Moo K Chung, Bung-Nyun Kim, Dong Soo Lee, Persistent brain network homology from the perspective of dendrogram, 2012
http://pages.stat.wisc.edu/~mchung/papers/lee.2012.TMI.pdf
$\longrightarrow H_{0}$-persistent homology induces a hierarchical clustering

Análise de imagens médicas

In collaboration with François.
Glioblastoma is the most common brain tumor, diffuse, whose medical diagnostic is difficult to establish.

In this context, the problem of segmentation consists in labelling the three regions that form the tumor (edema, necrotic core and enhancing tumor).
We can use cubic persistent homology, defined for images.
original image
$\mathrm{t}=0.2$

Persistence diagram

I - Decomposition of persistence modules

1 - Simplicial filtrations
2 - Persistence modules
3 - Barcodes
II - Stability of persistence modules
1 - Bottleneck distance
2 - Interleaving distance
3 - Stability
III - Persistent homology in practice
1 - Data analysis
2 - Machine learning
3 - Variations on persistent homology

Kernels for machine learning

Mathieu Carrière, Marco Cuturi, Steve Oudot, Sliced Wasserstein Kernel for Persistence Diagrams, 2017
https://arxiv.org/abs/1706.03358

Genki Kusano, Kenji Fukumizu, Yasuaki Hiraoka, Kernel Method for Persistence Diagrams via Kernel Embedding and Weight Factor, 2018
https://www.jmlr.org/papers/volume18/17-317/17-317.pdf
\longrightarrow Barcodes are not subsets of some Euclidean space, hence usual machine learning methods cannot be used directly

Data		Persistence di		RKHS vector		Statistics
	(1)		(2) \rightarrow (k, w)	$E_{k}\left(\mu_{D_{q}(X)}^{w}\right) \in \mathcal{H}_{k}$	$\xrightarrow{(3)}$	- Support vector machine - Principal component analysis
$X \subset \mathbb{R}^{d}$		$D_{q}(X)$				Change point analysis

Topological layer in Neural Networks

Rickard Brüel-Gabrielsson, Bradley J. Nelson, Anjan Dwaraknath, Primoz Skraba, Leonidas J. Guibas, Gunnar Carlsson, A Topology Layer for Machine Learning, 2019
https://arxiv.org/abs/1905. 12200
Mathieu Carrière, Frédéric Chazal, Yuichi Ike, Théo Lacombe, Martin Royer, Yuhei Umeda, PersLay: A Neural Network Layer for Persistence Diagrams and New Graph Topological Signatures, 2019

Hierarchical clustering

Hyekyoung Lee, Hyejin Kang, Moo K Chung, Bung-Nyun Kim, Dong Soo Lee, Persistent brain network homology from the perspective of dendrogram, 2012
http://pages.stat.wisc.edu/~mchung/papers/lee.2012.TMI.pdf
$\longrightarrow H_{0}$-persistent homology induces a hierarchical clustering

Classification

Frédéric Chazal, Steve Oudot, Primoz Skraba, Leonidas J. Guibas, Persistence-Based Clustering in Riemannian Manifolds, 2011
https://geometrica.saclay.inria.fr/team/Fred.Chazal/papers/cgos-pbc-09/cgos-pbcrm-11.pdf

Chunyuan Li, Maks Ovsjanikov, Frederic Chazal, Persistence-based Structural Recognition, 2014
https://geometrica.saclay.inria.fr/team/Fred.Chazal/papers/loc-pbsr-14/CVPR2014.pdf

Figure 7: (a) The rings data set with the estimated density function. (b) The result obtained using spectral clustering.

(a)

(b)

(c)

(d)

Time series

Saba Emrani, Thanos Gentimis, Hamid Krim Persistent Homology of Delay Embeddings and its Application to Wheeze Detection, 2014
https://www.researchgate.net/publication/260523931_Persistent_Homology_of_Delay_Embeddings_and_its_Application_to_Wheeze_Detection
\longrightarrow a time series $\left(x_{1}, x_{2}, x_{3}, \ldots\right)$ does not contain topology... turn it into a point cloud of \mathbb{R}^{n} via time delay embedding!

$$
X=\left\{\bar{x}_{1}, \bar{x}_{2}, \bar{x}_{3}, \ldots\right\} \subset \mathbb{R}^{n} \text { where } \quad \bar{x}_{k}=\left(x_{k}, x_{k+1}, \ldots, x_{k+n-1}\right)
$$

I - Decomposition of persistence modules

1 - Simplicial filtrations
2 - Persistence modules
3 - Barcodes
II - Stability of persistence modules
1 - Bottleneck distance
2 - Interleaving distance
3 - Stability
III - Persistent homology in practice
1 - Data analysis
2 - Machine learning
3 - Variations on persistent homology

Statistical aspects of persistent homology $43 / 46$

Brittany Terese Fasy, Fabrizio Lecci, Alessandro Rinaldo, Larry Wasserman, Sivaraman Balakrishnan and Aarti Singh, Confidence sets for persistence diagrams, 2014
\longrightarrow Given a barcode, how to determine statistically what is noise and what is not?

Higher-dimensional persistence

Gunnar Carlsson, Afra Zomorodian, The Theory of Multidimensional Persistence, 2009 https://link.springer.com/article/10.1007/s00454-009-9176-0
\rightarrow What if our filtration is not indexed only by $t \in \mathbb{R}^{+}$?

(0,2)

Curvature κ

Wasserstein stability

Hirokazu Anai, Frédéric Chazal, Marc Glisse, Yuichi Ike, Hiroya Inakoshi, Raphaël T., Yuhei Umeda, DTM-based filtrations, 2020
https://arxiv.org/abs/1811.04757
\longrightarrow When our dataset is not close to an uderlying object in Hausdorff distance

Wasserstein stability
45/46 (2/2)

Conclusão

Persistent homology allows for a multi-scale and stable estimation of the homology of the datasets.

point cloud

persistence module

barcode

Allows to analyze data from a new perspective.

A course about TDA: https://raphaeltinarrage.github.io/EMAp.html

