Dynamical Systems \& Applications - 26/09/23

An introduction to Topological Data Analysis

Part I/IV: Topological invariants
https://raphaeltinarrage.github.io

Aperitivo topológico - Química

[Martin, Thompson, Coutsias and Watson, Topology of cyclo-octane energy landscape, 2010]

The cyclo-octane molecule $\mathrm{C}_{8} \mathrm{H}_{16}$ contains 24 atoms.
Each atom has 3 spatial coordinates.
Hence a conformation of a molecule can be summarized by a point in $\mathbb{R}^{72}(3 \times 24=72)$.

Aperitivo topológico - Química

[Martin, Thompson, Coutsias and Watson, Topology of cyclo-octane energy landscape, 2010]

The cyclo-octane molecule $\mathrm{C}_{8} \mathrm{H}_{16}$ contains 24 atoms.
Each atom has 3 spatial coordinates.
Hence a conformation of a molecule can be summarized by a point in $\mathbb{R}^{72}(3 \times 24=72)$.

By considering a lot of such molecules, we obtain a point cloud in \mathbb{R}^{72}.

Aperitivo topológico - Química

[Martin, Thompson, Coutsias and Watson, Topology of cyclo-octane energy landscape, 2010]

The cyclo-octane molecule $\mathrm{C}_{8} \mathrm{H}_{16}$ contains 24 atoms.
Each atom has 3 spatial coordinates.
Hence a conformation of a molecule can be summarized by a point in $\mathbb{R}^{72}(3 \times 24=72)$.

By considering a lot of such molecules, we obtain a point cloud in \mathbb{R}^{72}.
The authors show that this point cloud lies close to a small dimensional object: the union of a sphere and a Klein bottle.

Aperitivo topológico - Neurofisiologia $3 / 37(1 / 2)$

[Richard J. Gardner et al, Toroidal topology of population activity in grid cells, 2022]
The authors recorded spikes of grid cells from rat brains. Then, they applied dimensionality reduction to the firing matrix.

Aperitivo topológico - Neurofisiologia $3 / 37(2 / 2)$

[Richard J. Gardner et al, Toroidal topology of population activity in grid cells, 2022]
The authors recorded spikes of grid cells from rat brains. Then, they applied dimensionality reduction to the firing matrix.
By applying persistent homology, they observed the homology of a torus.

Aperitivo topológico - Biologia

[Topology based data analysis identifies a subgroup of breast cancers with a unique mutational profile and excellent survival, Monica Nicolau, Arnold J Levine, and Gunnar Carlsson, Proceedings of the National Academy of Sciences, 2011]
The authors study tissues from patients infected by breast cancer. They obtain 262 genomic variables per patient.

$$
\left(x_{1}, x_{2}, \ldots, x_{262}\right)
$$

Gathering many patients gives a cloud of points in \mathbb{R}^{262}.

Aperitivo topológico - Biologia

[Topology based data analysis identifies a subgroup of breast cancers with a unique mutational profile and excellent survival, Monica Nicolau, Arnold J Levine, and Gunnar Carlsson, Proceedings of the National Academy of Sciences, 2011]
The authors study tissues from patients infected by breast cancer. They obtain 262 genomic variables per patient.

$$
\left(x_{1}, x_{2}, \ldots, x_{262}\right)
$$

Gathering many patients gives a cloud of points in \mathbb{R}^{262}.

Discovery of a new type of breast cancer ($c-M Y B^{+}$) with a 100%
survival rate and no metastases

Qual é a forma dos dados?

Topological Data Analysis (TDA) allows to explore and understand the topology of datasets.

Part I/IV: Topological invariants

 Tuesday 26th
Part II/IV: Homology

Thursday 28th
Part III/IV: Persistent Homology
Tuesday 3rd
Part IV/IV: Python tutorial
Thursday 5th

I - Topology

1 - History
2 - Topological spaces

II - Comparing topological spaces
1 - Homeomorphism equivalence
2 - Homotopy equivalence

III - Topological invariants
1 - Embeddability
2 - Number of connected components
3 - Euler characteristic
4 - Betti numbers

Algumas figuras históricas

Euler
1736: Solutio problematis ad geometriarn situs pertinentis

Möbius
1865: Bestimmung des Inhaltes eines Polyëders

Riemann
1857: Theorie der Abel'schen Functionen

1871: Sopra gli spazi di un numero qualunque di dimensioni

Algumas figuras históricas

Euler
1736: Solutio problematis ad geometriarn situs pertinentis

Möbius
1865: Bestimmung des Inhaltes eines Polyëders

Riemann
1857: Theorie der Abel'schen Functionen

1871: Sopra gli spazi di un numero qualunque di dimensioni

Poincaré

Algumas figuras históricas

Euler
1736: Solutio problematis ad geometriarn situs pertinentis

Poincaré

1871: Sopra gli spazi di un numero qualunque di dimensioni

Riemann
ie der Abel'schen
1857: Theorie der Abel'schen Functionen

1865: Bestimmung des Inhaltes eines Polyëders

[Cinquième complément à l'analysis situs, 1904]

Perelman

2002: The entropy formula for the Ricci flow and its geometric applications

I - Topology

1 - History
2 - Topological spaces
II - Comparing topological spaces
1 - Homeomorphism equivalence
2 - Homotopy equivalence

III - Topological invariants
1 - Embeddability
2 - Number of connected components
3 - Euler characteristic
4 - Betti numbers

Protagonistas da topologia

In topology we study topological spaces.
Definition: a topological space is a set X endowed with a collection of open sets $\left\{O_{\alpha} \mid \alpha \in A\right\}$, with $O_{\alpha} \subset X$, such that

- \emptyset and X are open sets,
- an infinite union of open sets is an open set,
- a finite intersection of open sets is an open set.

Definition: Given two topological spaces X and Y, a map $f: X \rightarrow Y$ is continuous if for every open set $O \subset Y$, the preimage $f^{-1}(O)$ is an open set of X.

$$
X \longrightarrow Y
$$

Protagonistas da topologia

In topology we study topological spaces.
Definition: a topological space is a set X endowed with a collection of open sets $\left\{O_{\alpha} \mid \alpha \in A\right\}$, with $O_{\alpha} \subset X$, such that

- \emptyset and X are open sets,
- an infinite union of open sets is an open set,
- a finite intersection of open sets is an open set.

Definition: Given two topological spaces X and Y, a map $f: X \rightarrow Y$ is continuous if for every open set $O \subset Y$, the preimage $f^{-1}(O)$ is an open set of X.

$$
X \longrightarrow Y
$$

One can think of subsets $X \subset \mathbb{R}^{n}$ and $Y \subset \mathbb{R}^{m}$, and maps $f: X \rightarrow Y$ continuous in the following sense:
translation in
$\epsilon-\delta$ calculus

$$
\forall x \in X, \forall \epsilon>0, \exists \eta>0, \forall y \in X,\|x-y\|<\eta \Longrightarrow\|f(x)-f(y)\|<\epsilon
$$

Construção de espaços topológicos

1 - We can build a topological space by seeing it as a subspace of another one.
In \mathbb{R}^{n}, we can define:

- the unit sphere $\mathbb{S}_{n-1}=\left\{x \in \mathbb{R}^{n} \mid\|x\|=1\right\}$
- the unit cube $\mathcal{C}_{n-1}=\left\{\left(x_{1}, \ldots, x_{n}\right) \in \mathbb{R}^{n} \mid \max \left(\left|x_{1}\right|, \ldots,\left|x_{n}\right|\right)=1\right\}$
- the open balls $\mathcal{B}(x, r)=\left\{y \in \mathbb{R}^{n} \mid\|x-y\|<r\right\}$
- the closed balls $\overline{\mathcal{B}}(x, r)=\left\{y \in \mathbb{R}^{n} \mid\|x-y\| \leq r\right\}$

Construção de espaços topológicos

1 - We can build a topological space by seeing it as a subspace of another one. In \mathbb{R}^{n}, we can define:

- the unit sphere $\mathbb{S}_{n-1}=\left\{x \in \mathbb{R}^{n} \mid\|x\|=1\right\}$
- the unit cube $\mathcal{C}_{n-1}=\left\{\left(x_{1}, \ldots, x_{n}\right) \in \mathbb{R}^{n} \mid \max \left(\left|x_{1}\right|, \ldots,\left|x_{n}\right|\right)=1\right\}$
- the open balls $\mathcal{B}(x, r)=\left\{y \in \mathbb{R}^{n} \mid\|x-y\|<r\right\}$
- the closed balls $\overline{\mathcal{B}}(x, r)=\left\{y \in \mathbb{R}^{n} \mid\|x-y\| \leq r\right\}$

Most of the time, we do not have a nice algebraic definition...

Construção de espaços topológicos

1 - We can build a topological space by seeing it as a subspace of another one.
2 - We can build a topological space by gluing the boundaries of another one.

Construção de espaços topológicos

1 - We can build a topological space by seeing it as a subspace of another one.
2 - We can build a topological space by gluing the boundaries of another one.
3 - We can build a topological space by quotienting another one.

Construção de espaços topológicos

1 - We can build a topological space by seeing it as a subspace of another one.
2 - We can build a topological space by gluing the boundaries of another one.
3 - We can build a topological space by quotienting another one.

Construção de espaços topológicos

1 - We can build a topological space by seeing it as a subspace of another one.
2 - We can build a topological space by gluing the boundaries of another one.
3 - We can build a topological space by quotienting another one.

Construção de espaços topológicos

1 - We can build a topological space by seeing it as a subspace of another one.
2 - We can build a topological space by gluing the boundaries of another one.
3 - We can build a topological space by quotienting another one.

Projective plane $\mathbb{R} P^{2}$

Construção de espaços topológicos
1 - We can build a topological space by seeing it as a subspace of another one.
2 - We can build a topological space by gluing the boundaries of another one.
3 - We can build a topological space by quotienting another one.

Construção de espaços topológicos

1 - We can build a topological space by seeing it as a subspace of another one.
2 - We can build a topological space by gluing the boundaries of another one.
3 - We can build a topological space by quotienting another one.

$$
\begin{aligned}
& \text { I - Topology } \\
& \quad 1 \text { - History } \\
& \quad 2 \text { - Topological spaces }
\end{aligned}
$$

II - Comparing topological spaces

1 - Homeomorphism equivalence
2 - Homotopy equivalence

III - Topological invariants
1 - Embeddability
2 - Number of connected components
3 - Euler characteristic
4 - Betti numbers

Homeomorfismos

Definition: Let X and Y be two topological spaces, and $f: X \rightarrow Y$ a map. We say that f is a homeomorphism if

- f is a bijection,
- $f: X \rightarrow Y$ is continuous,
- $f^{-1}: Y \rightarrow X$ is continuous.

If there exist such a homeomorphism, we say that the two topological spaces are homeomorphic.

Example: The unit circle and the unit square are homeomorphic via

$$
\begin{aligned}
f: \mathbb{S}_{1} & \longrightarrow \mathcal{C} \\
\left(x_{1}, x_{2}\right) & \longmapsto \frac{1}{\max \left(\left|x_{1}\right|,\left|x_{2}\right|\right)}\left(x_{1}, x_{2}\right)
\end{aligned}
$$

Interpretation: Homeomorphisms allow 'continuous deformations'.

Homeomorfismos

Definition: Let X and Y be two topological spaces, and $f: X \rightarrow Y$ a map. We say that f is a homeomorphism if

- f is a bijection,
- $f: X \rightarrow Y$ is continuous,
- $f^{-1}: Y \rightarrow X$ is continuous.

If there exist such a homeomorphism, we say that the two topological spaces are homeomorphic.

Example: The unit circle and the interval $[0,1]$ are not homeomorphic.

Interpretation: Homeomorphisms allow 'continuous deformations'.

Homeomorfismos

Definition: Let X and Y be two topological spaces, and $f: X \rightarrow Y$ a map.
We say that f is a homeomorphism if

- f is a bijection,
- $f: X \rightarrow Y$ is continuous,
- $f^{-1}: Y \rightarrow X$ is continuous.

If there exist such a homeomorphism, we say that the two topological spaces are homeomorphic.

Example (Invariance of domain): [Brouwer, 1912] If $n \neq m$, the Euclidean spaces \mathbb{R}^{n} and \mathbb{R}^{m} are not homeomorphic.

Interpretation: Homeomorphisms allow 'continuous deformations'.

Homeomorfismos

Definition: Let X and Y be two topological spaces, and $f: X \rightarrow Y$ a map.
We say that f is a homeomorphism if

- f is a bijection,
- $f: X \rightarrow Y$ is continuous,
- $f^{-1}: Y \rightarrow X$ is continuous.

If there exist such a homeomorphism, we say that the two topological spaces are homeomorphic.

Example (Classification of surfaces): [Möbius, Jordan, von Dyck, Dehn and Heegaard, Alexander, Brahana, 1863-1921] If $g \neq g^{\prime}$, the surfaces of genus g and g^{\prime} are not homeomorphic.

Interpretation: Homeomorphisms allow 'continuous deformations'.

Classes de homeomorfismo

We can gather topological spaces that are homeomorphic

Classes de homeomorfismo

We can gather topological spaces that are homeomorphic

Classes de homeomorfismo

We can gather topological spaces that are homeomorphic

Classes de homeomorfismo

We can gather topological spaces that are homeomorphic

the class of crosses

Classes de homeomorfismo

In general, it may be complicated to determine whether two spaces are homeomorphic.

To answer this problem, we will use the notion of invariant.

$$
\begin{aligned}
& \text { I - Topology } \\
& \quad 1 \text { - History } \\
& \quad 2 \text { - Topological spaces }
\end{aligned}
$$

II - Comparing topological spaces

1 - Homeomorphism equivalence
2 - Homotopy equivalence

III - Topological invariants
1 - Embeddability
2 - Number of connected components
3 - Euler characteristic
4 - Betti numbers

Homotopias

Definition: Let X, Y be two topological spaces, and $f, g: X \rightarrow Y$ two continuous maps. A homotopy between f and g is a map $F: X \times[0,1] \rightarrow Y$ such that:

- $x \mapsto F(x, 0)$ is equal to f,
- $x \mapsto F(x, 1)$ is equal to g,
- $F: X \times[0,1] \rightarrow Y$ is continuous.

If such a homotopy exists, we say that the maps f and g are homotopic.

Example: Homotopy between $f: \mathbb{R} \rightarrow \mathbb{R}$ and $g: \mathbb{R} \rightarrow \mathbb{R}$.

$$
F(\cdot, 0)=f
$$

$F(\cdot, 0.2)$

$F(\cdot, 0.5)$

$F(\cdot, 0.6)$
$F(\cdot, 1)=g$

Homotopias

Definition: Let X, Y be two topological spaces, and $f, g: X \rightarrow Y$ two continuous maps. A homotopy between f and g is a map $F: X \times[0,1] \rightarrow Y$ such that:

- $x \mapsto F(x, 0)$ is equal to f,
- $x \mapsto F(x, 1)$ is equal to g,
- $F: X \times[0,1] \rightarrow Y$ is continuous.

If such a homotopy exists, we say that the maps f and g are homotopic.

Example: The map $F:(x, t) \in \mathbb{S}^{1} \times[0,1] \mapsto(\cos (\theta)+2 t, \sin (\theta)+2 t)$ is a homotopy between

$$
\begin{aligned}
f: \mathbb{S}^{1} & \rightarrow \mathbb{R}^{2} & \text { and } & g: \mathbb{S}^{1}
\end{aligned} \rightarrow_{\mathbb{R}^{2}}^{\theta} \mapsto(\cos (\theta), \sin (\theta)) \quad \begin{aligned}
\theta & \mapsto(\cos (\theta)+2, \sin (\theta)+2)
\end{aligned}
$$

Homotopias

Definition: Let X, Y be two topological spaces, and $f, g: X \rightarrow Y$ two continuous maps. A homotopy between f and g is a map $F: X \times[0,1] \rightarrow Y$ such that:

- $x \mapsto F(x, 0)$ is equal to f,
- $x \mapsto F(x, 1)$ is equal to g,
- $F: X \times[0,1] \rightarrow Y$ is continuous.

If such a homotopy exists, we say that the maps f and g are homotopic.
not well-defined
Example: The $\operatorname{map} F:(x, t) \in \mathbb{S}^{1} \times[0,1] \mapsto(\cos (\theta)+2 t, \sin (\theta)+2 t)$ is a homotopy between

$$
\begin{aligned}
f: \mathbb{S}^{1} & \rightarrow \mathbb{R}^{2} \backslash\{0\} \\
\theta & \mapsto(\cos (\theta), \sin (\theta))
\end{aligned} \text { and } \quad \begin{aligned}
g: \mathbb{S}^{1} & \rightarrow \mathbb{R}^{2} \backslash\{0\} \\
\theta & \mapsto(\cos (\theta)+2, \sin (\theta)+2)
\end{aligned}
$$

This is not true anymore if we remove the origin from the plane.

Equivalência de homotopia

Defintion: Let X and Y be two topological spaces. A homotopy equivalence between X and Y is a pair of continuous maps $f: X \rightarrow Y$ and $g: Y \rightarrow X$ such that:

- $g \circ f: X \rightarrow X$ is homotopic to the identity map id: $X \rightarrow X$,
- $f \circ g: Y \rightarrow Y$ is homotopic to the identity map id: $Y \rightarrow Y$.

If such a homotopy equivalence exists, we say that X and Y are homotopy equivalent.

Equivalência de homotopia

Defintion: Let X and Y be two topological spaces. A homotopy equivalence between X and Y is a pair of continuous maps $f: X \rightarrow Y$ and $g: Y \rightarrow X$ such that:

- $g \circ f: X \rightarrow X$ is homotopic to the identity map id: $X \rightarrow X$,
- $f \circ g: Y \rightarrow Y$ is homotopic to the identity map id: $Y \rightarrow Y$.

If such a homotopy equivalence exists, we say that X and Y are homotopy equivalent.

Observation: A homotopy equivalence is a weaker formulation of homeomorphism.

$$
g \circ f=\operatorname{id}_{X} \quad X \stackrel{f}{g=f^{-1}} \quad Y \quad f \circ g=\mathrm{id}_{Y}
$$

Equivalência de homotopia

Defintion: Let X and Y be two topological spaces. A homotopy equivalence between X and Y is a pair of continuous maps $f: X \rightarrow Y$ and $g: Y \rightarrow X$ such that:

- $g \circ f: X \rightarrow X$ is homotopic to the identity map id: $X \rightarrow X$,
- $f \circ g: Y \rightarrow Y$ is homotopic to the identity map id: $Y \rightarrow Y$.

If such a homotopy equivalence exists, we say that X and Y are homotopy equivalent.

Observation: A homotopy equivalence is a weaker formulation of homeomorphism.
Proposition: If two topological spaces are homeomorphic, then they are homotopy equivalent.

Equivalência de homotopia

Homotopy equivalence allows to continuously deform the space

and to retract it.

Classes de homotopia

Just as before, we can classify topological spaces according to this relation, and obtain classes of homotopy equivalence:

the class of points
the class of spheres, the class of torii, the class of Klein bottles, ...

Classes de homotopia

Example: Classification, up to homotopy equivalence, of the alphabet.
A
B
C

E
F G H I J K L M

0

Q
R
S
T
U
V
W
X
Y Z

Classes de homotopia

Example: Classification, up to homotopy equivalence, of the alphabet.

A D O P Q R

$\begin{array}{llllllll}C & E & F & G & H & J & J & L \\ M & N & S & T & U & V & W X Y Z\end{array}$

$$
\begin{aligned}
& \text { I - Topology } \\
& \quad 1 \text { - History } \\
& 2 \text { - Topological spaces } \\
& \text { II - Comparing topological spaces } \\
& \quad 1 \text { - Homeomorphism equivalence } \\
& 2 \text { - Homotopy equivalence }
\end{aligned}
$$

III - Topological invariants
1 - Embeddability
2 - Number of connected components
3 - Euler characteristic
4 - Betti numbers

Características comuns

We gathered topological spaces into homotopy classes.

- Given a topological space X, how to recognize in which class it belongs?
- What are the common features of spaces in a same class?

Características comuns

We gathered topological spaces into homotopy classes.

$$
\begin{aligned}
& \text { I - Topology } \\
& \quad 1 \text { - History } \\
& 2 \text { - Topological spaces } \\
& \text { II - Comparing topological spaces } \\
& \quad 1 \text { - Homeomorphism equivalence } \\
& 2 \text { - Homotopy equivalence }
\end{aligned}
$$

III - Topological invariants
1 - Embeddability
2 - Number of connected components
3 - Euler characteristic
4 - Betti numbers

Imersibilidade

Definition: Let $n \in \mathbb{N}$. A topological space X is embeddable in \mathbb{R}^{n} if there exists a continuous injective map $X \rightarrow \mathbb{R}^{n}$.

Example: The interval $(0,1)$ is embeddable in \mathbb{R}.

The circle \mathbb{S}^{1} is not.

Imersibilidade

Definition: Let $n \in \mathbb{N}$. A topological space X is embeddable in \mathbb{R}^{n} if there exists a continuous injective map $X \rightarrow \mathbb{R}^{n}$.

Example: The interval $(0,1)$ is embeddable in \mathbb{R}.

The circle \mathbb{S}^{1} is not.

Proposition: Let $n \in \mathbb{N}$. If two spaces X and Y are homeomorphic, then either both are embeddable in \mathbb{R}^{n}, or neither.

We say that 'being embeddable in \mathbb{R}^{n} ' is an invariant of homeomorphism classes. It can be used to show that two spaces are not homeomorphic.

Propriedade de invariância - na teoria $23 / 37(1 / 5)$

Proposition: Let $n \in \mathbb{N}$. If two spaces X and Y are homeomorphic, then either both are embeddable in \mathbb{R}^{n}, or neither.

Example: The cylinder and the Möbius strip are not homeomorphic.

Indeed, the cylinder can be embedded in \mathbb{R}^{2} (as an annulus).
If the strip was homeomorphic to the cylinder, then it would be also embeddable in \mathbb{R}^{2}.

Propriedade de invariância - na teoria $23 / 37(2 / 5)$

Proposition: Let $n \in \mathbb{N}$. If two spaces X and Y are homeomorphic, then either both are embeddable in \mathbb{R}^{n}, or neither.

Example: The cylinder and the Möbius strip are not homeomorphic.

Indeed, the cylinder can be embedded in \mathbb{R}^{2} (as an annulus).
If the strip was homeomorphic to the cylinder, then it would be also embeddable in \mathbb{R}^{2}.
We draw two circles on the strip, C_{1} and C_{2}, that only intersect once.

Propriedade de invariância - na teoria $23 / 37(3 / 5)$

Proposition: Let $n \in \mathbb{N}$. If two spaces X and Y are homeomorphic, then either both are embeddable in \mathbb{R}^{n}, or neither.

Example: The cylinder and the Möbius strip are not homeomorphic.

Indeed, the cylinder can be embedded in \mathbb{R}^{2} (as an annulus).
If the strip was homeomorphic to the cylinder, then it would be also embeddable in \mathbb{R}^{2}.
We draw two circles on the strip, C_{1} and C_{2}, that only intersect once.

Embedded in \mathbb{R}^{2}, the circles C^{1} and C^{2} only intersect once.
This is impossible by Jordan's theorem.

Propriedade de invariância - na teoria $23 / 37(4 / 5)$

Proposition: Let $n \in \mathbb{N}$. If two spaces X and Y are homeomorphic, then either both are embeddable in \mathbb{R}^{n}, or neither.

Example: The cylinder and the Möbius strip are not homeomorphic.

Remark: The property 'being embeddable in \mathbb{R}^{n} ' is not an invariant of homotopy classes. Indeed, the space and the cylinder are homotopy equivalent, but only one of them is embeddable in \mathbb{R}^{2}.

Propriedade de invariância - na teoria $23 / 37(5 / 5)$

Proposition: Let $n \in \mathbb{N}$. If two spaces X and Y are homeomorphic, then either both are embeddable in \mathbb{R}^{n}, or neither.

Example: The cylinder and the Möbius strip are not homeomorphic.

Remark: The property 'being embeddable in \mathbb{R}^{n} ' is not an invariant of homotopy classes. Indeed, the space and the cylinder are homotopy equivalent, but only one of them is embeddable in \mathbb{R}^{2}.

They can both be retracted onto their inner circle.

Propriedade de invariância - nas aplicações ${ }_{24 / 37}$

In applications, finding an embedding corresponds to the problem of dimensionality reduction.

Illustrations from [Luis Scoccola, Jose A. Perea, Fiberwise dimensionality reduction of topologically complex data with vector bundles, 2022]

$$
\begin{aligned}
& \text { I - Topology } \\
& \quad 1 \text { - History } \\
& 2 \text { - Topological spaces } \\
& \text { II - Comparing topological spaces } \\
& 1 \text { - Homeomorphism equivalence } \\
& 2 \text { - Homotopy equivalence }
\end{aligned}
$$

III - Topological invariants
1 - Embeddability
2 - Number of connected components
3 - Euler characteristic
4 - Betti numbers

Componentes conexas

Definition: A subset $X \subset \mathbb{R}^{n}$ is (path-) connected if for every $x, y \in X$, there exists a continuous map $f:[0,1] \rightarrow X$ such that $f(0)=x$ and $f(1)=y$.

connected space

non-connected space

Componentes conexas

Definition: A subset $X \subset \mathbb{R}^{n}$ is (path-) connected if for every $x, y \in X$, there exists a continuous map $f:[0,1] \rightarrow X$ such that $f(0)=x$ and $f(1)=y$.

connected space

non-connected space

Componentes conexas

Definition: A subset $X \subset \mathbb{R}^{n}$ is (path-) connected if for every $x, y \in X$, there exists a continuous map $f:[0,1] \rightarrow X$ such that $f(0)=x$ and $f(1)=y$.

connected space

non-connected space

More generally, any topological space X can be partitioned into connected components.

Componentes conexas

Definition: A subset $X \subset \mathbb{R}^{n}$ is (path-) connected if for every $x, y \in X$, there exists a continuous map $f:[0,1] \rightarrow X$ such that $f(0)=x$ and $f(1)=y$.

connected space

non-connected space

More generally, any topological space X can be partitioned into connected components.

расе

Proposition: If two spaces X and Y are homotopy equivalent, then they have the same number of connected components.

Propriedade de invariância - na teoria $27 / 37(1 / 5)$

Proposition: If two spaces X and Y are homotopy equivalent, then they have the same number of connected components.

Consequence: If two spaces X and Y are homeomorphic, then they have the same number of connected components.

Example: The subsets $[0,1]$ and $[0,1] \cup[2,3]$ of \mathbb{R} are not homeomorphic, neither homotopy equivalent.
Indeed, the first one has one connected component, and the second one two.

Propriedade de invariância - na teoria $27 / 37(2 / 5)$

Proposition: If two spaces X and Y are homotopy equivalent, then they have the same number of connected components.

Example: The interval $[0,2 \pi)$ and the circle $\mathbb{S}_{1} \subset \mathbb{R}^{2}$ are not homeomorphic.
We will prove this by contradiction. Suppose that they are homeomorphic. By definition, this means that there exists a map $f:[0,2 \pi) \rightarrow \mathbb{S}_{1}$ which is continuous, invertible, and with continuous inverse.

Propriedade de invariância - na teoria $27 / 37(3 / 5)$

Proposition: If two spaces X and Y are homotopy equivalent, then they have the same number of connected components.

Example: The interval $[0,2 \pi)$ and the circle $\mathbb{S}_{1} \subset \mathbb{R}^{2}$ are not homeomorphic.
We will prove this by contradiction. Suppose that they are homeomorphic. By definition, this means that there exists a map $f:[0,2 \pi) \rightarrow \mathbb{S}_{1}$ which is continuous, invertible, and with continuous inverse.

Let $x \in[0,2 \pi)$ such that $x \neq 0$. Consider the subsets $[0,2 \pi) \backslash\{x\} \subset[0,2 \pi)$ and $\mathbb{S}_{1} \backslash\{f(x)\} \subset \mathbb{S}_{1}$, and the induced map

$$
g:[0,2 \pi) \backslash\{x\} \rightarrow \mathbb{S}_{1} \backslash\{f(x)\}
$$

The map g is a homeomorphism.

Propriedade de invariância - na teoria $27 / 37(4 / 5)$

Proposition: If two spaces X and Y are homotopy equivalent, then they have the same number of connected components.

Example: The interval $[0,2 \pi)$ and the circle $\mathbb{S}_{1} \subset \mathbb{R}^{2}$ are not homeomorphic.
We will prove this by contradiction. Suppose that they are homeomorphic. By definition, this means that there exists a map $f:[0,2 \pi) \rightarrow \mathbb{S}_{1}$ which is continuous, invertible, and with continuous inverse.

Let $x \in[0,2 \pi)$ such that $x \neq 0$. Consider the subsets $[0,2 \pi) \backslash\{x\} \subset[0,2 \pi)$ and $\mathbb{S}_{1} \backslash\{f(x)\} \subset \mathbb{S}_{1}$, and the induced map

$$
g:[0,2 \pi) \backslash\{x\} \rightarrow \mathbb{S}_{1} \backslash\{f(x)\}
$$

The map g is a homeomorphism.
Moreover, $[0,2 \pi) \backslash\{x\}$ has two connected components, and $\mathbb{S}_{1} \backslash\{f(x)\}$ only one. This is absurd.

Propriedade de invariância - na teoria $27 / 37(5 / 5)$

Proposition: If two spaces X and Y are homotopy equivalent, then they have the same number of connected components.

Homework: The intervals $[0,1)$ and $(0,1)$ are not homeomorphic.

Propriedade de invariância - nas aplicaçõe8s/37 (1/3)

In applications, finding connected components corresponds to a classification task.

Propriedade de invariância - nas aplicaçõess/37 (2/3)

In applications, finding connected components corresponds to a classification task.

cluster 2

Propriedade de invariância - nas aplicaçõês/37 (3/3)

In applications, finding connected components corresponds to a classification task.

cluster 1
connected component 1

cluster 2

We can think of these sets as an underlying topological space, on which the points are sampled.

$$
\begin{aligned}
& \text { I - Topology } \\
& \quad 1 \text { - History } \\
& 2 \text { - Topological spaces } \\
& \text { II - Comparing topological spaces } \\
& \quad 1 \text { - Homeomorphism equivalence } \\
& 2 \text { - Homotopy equivalence }
\end{aligned}
$$

III - Topological invariants
1 - Embeddability
2 - Number of connected components
3 - Euler characteristic
4 - Betti numbers

Característica de Euler

number of faces
number of edges

4

8

6
12

4

2
2
6
8
20
12
2
2
2

Característica de Euler

number of faces
number of edges

4

8

6
12

4
2
number of vertices
χ

6

12

8
2

30

20
2

20

Proposition [Euler, 1758]: In any convex polyhedron, we have number of faces - number of edges + number of vertices $=2$

Característica de Euler

Definition: Let V be a set (called the set of vertices). A simplicial complex over V is a set K of subsets of V (called the simplices) such that, for every $\sigma \in K$ and every non-empty $\tau \subset \sigma$, we have $\tau \in K$.

The dimension of a simplex $\sigma \in K$ is defined as $|\sigma|-1$.

Característica de Euler

Definition: Let V be a set (called the set of vertices). A simplicial complex over V is a set K of subsets of V (called the simplices) such that, for every $\sigma \in K$ and every non-empty $\tau \subset \sigma$, we have $\tau \in K$.

The dimension of a simplex $\sigma \in K$ is defined as $|\sigma|-1$.

Example: Let $V=\{0,1,2\}$ and

$$
K=\{[0],[1],[2],[0,1],[1,2],[0,2]\} .
$$

This is a simplicial complex.

It contains three simplices of dimension 0 ([0], [1] and [2]) and three simplices of dimension $1([0,1],[1,2]$ and $[0,2])$.

Característica de Euler

Definition: Let V be a set (called the set of vertices). A simplicial complex over V is a set K of subsets of V (called the simplices) such that, for every $\sigma \in K$ and every non-empty $\tau \subset \sigma$, we have $\tau \in K$.

The dimension of a simplex $\sigma \in K$ is defined as $|\sigma|-1$.

Example: Let $V=\{0,1,2\}$ and

$$
K=\{[0],[1],[2],[0,1],[1,2],[0,2]\} .
$$

This is a simplicial complex.

(this is a circle)

It contains three simplices of dimension 0 ([0], [1] and [2]) and three simplices of dimension 1 ($[0,1],[1,2]$ and $[0,2])$.

Característica de Euler

Definition: Let V be a set (called the set of vertices). A simplicial complex over V is a set K of subsets of V (called the simplices) such that, for every $\sigma \in K$ and every non-empty $\tau \subset \sigma$, we have $\tau \in K$.

The dimension of a simplex $\sigma \in K$ is defined as $|\sigma|-1$.

Example: Let $V=\{0,1,2,3\}$ and
$K=\{[0],[1],[2],[3],[0,1],[1,2],[2,3],[3,0],[0,2],[1,3],[0,1,2],[0,1,3],[0,2,3],[1,2,3]\}$
It a simplicial complex.

It contains four simplices of dimension 0 ([0], [1], [2] and [3]), six simplices of dimension 1 $([0,1],[1,2],[2,3],[3,0],[0,2]$ and $[1,3])$ and four simplices of dimension $2([0,1,2]$, $[0,1,3],[0,2,3]$ and $[1,2,3])$.

Característica de Euler

Definition: Let V be a set (called the set of vertices). A simplicial complex over V is a set K of subsets of V (called the simplices) such that, for every $\sigma \in K$ and every non-empty $\tau \subset \sigma$, we have $\tau \in K$.

The dimension of a simplex $\sigma \in K$ is defined as $|\sigma|-1$.

Example: Let $V=\{0,1,2,3\}$ and
$K=\{[0],[1],[2],[3],[0,1],[1,2],[2,3],[3,0],[0,2],[1,3],[0,1,2],[0,1,3],[0,2,3],[1,2,3]\}$
It a simplicial complex.

(this is a sphere)

It contains four simplices of dimension 0 ([0], [1], [2] and [3]), six simplices of dimension 1 $([0,1],[1,2],[2,3],[3,0],[0,2]$ and $[1,3])$ and four simplices of dimension $2([0,1,2]$, $[0,1,3],[0,2,3]$ and $[1,2,3])$.

Característica de Euler

Definition: Let K be a simplicial complex of dimension n. Its Euler characteristic is the integer

$$
\chi(K)=\sum_{0 \leq i \leq n}(-1)^{i} \cdot(\text { number of simplices of dimension } i)
$$

Example: The simplicial complex $K=\{[0],[1],[2],[0,1],[1,2],[2,0]\}$ has Euler characteristic

$$
\chi(K)=3-3=0
$$

Característica de Euler

Definition: Let K be a simplicial complex of dimension n. Its Euler characteristic is the integer

$$
\chi(K)=\sum_{0 \leq i \leq n}(-1)^{i} \cdot(\text { number of simplices of dimension } i) .
$$

Example: The simplicial complex $K=\{[0],[1],[2],[0,1],[1,2],[2,0]\}$ has Euler characteristic

$$
\chi(K)=3-3=0
$$

Example: The simplicial complex
$K=\{[0],[1],[2],[3],[0,1],[1,2],[2,3],[3,0],[0,2],[1,3],[0,1,2],[0,1,3],[0,2,3],[1,2,3]\}$
has Euler characteristic

$$
\chi(K)=4-6+4=2
$$

Característica de Euler

Definition: Let K be a simplicial complex of dimension n. Its Euler characteristic is the integer

$$
\chi(K)=\sum_{0 \leq i \leq n}(-1)^{i} \cdot(\text { number of simplices of dimension } i)
$$

Definition: Let X be a topological space. Its Euler characteristic is defined as the Euler caracteristic of a triangulation of X.

$$
\longrightarrow \quad \chi(X)=0
$$

$$
\longrightarrow \quad \chi(X)=2
$$

Propriedade de invariância - na teoria $31 / 37(1 / 2)$

Proposition: If X and Y are two homotopy equivalent topological spaces, then $\chi(X)=\chi(Y)$.

Therefore, the Euler characteristic is an invariant of homotopy equivalence classes.
We can use this information to prove that two spaces are not homotopy equivalent.

Example: The circle has Euler characteristic 0, and the sphere Euler characteristic 2. Therefore, they are not homotopy equivalent.

Propriedade de invariância - na teoria $31 / 37(2 / 2)$

Proposition: If X and Y are two homotopy equivalent topological spaces, then $\chi(X)=\chi(Y)$.

Therefore, the Euler characteristic is an invariant of homotopy equivalence classes.
We can use this information to prove that two spaces are not homotopy equivalent.

Example (Classification of surfaces): The homeomorphism classes of connected and compact surfaces are classified by their Euler characteristic.

2

0

-2

-4
$2-2 \times$ genus

Propriedade de invariância - nas aplicaçõj2̨/37 (1/2)

The Euler characteristic contains information about the homeomorphism class (and homotopy class) of the space.
[T. Sousbie, The persistent cosmic web and its filamentary structure, 2011]

seen as an object of dimension 3

of dimension 2

of dimension 1

Propriedade de invariância - nas aplicaçõङ̧̧2/37 (2/2)

The Euler characteristic contains information about the homeomorphism class (and homotopy class) of the space.
[T. Sousbie, The persistent cosmic web and its filamentary structure, 2011]

[P. Pranav, H. Edelsbrunner, R. de Weygaert, G. Vegter, M. Kerber, B. Jones and M. Wintraecken, The topology of the cosmic web in terms of persistent Betti numbers, 2016]

The Euler characteristic 'counts' the number of holes

$$
\begin{aligned}
& \text { I - Topology } \\
& \quad 1 \text { - History } \\
& 2 \text { - Topological spaces } \\
& \text { II - Comparing topological spaces } \\
& \quad 1 \text { - Homeomorphism equivalence } \\
& 2 \text { - Homotopy equivalence }
\end{aligned}
$$

III - Topological invariants
1 - Embeddability
2 - Number of connected components
3 - Euler characteristic
4 - Betti numbers

Números de Betti

For any topological space X, one defines a sequence of integers

$$
\beta_{0}(X), \quad \beta_{1}(X), \quad \beta_{2}(X), \quad \beta_{3}(X), \quad \ldots
$$

called the Betti numbers.

Construction of Betti numbers:

Números de Betti

For any topological space X, one defines a sequence of integers

$$
\beta_{0}(X), \quad \beta_{1}(X), \quad \beta_{2}(X), \quad \beta_{3}(X), \quad \ldots
$$

called the Betti numbers.

Construction of Betti numbers: rendez-vous on Thursday! (based on homology theory)

Example: Let us give some examples instead.

X	1	1	1	2	
$\beta_{0}(X)$	1	0	2	2	
$\beta_{1}(X)$	0	0	1	0	0
$\beta_{2}(X)$	0	1			

Números de Betti

For any topological space X, one defines a sequence of integers

$$
\beta_{0}(X), \quad \beta_{1}(X), \quad \beta_{2}(X), \quad \beta_{3}(X), \quad \ldots
$$

called the Betti numbers.

Construction of Betti numbers: rendez-vous on Thursday! (based on homology theory)

Example: Let us give some examples instead.

X	1	1	1	2	
$\beta_{0}(X)$	1	0	2	2	
$\beta_{1}(X)$	0	0	1	0	0
$\beta_{2}(X)$	0	1			

Números de Betti

Interpretation: We have:

- $\beta_{0}(X)$ is the number of connected components of X
- $\beta_{1}(X)$ is the number of 'holes' in X
- $\beta_{2}(X)$ is the number of 'voids' in X
- ...

Example: Let us give some examples instead.

X	1	1	1	2	
$\beta_{0}(X)$	1	0	2	2	
$\beta_{1}(X)$	0	0	1	0	0
$\beta_{2}(X)$	0	1			

Números de Betti

Interpretation: We have:

- $\beta_{0}(X)$ is the number of connected components of X
- $\beta_{1}(X)$ is the number of 'holes' in X
- $\beta_{2}(X)$ is the number of 'voids' in X
- ...

Example: Let us give some examples instead.

X	1	1	1	2
$\beta_{0}(X)$	1	1	0	2
$\beta_{1}(X)$	0	0	1	0
$\beta_{2}(X)$	0	1	2	0

Números de Betti

Interpretation: We have:

- $\beta_{0}(X)$ is the number of connected components of X
- $\beta_{1}(X)$ is the number of 'holes' in X
- $\beta_{2}(X)$ is the number of 'voids' in X
- ...

Example: Let us give some examples instead.

X	1	1	1	2
$\beta_{0}(X)$	1	1	0	2
$\beta_{1}(X)$	0	0	1	0
$\beta_{2}(X)$	0	1	2	0

Números de Betti

Interpretation: We have:

- $\beta_{0}(X)$ is the number of connected components of X
- $\beta_{1}(X)$ is the number of 'holes' in X
- $\beta_{2}(X)$ is the number of 'voids' in X

Example: Let us give some examples instead.

X	1	1	1	2
$\beta_{0}(X)$	1	1	2	0
$\beta_{1}(X)$	0	0	1	0
$\beta_{2}(X)$	0	1		0

Números de Betti

Interpretation: We have:

- $\beta_{0}(X)$ is the number of connected components of X
- $\beta_{1}(X)$ is the number of 'holes' in X
- $\beta_{2}(X)$ is the number of 'voids' in X
- ...

Example: Betti numbers of the torus:

$$
\beta_{0}(X)=1, \quad \beta_{1}(X)=2, \quad \beta_{2}(X)=1, \quad \beta_{3}(X)=0, \quad \ldots
$$

Números de Betti

Interpretation: We have:

- $\beta_{0}(X)$ is the number of connected components of X
- $\beta_{1}(X)$ is the number of 'holes' in X
- $\beta_{2}(X)$ is the number of 'voids' in X
- ...

Example: Betti numbers of the torus:

$$
\beta_{0}(X)=1, \quad \beta_{1}(X)=2, \quad \beta_{2}(X)=1, \quad \beta_{3}(X)=0, \quad \ldots
$$

Números de Betti

Interpretation: We have:

- $\beta_{0}(X)$ is the number of connected components of X
- $\beta_{1}(X)$ is the number of 'holes' in X
- $\beta_{2}(X)$ is the number of 'voids' in X
- ...

Example: Betti numbers of the torus:

$$
\beta_{0}(X)=1, \quad \beta_{1}(X)=2, \quad \beta_{2}(X)=1, \quad \beta_{3}(X)=0, \quad \ldots
$$

Números de Betti

Interpretation: We have:

- $\beta_{0}(X)$ is the number of connected components of X
- $\beta_{1}(X)$ is the number of 'holes' in X
- $\beta_{2}(X)$ is the number of 'voids' in X
- ...

Example: Betti numbers of the torus:

$$
\beta_{0}(X)=1, \quad \beta_{1}(X)=2, \quad \beta_{2}(X)=1, \quad \beta_{3}(X)=0, \quad \ldots
$$

Propriedade de invariância - na teoria $35 / 37(1 / 2)$

Proposition: If two spaces X and Y are homotopy equivalent, then they have the same Betti numbers.

As a consequence, two spaces with different Betti numbers cannot be homotopy equivalent.

Example: The n-dimensional sphere $\mathbb{S}^{n} \subset \mathbb{R}^{n+1}$ has Betti numbers

$$
\begin{array}{ll}
\beta_{i}(X)=1 & \text { if } \quad i=0 \text { or } n \\
\beta_{i}(X)=0 & \text { else. }
\end{array}
$$

Hence, if $n \neq m$, then \mathbb{S}^{n} and \mathbb{S}^{n} are not homotopy equivalent.

Propriedade de invariância - na teoria $35 / 37(2 / 2)$

Proposition: If two spaces X and Y are homotopy equivalent, then they have the same Betti numbers.

As a consequence, two spaces with different Betti numbers cannot be homotopy equivalent.

Example (Brouwer's invariance of domain):
Let us show that \mathbb{R}^{n} and \mathbb{R}^{m}, with $n \neq m$, are not homeomorphic.
Let $h: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ be a homeomorphism.
Choose any $x \in \mathbb{R}^{n}$ and consider the restricted map

$$
h: \mathbb{R}^{n} \backslash\{x\} \longrightarrow \mathbb{R}^{m} \backslash\{h(x)\}
$$

It is still a homemorphism.
But $\mathbb{R}^{n} \backslash\{x\}$ is homotopic to the sphere \mathbb{S}^{n-1}, and $\mathbb{R}^{m} \backslash\{x\}$ is homotopic to the sphere \mathbb{S}^{m-1}

We have seen before that \mathbb{S}^{n-1} and \mathbb{S}^{m-1} are homotopic if and only if $m=n$. This is a contradiction.

Propriedade de invariância - nas aplicaçõős/37 (1/2)

The Betti numbers contain information about the space we study.
[G. Carlsson, T. Ishkhanov, V. de Silva, and A. Zomorodian, On the Local Behavior of Spaces of Natural Images, 2008.]

From a large collection of natural images, the authors extract 3×3 patches. Since it consists of 9 pixels, each of these patches can be seen as a 9 -dimensional vector, and the whole set as a point cloud in \mathbb{R}^{9}.

They observe that the point cloud lies close to a shape whose Betti numbers (over $\mathbb{Z} / 2 \mathbb{Z}$) are

$$
\beta_{0}(X)=1, \quad \beta_{1}(X)=2, \quad \beta_{2}(X)=1, \quad \beta_{3}(X)=0
$$

Propriedade de invariância - nas aplicaçõőş/37 (2/2)

The Betti numbers contain information about the space we study.
[G. Carlsson, T. Ishkhanov, V. de Silva, and A. Zomorodian, On the Local Behavior of Spaces of Natural Images, 2008.]

From a large collection of natural images, the authors extract 3×3 patches. Since it consists of 9 pixels, each of these patches can be seen as a 9-dimensional vector, and the whole set as a point cloud in \mathbb{R}^{9}.

They observe that the point cloud lies close to a shape whose Betti numbers (over $\mathbb{Z} / 2 \mathbb{Z}$) are

$$
\beta_{0}(X)=1, \quad \beta_{1}(X)=2, \quad \beta_{2}(X)=1, \quad \beta_{3}(X)=0
$$

These are the Betti numbers of a Klein bottle!
(and the authors actually show that the dataset concentrates near a Klein bottle embedded in \mathbb{R}^{9}.)

Conclusão

We can find interesting topology in datasets.

Invariants of homotopy classes allow to describe and understand them.

$$
\beta_{0}(X)=1, \quad \beta_{1}(X)=2, \quad \beta_{2}(X)=1
$$

Thursday 28th: a stronger invariant, homology.
Tuesday 3rd: how to compute these invariants in practice? persistent homology. Thursday 5th: python tutorial with the gudhi library.

A course about TDA: https://raphaeltinarrage.github.io/EMAp.html

