Dynamical Systems & Applications — 26/09/23

An introduction to Topological Data Analysis

Part I/IV: Topological invariants

https://raphaeltinarrage.github.io

Last update: September 26, 2023

Aperitivo topológico — Química

2/37 (1/3)

[Martin, Thompson, Coutsias and Watson, Topology of cyclo-octane energy landscape, 2010]

The cyclo-octane molecule C_8H_{16} contains 24 atoms.

Each atom has $\boldsymbol{3}$ spatial coordinates.

Hence a conformation of a molecule can be summarized by **a point** in \mathbb{R}^{72} (3 × 24 = 72).

Aperitivo topológico — Química

2/37 (2/3)

[Martin, Thompson, Coutsias and Watson, Topology of cyclo-octane energy landscape, 2010]

The cyclo-octane molecule C_8H_{16} contains 24 atoms.

Each atom has 3 spatial coordinates.

Hence a conformation of a molecule can be summarized by **a point** in \mathbb{R}^{72} (3 × 24 = 72).

By considering a lot of such molecules, we obtain a **point cloud** in \mathbb{R}^{72} .

Aperitivo topológico — Química

2/37 (3/3)

[Martin, Thompson, Coutsias and Watson, Topology of cyclo-octane energy landscape, 2010]

The cyclo-octane molecule C_8H_{16} contains 24 atoms.

Each atom has $\boldsymbol{3}$ spatial coordinates.

Hence a conformation of a molecule can be summarized by **a point** in \mathbb{R}^{72} (3 × 24 = 72).

By considering a lot of such molecules, we obtain a **point cloud** in \mathbb{R}^{72} .

The authors show that this point cloud lies close to a small dimensional object: **the union of a sphere and a Klein bottle**.

Aperitivo topológico — Neurofisiologia_{3/37 (1/2)}

[Richard J. Gardner et al, Toroidal topology of population activity in grid cells, 2022]

The authors recorded spikes of grid cells from rat brains. Then, they applied dimensionality reduction to the firing matrix.

1 s

149 # • •

Aperitivo topológico — Neurofisiologia_{3/37} (2/2)

[Richard J. Gardner et al, Toroidal topology of population activity in grid cells, 2022]

The authors recorded spikes of grid cells from rat brains. Then, they applied dimensionality reduction to the firing matrix.

By applying persistent homology, they observed the homology of a **torus**.

1 s

Cell #

149

Aperitivo topológico — Biologia 4/37 (1/2)

[Topology based data analysis identifies a subgroup of breast cancers with a unique mutational profile and excellent survival, Monica Nicolau, Arnold J Levine, and Gunnar Carlsson, *Proceedings of the National Academy of Sciences*, 2011]

The authors study tissues from patients infected by breast cancer. They obtain 262 genomic variables per patient.

Aperitivo topológico — Biologia 4/37 (2/2)

[Topology based data analysis identifies a subgroup of breast cancers with a unique mutational profile and excellent survival, Monica Nicolau, Arnold J Levine, and Gunnar Carlsson, *Proceedings of the National Academy of Sciences*, 2011]

The authors study tissues from patients infected by breast cancer. They obtain 262 genomic variables per patient.

Qual é a forma dos dados?

5/37

Topological Data Analysis (TDA) allows to **explore** and **understand** the topology of datasets.

Part I/IV: Topological invariants $_{\rm Tuesday\ 26th}$

Part II/IV: Homology Thursday 28th

Part III/IV: Persistent Homology $_{\mbox{Tuesday 3rd}}$

Part IV/IV: Python tutorial $_{\mbox{Thursday 5th}}$

${\rm I}$ - Topology

- $1 \mathsf{History}$
- 2 Topological spaces

II - Comparing topological spaces

- 1 Homeomorphism equivalence
- 2 Homotopy equivalence

III - Topological invariants

- 1 Embeddability
- $2\ \mbox{-}\ \mbox{Number}$ of connected components
- $\boldsymbol{3}$ Euler characteristic
- 4 Betti numbers

Algumas figuras históricas

8/37 (1/3)

Euler

1736: Solutio problematis ad geometriarn situs pertinentis

Möbius 1865: Bestimmung des Inhaltes eines

Polyëders

Riemann

1857: Theorie der Abel'schen Functionen

[©]umia *Betti* Betti

1871: Sopra gli spazi di un numero qualunque di dimensioni

Algumas figuras históricas

8/37 (2/3)

Euler

1736: Solutio problematis ad geometriarn situs pertinentis

Poincaré 1895: Analysis Situs

Möbius 1865: Bestimmung des Inhaltes eines Polyëders

Riemann

1857: Theorie der Abel'schen Functionen

Toute 3-variété compacte sans bord et simplement connexe est-elle homéomorphe à la 3-sphère ?

[Cinquième complément à l'analysis situs, 1904]

buniu Ibetti Betti

1871: Sopra gli spazi di un numero qualunque di dimensioni

Algumas figuras históricas

8/37 (3/3)

Euler

1736: Solutio problematis ad geometriarn situs pertinentis

Poincaré 1895: Analysis Situs

Möbius 1865: Bestimmung des Inhaltes eines Polyëders

Riemann

1857: Theorie der Abel'schen Functionen

Toute 3-variété compacte sans bord et simplement connexe est-elle homéomorphe à la 3-sphère ?

[Cinquième complément à l'analysis situs, 1904]

Ennie Bette

Betti

1871: Sopra gli spazi di un numero

qualunque di dimensioni

Perelman

2002: The entropy formula for the Ricci flow and its geometric applications

I - Topology

- 1 History
- $2\ \mbox{-}\ \mbox{Topological spaces}$

II - Comparing topological spaces1 - Homeomorphism equivalence2 - Homotopy equivalence

III - Topological invariants

- 1 Embeddability
- $2\ \mbox{-}\ \mbox{Number of connected components}$
- 3 Euler characteristic
- 4 Betti numbers

Protagonistas da topologia

10/37(1/2)

In topology we study **topological spaces**.

Definition: a topological space is a set X endowed with a collection of **open sets** $\{O_{\alpha} \mid \alpha \in A\}$, with $O_{\alpha} \subset X$, such that

- \emptyset and X are open sets,
- an infinite union of open sets is an open set,
- a finite intersection of open sets is an open set.

Definition: Given two topological spaces X and Y, a map $f: X \to Y$ is **continuous** if for every open set $O \subset Y$, the preimage $f^{-1}(O)$ is an open set of X.

$$X \longrightarrow Y$$

Protagonistas da topologia

10/37 (2/2)

In topology we study **topological spaces**.

- Definition: a topological space is a set X endowed with a collection of **open sets** $\{O_{\alpha} \mid \alpha \in A\}$, with $O_{\alpha} \subset X$, such that

- \emptyset and X are open sets,
- an infinite union of open sets is an open set,
- a finite intersection of open sets is an open set.

Definition: Given two topological spaces X and Y, a map $f: X \to Y$ is continuous if for every open set $O \subset Y$, the preimage $f^{-1}(O)$ is an open set of X.

Construção de espaços topológicos 11/37 (1/9)

1 - We can build a topological space by seeing it as a **subspace** of another one. In \mathbb{R}^n , we can define:

- the unit sphere $\mathbb{S}_{n-1} = \{x \in \mathbb{R}^n \mid ||x|| = 1\}$
- the unit cube $C_{n-1} = \{(x_1, ..., x_n) \in \mathbb{R}^n \mid \max(|x_1|, ..., |x_n|) = 1\}$
- the open balls $\mathcal{B}(x,r) = \{y \in \mathbb{R}^n \mid ||x y|| < r\}$
- the closed balls $\overline{\mathcal{B}}(x,r) = \{y \in \mathbb{R}^n \mid \|x-y\| \leq r\}$

Construção de espaços topológicos 11/37 (2/9)

1 - We can build a topological space by seeing it as a **subspace** of another one. In \mathbb{R}^n , we can define:

- the unit sphere $\mathbb{S}_{n-1} = \{x \in \mathbb{R}^n \mid ||x|| = 1\}$
- the unit cube $C_{n-1} = \{(x_1, ..., x_n) \in \mathbb{R}^n \mid \max(|x_1|, ..., |x_n|) = 1\}$
- the open balls $\mathcal{B}(x,r) = \{y \in \mathbb{R}^n \mid ||x y|| < r\}$
- the closed balls $\overline{\mathcal{B}}(x,r) = \{y \in \mathbb{R}^n \mid \|x-y\| \le r\}$

Construção de espaços topológicos 11/37 (3/9)

- **1** We can build a topological space by seeing it as a **subspace** of another one.
- 2 We can build a topological space by **gluing** the boundaries of another one.

Construção de espaços topológicos 11/37 (4/9)

- **1** We can build a topological space by seeing it as a **subspace** of another one.
- 2 We can build a topological space by **gluing** the boundaries of another one.
- **3** We can build a topological space by **quotienting** another one.

Construção de espaços topológicos 11/37 (5/9)

- **1** We can build a topological space by seeing it as a **subspace** of another one.
- 2 We can build a topological space by **gluing** the boundaries of another one.
- **3** We can build a topological space by **quotienting** another one.

Construção de espaços topológicos 11/37 (6/9)

- **1** We can build a topological space by seeing it as a **subspace** of another one.
- 2 We can build a topological space by **gluing** the boundaries of another one.
- **3** We can build a topological space by **quotienting** another one.

Construção de espaços topológicos 11/37 (7/9)

- **1** We can build a topological space by seeing it as a **subspace** of another one.
- 2 We can build a topological space by **gluing** the boundaries of another one.
- **3** We can build a topological space by **quotienting** another one.

Construção de espaços topológicos 11/37 (8/9)

- **1** We can build a topological space by seeing it as a **subspace** of another one.
- 2 We can build a topological space by **gluing** the boundaries of another one.
- **3** We can build a topological space by **quotienting** another one.

Construção de espaços topológicos 11/37 (9/9)

- **1** We can build a topological space by seeing it as a **subspace** of another one.
- 2 We can build a topological space by **gluing** the boundaries of another one.
- **3** We can build a topological space by **quotienting** another one.

I - Topology 1 - History 2 - Topological spaces

II - Comparing topological spaces 1 - Homeomorphism equivalence 2 - Homotopy equivalence

III - Topological invariants

- 1 Embeddability
- $2\ \mbox{-}\ \mbox{Number of connected components}$
- 3 Euler characteristic
- 4 Betti numbers

Definition: Let X and Y be two topological spaces, and $f: X \to Y$ a map. We say that f is a **homeomorphism** if

- f is a bijection,
- $f \colon X \to Y$ is continuous,
- $f^{-1} \colon Y \to X$ is continuous.

If there exist such a homeomorphism, we say that the two topological spaces are **homeomorphic**.

Example: The unit circle and the unit square are homeomorphic via

$$f: \mathbb{S}_1 \longrightarrow \mathcal{C}$$
$$(x_1, x_2) \longmapsto \frac{1}{\max(|x_1|, |x_2|)} (x_1, x_2)$$

Definition: Let X and Y be two topological spaces, and $f: X \to Y$ a map. We say that f is a **homeomorphism** if

- f is a bijection,
- $f \colon X \to Y$ is continuous,
- $f^{-1} \colon Y \to X$ is continuous.

If there exist such a homeomorphism, we say that the two topological spaces are **homeomorphic**.

Example: The unit circle and the interval [0,1] are not homeomorphic.

Definition: Let X and Y be two topological spaces, and $f: X \to Y$ a map. We say that f is a **homeomorphism** if

- f is a bijection,
- $f \colon X \to Y$ is continuous,
- $f^{-1} \colon Y \to X$ is continuous.

If there exist such a homeomorphism, we say that the two topological spaces are **homeomorphic**.

Example (Invariance of domain): [Brouwer, 1912] If $n \neq m$, the Euclidean spaces \mathbb{R}^n and \mathbb{R}^m are not homeomorphic.

Definition: Let X and Y be two topological spaces, and $f: X \to Y$ a map. We say that f is a **homeomorphism** if

- f is a bijection,
- $f \colon X \to Y$ is continuous,
- $f^{-1} \colon Y \to X$ is continuous.

If there exist such a homeomorphism, we say that the two topological spaces are **homeomorphic**.

Example (Classification of surfaces): [Möbius, Jordan, von Dyck, Dehn and Heegaard, Alexander, Brahana, 1863-1921] If $g \neq g'$, the surfaces of genus g and g' are not homeomorphic.

14/37 (1/5)

We can gather topological spaces that are homeomorphic

$$= \bigcirc = \bigcirc = \bigcirc = \bigcirc = \bigcirc = \bigcirc = \cdots$$

the class of circles

14/37 (2/5)

We can gather topological spaces that are homeomorphic

$$= \bigcirc = \bigtriangleup = \bigcirc = \bigcirc = \bigcirc = \bigcirc = \cdots$$
the class of circles
$$= \bigcirc = \bigcirc = \bigcirc = \bigcirc = \bigcirc = \cdots$$

the class of intervals

14/37 (3/5)

We can gather topological spaces that are homeomorphic

$$= \bigcirc = \bigtriangleup = \bigcirc = \bigcirc = \bigcirc = \bigcirc = \cdots$$
the class of circles
$$= \bigcirc = \bigcirc = \bigcirc = \bigcirc = \bigcirc = \bigcirc = \cdots$$
the class of intervals
$$= \bigcirc = \bigcirc = \bigcirc = \bigcirc = \cdots$$

the class of crosses

14/37 (4/5)

We can gather topological spaces that are homeomorphic

14/37 (5/5)

In general, it may be complicated to determine whether two spaces are homeomorphic.

To answer this problem, we will use the notion of **invariant**.
I - Topology 1 - History 2 - Topological spaces

II - Comparing topological spaces 1 - Homeomorphism equivalence

2 - Homotopy equivalence

III - Topological invariants

- 1 Embeddability
- $2\ \mbox{-}\ \mbox{Number of connected components}$
- 3 Euler characteristic
- 4 Betti numbers

Homotopias

16/37 (1/3)

Definition: Let X, Y be two topological spaces, and $f, g: X \to Y$ two continuous maps. A **homotopy** between f and g is a map $F: X \times [0,1] \to Y$ such that:

- $x \mapsto F(x,0)$ is equal to f,
- $x \mapsto F(x,1)$ is equal to g,
- $F: X \times [0,1] \to Y$ is continuous.

If such a homotopy exists, we say that the maps f and g are **homotopic**.

Example: Homotopy between $f : \mathbb{R} \to \mathbb{R}$ and $g : \mathbb{R} \to \mathbb{R}$.

Homotopias

Definition: Let X, Y be two topological spaces, and $f, g: X \to Y$ two continuous maps. A **homotopy** between f and g is a map $F: X \times [0,1] \to Y$ such that:

- $x \mapsto F(x,0)$ is equal to f,
- $x \mapsto F(x,1)$ is equal to g,
- $F: X \times [0,1] \to Y$ is continuous.

If such a homotopy exists, we say that the maps f and g are **homotopic**.

Homotopias

Definition: Let X, Y be two topological spaces, and $f, g: X \to Y$ two continuous maps. A **homotopy** between f and g is a map $F: X \times [0,1] \to Y$ such that:

- $x \mapsto F(x,0)$ is equal to f,
- $x \mapsto F(x,1)$ is equal to g,
- $F: X \times [0,1] \to Y$ is continuous.

If such a homotopy exists, we say that the maps f and g are **homotopic**.

This is not true anymore if we remove the origin from the plane.

17/37 (1/4)

Definition: Let X and Y be two topological spaces. A homotopy equivalence between X and Y is a pair of continuous maps $f: X \to Y$ and $g: Y \to X$ such that:

- $g \circ f \colon X \to X$ is homotopic to the identity map id $\colon X \to X$,
- $f \circ g \colon Y \to Y$ is homotopic to the identity map id $\colon Y \to Y$.

If such a homotopy equivalence exists, we say that X and Y are **homotopy equivalent**.

17/37 (2/4)

Definition: Let X and Y be two topological spaces. A homotopy equivalence between X and Y is a pair of continuous maps $f: X \to Y$ and $g: Y \to X$ such that:

- $g \circ f \colon X \to X$ is homotopic to the identity map id $\colon X \to X$,
- $f \circ g \colon Y \to Y$ is homotopic to the identity map id $\colon Y \to Y$.

If such a homotopy equivalence exists, we say that X and Y are **homotopy equivalent**.

Observation: A homotopy equivalence is a weaker formulation of homeomorphism.

$$g \circ f = \operatorname{id}_X \quad X \xrightarrow{f} \qquad Y \qquad f \circ g = \operatorname{id}_Y$$
$$g = f^{-1}$$

17/37 (3/4)

Definition: Let X and Y be two topological spaces. A homotopy equivalence between X and Y is a pair of continuous maps $f: X \to Y$ and $g: Y \to X$ such that:

- $g \circ f \colon X \to X$ is homotopic to the identity map id : $X \to X$,
- $f \circ g \colon Y \to Y$ is homotopic to the identity map id $\colon Y \to Y$.

If such a homotopy equivalence exists, we say that X and Y are **homotopy equivalent**.

Observation: A homotopy equivalence is a weaker formulation of homeomorphism.

Proposition: If two topological spaces are homeomorphic, then they are homotopy equivalent.

17/37 (4/4)

Homotopy equivalence allows to continuously **deform** the space

and to retract it.

Classes de homotopia

18/37 (1/3)

Just as before, we can classify topological spaces according to this relation, and obtain **classes of homotopy equivalence**:

the class of points

the class of spheres, the class of torii, the class of Klein bottles, ...

Classes de homotopia

Example: Classification, up to homotopy equivalence, of the alphabet.

Classes de homotopia

18/37 (3/3)

Example: Classification, up to homotopy equivalence, of the alphabet.

- I Topology 1 - History
 - I MISLORY
 - 2 Topological spaces

II - Comparing topological spaces1 - Homeomorphism equivalence2 - Homotopy equivalence

III - Topological invariants

- 1 Embeddability
- $2\ \mbox{-}\ \mbox{Number of connected components}$
- 3 Euler characteristic
- 4 Betti numbers

Características comuns

20/37 (1/2)

We gathered topological spaces into homotopy classes.

- Given a topological space X, how to recognize in which class it belongs?
- What are the common **features** of spaces in a same class?

Características comuns

20/37 (2/2)

We gathered topological spaces into homotopy classes.

- Given a topological space X, how to recognize in which class it belongs?
- What are the common **features** of spaces in a same class?

- I Topology
 - 1 History
 - 2 Topological spaces

II - Comparing topological spaces1 - Homeomorphism equivalence2 - Homotopy equivalence

III - Topological invariants

- 1 Embeddability
- 2 Number of connected components
- 3 Euler characteristic
- 4 Betti numbers

Imersibilidade

22/37 (1/2)

Definition: Let $n \in \mathbb{N}$. A topological space X is **embeddable** in \mathbb{R}^n if there exists a continuous injective map $X \to \mathbb{R}^n$.

Example: The interval (0,1) is embeddable in \mathbb{R} .

Imersibilidade

Definition: Let $n \in \mathbb{N}$. A topological space X is **embeddable** in \mathbb{R}^n if there exists a continuous injective map $X \to \mathbb{R}^n$.

Example: The interval (0,1) is embeddable in \mathbb{R} .

Proposition: Let $n \in \mathbb{N}$. If two spaces X and Y are homeomorphic, then either both are embeddable in \mathbb{R}^n , or neither.

We say that 'being embeddable in \mathbb{R}^n ' is an **invariant of homeomorphism classes**. It can be used to show that two spaces are not homeomorphic.

Propriedade de invariância - na teoria 23/37 (1/5)

Proposition: Let $n \in \mathbb{N}$. If two spaces X and Y are homeomorphic, then either both are embeddable in \mathbb{R}^n , or neither.

Example: The cylinder and the Möbius strip are not homeomorphic.

Indeed, the cylinder can be embedded in \mathbb{R}^2 (as an annulus).

If the strip was homeomorphic to the cylinder, then it would be also embeddable in \mathbb{R}^2 .

Propriedade de invariância - na teoria 23/37 (2/5)

Proposition: Let $n \in \mathbb{N}$. If two spaces X and Y are homeomorphic, then either both are embeddable in \mathbb{R}^n , or neither.

Example: The cylinder and the Möbius strip are not homeomorphic.

Indeed, the cylinder can be embedded in \mathbb{R}^2 (as an annulus).

If the strip was homeomorphic to the cylinder, then it would be also embeddable in \mathbb{R}^2 . We draw two circles on the strip, C_1 and C_2 , that only intersect once.

Propriedade de invariância - na teoria 23/37 (3/5)

Proposition: Let $n \in \mathbb{N}$. If two spaces X and Y are homeomorphic, then either both are embeddable in \mathbb{R}^n , or neither.

Example: The cylinder and the Möbius strip are not homeomorphic.

Indeed, the cylinder can be embedded in \mathbb{R}^2 (as an annulus).

If the strip was homeomorphic to the cylinder, then it would be also embeddable in \mathbb{R}^2 . We draw two circles on the strip, C_1 and C_2 , that only intersect once.

Embedded in \mathbb{R}^2 , the circles C^1 and C^2 only intersect once. This is impossible by Jordan's theorem.

Propriedade de invariância - na teoria 23/37 (4/5)

Proposition: Let $n \in \mathbb{N}$. If two spaces X and Y are homeomorphic, then either both are embeddable in \mathbb{R}^n , or neither.

Example: The cylinder and the Möbius strip are not homeomorphic.

Remark: The property 'being embeddable in \mathbb{R}^n ' is **not** an invariant of *homotopy* classes.

Indeed, the space and the cylinder are homotopy equivalent, but only one of them is embeddable in \mathbb{R}^2 .

Propriedade de invariância - na teoria 23/37 (5/5)

Proposition: Let $n \in \mathbb{N}$. If two spaces X and Y are homeomorphic, then either both are embeddable in \mathbb{R}^n , or neither.

Example: The cylinder and the Möbius strip are not homeomorphic.

Remark: The property 'being embeddable in \mathbb{R}^n ' is **not** an invariant of *homotopy* classes.

Indeed, the space and the cylinder are homotopy equivalent, but only one of them is embeddable in \mathbb{R}^2 .

They can both be retracted onto their inner circle.

Propriedade de invariância - nas aplicações_{24/37}

In applications, finding an embedding corresponds to the problem of **dimensionality reduction**.

Illustrations from [Luis Scoccola, Jose A. Perea, Fiberwise dimensionality reduction of topologically complex data with vector bundles, 2022]

- I Topology 1 - History
 - 2 Topological spaces

II - Comparing topological spaces1 - Homeomorphism equivalence2 - Homotopy equivalence

III - Topological invariants

- 1 Embeddability
- 2 Number of connected components
- 3 Euler characteristic
- 4 Betti numbers

Definition: A subset $X \subset \mathbb{R}^n$ is (path-) connected if for every $x, y \in X$, there exists a continuous map $f: [0,1] \to X$ such that f(0) = x and f(1) = y.

26/37 (1/4)

connected space

non-connected space

Definition: A subset $X \subset \mathbb{R}^n$ is (path-) connected if for every $x, y \in X$, there exists a continuous map $f: [0,1] \to X$ such that f(0) = x and f(1) = y.

connected space

non-connected space

26/37 (2/4)

26/37 (3/4)

Definition: A subset $X \subset \mathbb{R}^n$ is (path-) connected if for every $x, y \in X$, there exists a continuous map $f: [0,1] \to X$ such that f(0) = x and f(1) = y.

More generally, any topological space X can be partitioned into **connected components**.

26/37 (4/4)

Definition: A subset $X \subset \mathbb{R}^n$ is (path-) connected if for every $x, y \in X$, there exists a continuous map $f: [0,1] \to X$ such that f(0) = x and f(1) = y.

More generally, any topological space X can be partitioned into **connected components**.

Proposition: If two spaces X and Y are homotopy equivalent, then they have the same number of connected components.

Propriedade de invariância - na teoria 27/37 (1/5)

Proposition: If two spaces X and Y are homotopy equivalent, then they have the same number of connected components.

Consequence: If two spaces X and Y are homeomorphic, then they have the same number of connected components.

Example: The subsets [0,1] and $[0,1] \cup [2,3]$ of \mathbb{R} are not homeomorphic, neither homotopy equivalent.

Indeed, the first one has one connected component, and the second one two.

Propriedade de invariância - na teoria 27/37 (2/5)

Proposition: If two spaces X and Y are homotopy equivalent, then they have the same number of connected components.

Example: The interval $[0, 2\pi)$ and the circle $\mathbb{S}_1 \subset \mathbb{R}^2$ are not homeomorphic.

We will prove this by contradiction. Suppose that they are homeomorphic. By definition, this means that there exists a map $f: [0, 2\pi) \to \mathbb{S}_1$ which is continuous, invertible, and with continuous inverse.

Propriedade de invariância - na teoria 27/37 (3/5)

Proposition: If two spaces X and Y are homotopy equivalent, then they have the same number of connected components.

Example: The interval $[0, 2\pi)$ and the circle $\mathbb{S}_1 \subset \mathbb{R}^2$ are not homeomorphic.

We will prove this by contradiction. Suppose that they are homeomorphic. By definition, this means that there exists a map $f: [0, 2\pi) \to \mathbb{S}_1$ which is continuous, invertible, and with continuous inverse.

Let $x \in [0, 2\pi)$ such that $x \neq 0$. Consider the subsets $[0, 2\pi) \setminus \{x\} \subset [0, 2\pi)$ and $\mathbb{S}_1 \setminus \{f(x)\} \subset \mathbb{S}_1$, and the induced map

$$g: [0, 2\pi) \setminus \{x\} \to \mathbb{S}_1 \setminus \{f(x)\}.$$

The map g is a homeomorphism.

Propriedade de invariância - na teoria 27/37 (4/5)

Proposition: If two spaces X and Y are homotopy equivalent, then they have the same number of connected components.

Example: The interval $[0, 2\pi)$ and the circle $\mathbb{S}_1 \subset \mathbb{R}^2$ are not homeomorphic.

We will prove this by contradiction. Suppose that they are homeomorphic. By definition, this means that there exists a map $f: [0, 2\pi) \to \mathbb{S}_1$ which is continuous, invertible, and with continuous inverse.

Let $x \in [0, 2\pi)$ such that $x \neq 0$. Consider the subsets $[0, 2\pi) \setminus \{x\} \subset [0, 2\pi)$ and $\mathbb{S}_1 \setminus \{f(x)\} \subset \mathbb{S}_1$, and the induced map

$$g\colon [0,2\pi)\setminus\{x\}\to \mathbb{S}_1\setminus\{f(x)\}.$$

The map g is a homeomorphism.

Moreover, $[0, 2\pi) \setminus \{x\}$ has two connected components, and $\mathbb{S}_1 \setminus \{f(x)\}$ only one. This is absurd.

Propriedade de invariância - na teoria 27/37 (5/5)

Proposition: If two spaces X and Y are homotopy equivalent, then they have the same number of connected components.

Homework: The intervals [0,1) and (0,1) are not homeomorphic.

 0^{\bullet} 1

0_____

1

Propriedade de invariância - nas aplicações/37 (1/3)

In applications, finding connected components corresponds to a **classification** task.

Propriedade de invariância - nas aplicações/37 (2/3)

In applications, finding connected components corresponds to a **classification** task.

Propriedade de invariância - nas aplicações/37 (3/3)

In applications, finding connected components corresponds to a **classification** task.

- I Topology 1 - History
 - 2 Topological spaces

II - Comparing topological spaces1 - Homeomorphism equivalence2 - Homotopy equivalence

III - Topological invariants

- 1 Embeddability
- 2 Number of connected components
- 3 Euler characteristic
- 4 Betti numbers

30/37 (1/10)

number of faces	4	8	6	12	20
number of edges	6	12	12	30	30
number of vertices	4	6	8	20	12
χ	2	2	2	2	2

30/37 (2/10)

number of faces	4	8	6	12	20
number of edges	6	12	12	30	30
number of vertices	4	6	8	20	12
χ	2	2	2	2	2

Proposition [Euler, 1758]: In any convex polyhedron, we have number of faces – number of edges + number of vertices = 2

30/37 (3/10)

Definition: Let V be a set (called the set of *vertices*). A simplicial complex over V is a set K of subsets of V (called the *simplices*) such that, for every $\sigma \in K$ and every non-empty $\tau \subset \sigma$, we have $\tau \in K$.

The **dimension** of a simplex $\sigma \in K$ is defined as $|\sigma| - 1$.

30/37 (4/10)

Definition: Let V be a set (called the set of *vertices*). A simplicial complex over V is a set K of subsets of V (called the *simplices*) such that, for every $\sigma \in K$ and every non-empty $\tau \subset \sigma$, we have $\tau \in K$.

The **dimension** of a simplex $\sigma \in K$ is defined as $|\sigma| - 1$.

```
Example: Let V = \{0, 1, 2\} and
```

```
K = \{[0], [1], [2], [0, 1], [1, 2], [0, 2]\}.
```

This is a simplicial complex.

It contains three simplices of dimension 0 ([0], [1] and [2]) and three simplices of dimension 1 ([0,1], [1,2] and [0,2]).

30/37 (5/10)

Definition: Let V be a set (called the set of *vertices*). A simplicial complex over V is a set K of subsets of V (called the *simplices*) such that, for every $\sigma \in K$ and every non-empty $\tau \subset \sigma$, we have $\tau \in K$.

The **dimension** of a simplex $\sigma \in K$ is defined as $|\sigma| - 1$.

```
Example: Let V = \{0, 1, 2\} and
```

```
K = \{[0], [1], [2], [0, 1], [1, 2], [0, 2]\}.
```

This is a simplicial complex.

It contains three simplices of dimension 0 ([0], [1] and [2]) and three simplices of dimension 1 ([0,1], [1,2] and [0,2]).

30/37 (6/10)

Definition: Let V be a set (called the set of *vertices*). A simplicial complex over V is a set K of subsets of V (called the *simplices*) such that, for every $\sigma \in K$ and every non-empty $\tau \subset \sigma$, we have $\tau \in K$.

The **dimension** of a simplex $\sigma \in K$ is defined as $|\sigma| - 1$.

Example: Let $V = \{0, 1, 2, 3\}$ and

 $K = \{[0], [1], [2], [3], [0, 1], [1, 2], [2, 3], [3, 0], [0, 2], [1, 3], [0, 1, 2], [0, 1, 3], [0, 2, 3], [1, 2, 3]\}$

It a simplicial complex.

It contains four simplices of dimension 0 ([0], [1], [2] and [3]), six simplices of dimension 1 ([0,1], [1,2], [2,3], [3,0],[0,2] and [1,3]) and four simplices of dimension 2 ([0,1,2], [0,1,3], [0,2,3] and [1,2,3]).

Definition: Let V be a set (called the set of *vertices*). A simplicial complex over V is a set K of subsets of V (called the *simplices*) such that, for every $\sigma \in K$ and every non-empty $\tau \subset \sigma$, we have $\tau \in K$.

The **dimension** of a simplex $\sigma \in K$ is defined as $|\sigma| - 1$.

Example: Let $V = \{0, 1, 2, 3\}$ and

 $K = \{[0], [1], [2], [3], [0, 1], [1, 2], [2, 3], [3, 0], [0, 2], [1, 3], [0, 1, 2], [0, 1, 3], [0, 2, 3], [1, 2, 3]\}$

It a simplicial complex.

(this is a sphere)

30/37 (7/10)

It contains four simplices of dimension 0 ([0], [1], [2] and [3]), six simplices of dimension 1 ([0,1], [1,2], [2,3], [3,0],[0,2] and [1,3]) and four simplices of dimension 2 ([0,1,2], [0,1,3], [0,2,3] and [1,2,3]).

Definition: Let K be a simplicial complex of dimension n. Its **Euler characteristic** is the integer

$$\chi(K) = \sum_{0 \le i \le n} (-1)^i \cdot (\text{number of simplices of dimension } i).$$

Example: The simplicial complex $K = \{[0], [1], [2], [0, 1], [1, 2], [2, 0]\}$ has Euler characteristic

$$\chi(K) = \mathbf{3} - \mathbf{3} = \mathbf{0}$$

30/37 (8/10)

Definition: Let K be a simplicial complex of dimension n. Its **Euler characteristic** is the integer

$$\chi(K) = \sum_{0 \le i \le n} (-1)^i \cdot (\text{number of simplices of dimension } i).$$

Example: The simplicial complex $K = \{[0], [1], [2], [0, 1], [1, 2], [2, 0]\}$ has Euler characteristic

$$\chi(K) = \mathbf{3} - \mathbf{3} = \mathbf{0}$$

Example: The simplicial complex $K = \{[0], [1], [2], [3], [0, 1], [1, 2], [2, 3], [3, 0], [0, 2], [1, 3], [0, 1, 2], [0, 1, 3], [0, 2, 3], [1, 2, 3]\}$ has Euler characteristic $3 \sim 0$

$$\chi(K) = 4 - 6 + 4 = 2$$

30/37 (9/10)

30/37 (10/10)

Definition: Let K be a simplicial complex of dimension n. Its **Euler characteristic** is the integer

$$\chi(K) = \sum_{0 \le i \le n} (-1)^i \cdot (\text{number of simplices of dimension } i).$$

Definition: Let X be a topological space. Its **Euler characteristic** is defined as the Euler caracteristic of a *triangulation* of X.

Propriedade de invariância - na teoria 31/37 (1/2)

Proposition: If X and Y are two homotopy equivalent topological spaces, then $\chi(X) = \chi(Y)$.

Therefore, the Euler characteristic is an **invariant** of homotopy equivalence classes. We can use this information to prove that two spaces are not homotopy equivalent.

Example: The circle has Euler characteristic 0, and the sphere Euler characteristic 2. Therefore, they are not homotopy equivalent.

Propriedade de invariância - na teoria $_{31/37}$ (2/2)

Proposition: If X and Y are two homotopy equivalent topological spaces, then $\chi(X) = \chi(Y)$.

Therefore, the Euler characteristic is an **invariant** of homotopy equivalence classes. We can use this information to prove that two spaces are not homotopy equivalent.

Example (Classification of surfaces): The homeomorphism classes of *connected and compact surfaces* are classified by their Euler characteristic.

Propriedade de invariância - nas aplicações/37 (1/2)

The Euler characteristic contains information about the homeomorphism class (and homotopy class) of the space.

[T. Sousbie, The persistent cosmic web and its filamentary structure, 2011]

seen as an object of dimension $\boldsymbol{3}$

of dimension $\,2\,$

of dimension 1

Propriedade de invariância - nas aplicações/37 (2/2)

The Euler characteristic contains information about the homeomorphism class (and homotopy class) of the space.

[T. Sousbie, The persistent cosmic web and its filamentary structure, 2011]

[P. Pranav, H. Edelsbrunner, R. de Weygaert, G. Vegter, M. Kerber, B. Jones and M. Wintraecken, The topology of the cosmic web in terms of persistent Betti numbers, 2016]

The Euler characteristic 'counts' the number of holes

- I Topology 1 - History
 - 2 Topological spaces

II - Comparing topological spaces 1 - Homeomorphism equivalence 2 - Homotopy equivalence

III - Topological invariants

- 1 Embeddability
- $2\ \mbox{-}\ \mbox{Number of connected components}$
- 3 Euler characteristic
- 4 Betti numbers

For any topological space \boldsymbol{X} , one defines a sequence of integers

 $\beta_0(X), \quad \beta_1(X), \quad \beta_2(X), \quad \beta_3(X), \quad \dots$

called the Betti numbers.

Construction of Betti numbers:

For any topological space X, one defines a sequence of integers

 $\beta_0(X), \quad \beta_1(X), \quad \beta_2(X), \quad \beta_3(X), \quad \dots$

called the Betti numbers.

Construction of Betti numbers: rendez-vous on Thursday! (based on homology theory)

X	•				
$\beta_0(X)$	1	1	1	1	2
$\beta_1(X)$	0	1	0	2	2
$\beta_2(X)$	0	0	1	0	0

For any topological space X, one defines a sequence of integers

 $\beta_0(X), \quad \beta_1(X), \quad \beta_2(X), \quad \beta_3(X), \quad \dots$

called the Betti numbers.

Construction of Betti numbers: rendez-vous on Thursday! (based on homology theory)

X	•				
$\beta_0(X)$	1	1	1	1	2
$\beta_1(X)$	0	1	0	2	2
$\beta_2(X)$	0	0	1	0	0

34/37 (4/11)

Interpretation: We have:

- $\beta_0(X)$ is the number of connected components of X
- $\beta_1(X)$ is the number of 'holes' in X
- $\beta_2(X)$ is the number of 'voids' in X

• . . .

X	•				
$\beta_0(X)$	1	1	1	1	2
$\beta_1(X)$	0	1	0	2	2
$\beta_2(X)$	0	0	1	0	0

34/37 (5/11)

Interpretation: We have:

- $\beta_0(X)$ is the number of connected components of X
- $\beta_1(X)$ is the number of 'holes' in X
- $\beta_2(X)$ is the number of 'voids' in X

• . . .

X	•				
$\beta_0(X)$	1	1	1	1	2
$\beta_1(X)$	0	1	0	2	2
$\beta_2(X)$	0	0	1	0	0

34/37 (6/11)

Interpretation: We have:

- $\beta_0(X)$ is the number of connected components of X
- $\beta_1(X)$ is the number of 'holes' in X
- $\beta_2(X)$ is the number of 'voids' in X

• . . .

X	•				
$\beta_0(X)$	1	1	1	1	2
$\beta_1(X)$	0	1	0	2	2
$\beta_2(X)$	0	0	1	0	0

34/37 (7/11)

Interpretation: We have:

- $\beta_0(X)$ is the number of connected components of X
- $\beta_1(X)$ is the number of 'holes' in X
- $\beta_2(X)$ is the number of 'voids' in X

• . . .

Х	•				
$\beta_0(X)$	1	1	1	1	2
$\beta_1(X)$	0	1	0	2	2
$\beta_2(X)$	0	0	1	0	0

34/37 (8/11)

Interpretation: We have:

- $\beta_0(X)$ is the number of connected components of X
- $\beta_1(X)$ is the number of 'holes' in X
- $\beta_2(X)$ is the number of 'voids' in X

• . . .

$$\beta_0(X) = 1, \quad \beta_1(X) = 2, \quad \beta_2(X) = 1, \quad \beta_3(X) = 0, \quad \dots$$

34/37 (9/11)

Interpretation: We have:

- $\beta_0(X)$ is the number of connected components of X
- $\beta_1(X)$ is the number of 'holes' in X
- $\beta_2(X)$ is the number of 'voids' in X

• . . .

$$\beta_0(X) = 1, \quad \beta_1(X) = 2, \quad \beta_2(X) = 1, \quad \beta_3(X) = 0, \quad \dots$$

34/37 (10/11)

Interpretation: We have:

- $\beta_0(X)$ is the number of connected components of X
- $\beta_1(X)$ is the number of 'holes' in X
- $\beta_2(X)$ is the number of 'voids' in X

• . . .

$$\beta_0(X) = 1, \quad \beta_1(X) = 2, \quad \beta_2(X) = 1, \quad \beta_3(X) = 0, \quad \dots$$

34/37 (11/11)

Interpretation: We have:

- $\beta_0(X)$ is the number of connected components of X
- $\beta_1(X)$ is the number of 'holes' in X
- $\beta_2(X)$ is the number of 'voids' in X

• . . .

$$\beta_0(X) = 1, \quad \beta_1(X) = 2, \quad \beta_2(X) = 1, \quad \beta_3(X) = 0, \quad \dots$$

Propriedade de invariância - na teoria 35/37 (1/2)

Proposition: If two spaces X and Y are homotopy equivalent, then they have the same Betti numbers.

As a consequence, two spaces with different Betti numbers cannot be homotopy equivalent.

Example: The *n*-dimensional sphere $\mathbb{S}^n \subset \mathbb{R}^{n+1}$ has Betti numbers

$$\beta_i(X) = 1$$
 if $i = 0$ or n ,
 $\beta_i(X) = 0$ else.

Hence, if $n \neq m$, then \mathbb{S}^n and \mathbb{S}^n are not homotopy equivalent.

Propriedade de invariância - na teoria 35/37 (2/2)

Proposition: If two spaces X and Y are homotopy equivalent, then they have the same Betti numbers.

As a consequence, two spaces with different Betti numbers cannot be homotopy equivalent.

Example (Brouwer's invariance of domain):

Let us show that \mathbb{R}^n and \mathbb{R}^m , with $n \neq m$, are not homeomorphic.

Let $h: \mathbb{R}^n \to \mathbb{R}^m$ be a homeomorphism. Choose any $x \in \mathbb{R}^n$ and consider the restricted map

 $h\colon \mathbb{R}^n\setminus\{x\}\longrightarrow\mathbb{R}^m\setminus\{h(x)\}$

It is still a homemorphism.

But $\mathbb{R}^n \setminus \{x\}$ is homotopic to the sphere \mathbb{S}^{n-1} , and $\mathbb{R}^m \setminus \{x\}$ is homotopic to the sphere \mathbb{S}^{m-1}

We have seen before that \mathbb{S}^{n-1} and \mathbb{S}^{m-1} are homotopic if and only if m = n. This is a contradiction.

Propriedade de invariância - nas aplicações/37 (1/2)

The Betti numbers contain information about the space we study.

[G. Carlsson, T. Ishkhanov, V. de Silva, and A. Zomorodian, On the Local Behavior of Spaces of Natural Images, 2008.]

From a large collection of natural images, the authors extract 3×3 patches. Since it consists of 9 pixels, each of these patches can be seen as a 9-dimensional vector, and the whole set as a point cloud in \mathbb{R}^9 .

They observe that the point cloud lies close to a shape whose Betti numbers (over $\mathbb{Z}/2\mathbb{Z}$) are $\beta_0(X) = 1$, $\beta_1(X) = 2$, $\beta_2(X) = 1$, $\beta_3(X) = 0$

Propriedade de invariância - nas aplicações/37 (2/2)

The Betti numbers contain information about the space we study.

[G. Carlsson, T. Ishkhanov, V. de Silva, and A. Zomorodian, On the Local Behavior of Spaces of Natural Images, 2008.]

From a large collection of natural images, the authors extract 3×3 patches. Since it consists of 9 pixels, each of these patches can be seen as a 9-dimensional vector, and the whole set as a point cloud in \mathbb{R}^9 .

They observe that the point cloud lies close to a shape whose Betti numbers (over $\mathbb{Z}/2\mathbb{Z}$) are $\beta_0(X) = 1$, $\beta_1(X) = 2$, $\beta_2(X) = 1$, $\beta_3(X) = 0$

These are the Betti numbers of a Klein bottle!

(and the authors actually show that the dataset concentrates near a Klein bottle embedded in \mathbb{R}^9 .)

Conclusão

We can find interesting topology in datasets.

Invariants of homotopy classes allow to describe and understand them.

$$\beta_0(X) = 1, \quad \beta_1(X) = 2, \quad \beta_2(X) = 1$$

Thursday 28th: a stronger invariant, homology.

Tuesday 3rd: how to compute these invariants in practice? **persistent homology**. Thursday 5th: **python tutorial** with the gudhi library.

A course about TDA: https://raphaeltinarrage.github.io/EMAp.html