DETECTION OF REPRESENTATION ORBITS OF COMPACT LIE GROUPS FROM POINT CLOUDS

Henrique Ennes - DataShape/COATI (Sophia Antipolis)
Raphaël Tinarrage - EMAp/FGV (Rio de Janeiro)

Bernhard Riemann 1826-1866

Sophus Lie
1842-1899

Wilhelm Killing 1847-1923

Felix Klein
1849-1925

Élie Cartan
1869-1951

Hermann Weyl 1885-1955

1872, F. Klein, Vergleichende Betrachtungen über neuere geometrische Forschungen: Non-Euclidean geometries should be studied through their symmetries (Erlangen program).

Winter 1873, S. Lie:
A Lie group is a manifold equipped with a group structure. A Lie group posseses a Lie algebra, which allows to work infinitesimally (Lie group-Lie algebra correspondence).

1913, E. Cartan, Theorem of the highest weight:
The irreducible representations of Lie groups are classified by their highest weights.
1935, V. Fock, Zur theorie des wasserstoffatoms:
Description of the hydrogen atom through $\mathrm{SO}(4)$-symmetry on top of the Schrödinger equation.

1939, Myers-Steenrod theorem:

The isometry group of a Riemannian manifold is a Lie group.

Symmetries in datasets

(1) Certain real-life experiments exhibit symmetric objects.
[Martin, Thompson, Coutsias \& Watson, Topology of cyclo-octane energy landscape, 2010]

The space of conformation of $\mathrm{C}_{8} \mathrm{H}_{16}$ molecules is the union of a Klein bottle and a sphere.
[Richard J. Gardner et al, Toroidal topology of population activity in grid cells, 2022]

The firing matrix of grid cells in rat brains shows the connecivity of a torus.
(1) Certain real-life experiments exhibit symmetric objects.
(2) Euclidean transformations are governed by Lie group representations.

The $n \times m$-images can be embedded in $\mathbb{R}^{n \times m}$. After applying permutations of the pixels, the embedded images lie on an orbit of a Lie group representation.

$$
\mathrm{SO}(2) \times \mathrm{SO}(2) \simeq T^{2}
$$

Symmetries in datasets

(1) Certain real-life experiments exhibit symmetric objects.
(2) Euclidean transformations are governed by Lie group representations.
(3) Symmetries in Hamiltonian systems yield conservation laws.

Hamiltonian's systems follow the equations

$$
\frac{\mathrm{d} \mathbf{p}}{\mathrm{~d} t}=-\frac{\partial H}{\partial \mathbf{q}} \quad \frac{\mathrm{~d} \mathbf{q}}{\mathrm{~d} t}=\frac{\partial H}{\partial \mathbf{p}} .
$$

Let ω be the canonical symplectic form in $\mathbb{R}^{2 n}$. A symplectomorphism is a Lie group representation $L: G \rightarrow \mathrm{GL}_{2 n}(\mathbb{R})$ on $\mathbb{R}^{2 n}$ that preserves the the system's dynamics, i.e. $L(g)^{*} \omega=\omega \forall g \in G$.

Emmy Noether 1882-1935

Noether's theorem (1915):

If H is invariant under the action of G, then the moment mapping is conserved.

Input: \quad A point cloud $X=\left\{x_{1} \ldots, x_{N}\right\} \subset \mathbb{R}^{n}$.
Output: A compact Lie group G, a representation ϕ of it in \mathbb{R}^{n}, and an orbit \mathcal{O} close to X.

Orbit of $\mathrm{SO}(2)$ in \mathbb{R}^{6}

Orbit of T^{2} in \mathbb{R}^{6}

1. Lie group - Lie algebra correspondence
2. Closest Lie algebra problem
3. Examples

Lie groups

Definition: A Lie group is a group G that is also a smooth manifold, and such that the multiplication map $(g, h) \mapsto g h$ and the inverse map $g \mapsto g^{-1}$ are smooth.

Example: Given $n \in \mathbb{N}$ positive, on has the matrix groups

- $\mathrm{O}(n) \quad$ orthogonal group: the set of orthogonal $n \times n$ matrices $\left(A^{\top}=A^{-1}\right)$
- $\mathrm{SO}(n) \quad$ special orthogonal group: set of orthogonal $n \times n$ matrices of determinant +1
- $\operatorname{Sp}(2 n, \mathbb{C})$ symplectic group: the set of complex sympletic $n \times n$ matrices
- $\mathrm{U}(n) \quad$ unitary group: the set of complex unitary $n \times n$ matrices $\left(A^{*}=A^{-1}\right)$
- $\mathrm{SU}(n) \quad$ special unitary group: the set of complex unitary $n \times n$ matrices of determinant +1

Products of Lie groups are Lie groups:

- $T^{n} \quad \underline{n}$-torus: the product $\mathrm{SO}(2) \times \cdots \times \mathrm{SO}(2)$

Group structure on $\mathrm{SO}(2)$ (the circle)
$\left(\begin{array}{cc}\cos \theta & -\sin \theta \\ \sin \theta & \cos \theta\end{array}\right)$

Group structure on T^{2} (Pac-Man's world)

$$
\left(\begin{array}{cccc}
\cos x & -\sin x & 0 & 0 \\
\sin x & \cos x & 0 & 0 \\
0 & 0 & \cos y & -\sin y \\
0 & 0 & \sin y & \cos y
\end{array}\right)
$$

Representation of Lie groups

Definition: A representation of a group G in \mathbb{R}^{n} is a smooth group morphism $G \rightarrow \mathrm{GL}_{n}(\mathbb{R})$ (the $n \times n$ invertible matrices).
In other words, it is an immersion of G in a matrix space, that preserves the algebraic structure.
Example: Of course, matrix Lie groups come with a canonical representation, since they are already included in a matrix space.

$$
\begin{aligned}
\mathrm{O}(n) & \hookrightarrow \mathrm{GL}_{n}(\mathbb{R}) \\
\mathrm{SO}(n) & \hookrightarrow \mathrm{GL}_{n}(\mathbb{R})
\end{aligned}
$$

$$
\begin{aligned}
& \mathrm{Sp}(2 n, \mathbb{C}) \hookrightarrow \mathrm{GL}_{n}(\mathbb{C}) \\
& \mathrm{U}(n) \hookrightarrow \mathrm{GL}_{2 n}(\mathbb{R}) \\
& \mathrm{SU}(n) \hookrightarrow \mathrm{GL}_{n}(\mathbb{C}) \\
&\mathrm{C}) \hookrightarrow \mathrm{GL}_{2 n}(\mathbb{R}) \\
& \mathrm{GL}_{2 n}(\mathbb{R})
\end{aligned}
$$

However, more sophisticated representations exist.

$$
\theta \mapsto\left(\begin{array}{cc}
\cos \theta & -\sin \theta \\
\sin \theta & \cos \theta
\end{array}\right)
$$

$$
\left(\begin{array}{cc}
\cos 3 \theta & -\sin 3 \theta \\
\sin 3 \theta & \cos 3 \theta
\end{array}\right)
$$

Representation of Lie groups

Definition: A representation of a group G in \mathbb{R}^{n} is a smooth group morphism $G \rightarrow \mathrm{GL}_{n}(\mathbb{R})$ (the $n \times n$ invertible matrices).
In other words, it is an immersion of G in a matrix space, that preserves the algebraic structure.
Example: Of course, matrix Lie groups come with a canonical representation, since they are already included in a matrix space.

$$
\begin{aligned}
\mathrm{O}(n) & \hookrightarrow \mathrm{GL}_{n}(\mathbb{R}) \\
\mathrm{SO}(n) & \hookrightarrow \mathrm{GL}_{n}(\mathbb{R})
\end{aligned}
$$

$$
\begin{aligned}
& \mathrm{Sp}(2 n, \mathbb{C}) \hookrightarrow \mathrm{GL}_{n}(\mathbb{C}) \\
& \mathrm{U}(n) \hookrightarrow \mathrm{GL}_{2 n}(\mathbb{R}) \\
& \mathrm{SU}(n) \hookrightarrow \mathrm{GL}_{n}(\mathbb{C}) \\
& \mathrm{SU} \hookrightarrow \mathrm{GL}_{2 n}(\mathbb{R}) \\
&(\mathbb{R})
\end{aligned}
$$

However, more sophisticated representations exist.

$$
\begin{aligned}
& \theta \mapsto\left(\begin{array}{cccc}
\cos \theta & -\sin \theta & 0 & 0 \\
\sin \theta & \cos \theta & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right) \\
& \\
&\left(\begin{array}{cccc}
\cos 2 \theta & -\sin 2 \theta & 0 & 0 \\
\sin 2 \theta & \cos 2 \theta & 0 & 0 \\
0 & 0 & \cos 5 \theta & -\sin 5 \theta \\
0 & 0 & \sin 5 \theta & \cos 5 \theta
\end{array}\right)
\end{aligned}
$$

Representation of Lie groups

Definition: A representation of a group G in \mathbb{R}^{n} is a smooth group morphism $G \rightarrow \mathrm{GL}_{n}(\mathbb{R})$ (the $n \times n$ invertible matrices).
In other words, it is an immersion of G in a matrix space, that preserves the algebraic structure.
Example: Of course, matrix Lie groups come with a canonical representation, since they are already included in a matrix space.

$$
\begin{aligned}
\mathrm{O}(n) & \hookrightarrow \mathrm{GL}_{n}(\mathbb{R}) \\
\mathrm{SO}(n) & \hookrightarrow \mathrm{GL}_{n}(\mathbb{R})
\end{aligned}
$$

$$
\begin{aligned}
\mathrm{Sp}(2 n, \mathbb{C}) & \hookrightarrow \mathrm{GL}_{n}(\mathbb{C}) \\
\mathrm{U}(n) & \hookrightarrow \mathrm{GL}_{2 n}(\mathbb{R}) \\
\mathrm{SU}(n) & \hookrightarrow \mathrm{GL}_{n}(\mathbb{C})
\end{aligned} \hookrightarrow \mathrm{GL}_{2 n}(\mathbb{R}) \underset{\mathrm{GL}_{2 n}(\mathbb{R})}{ }
$$

However, more sophisticated representations exist.
Definition: Two representations $\phi_{1}, \phi_{2}: G \rightarrow \mathrm{GL}_{n}(\mathbb{R})$ are equivalent if there exists $A \in \mathrm{GL}_{n}(\mathbb{R})$ such that $\phi_{2}=A \phi_{1} A^{-1}$.

They are "equal up to a change of coordinates'.
Proposition: Representations of $\mathrm{SO}(2)$ in $\mathbb{R}^{2 n}$ are classified by $\mathbb{Z}^{n} / \mathfrak{S}_{n}$ (tuples up to permutation). More precisely, to $\left(\omega_{1}, \ldots, \omega_{n}\right) \in \mathbb{Z}^{n}$ is associated a representation $\phi_{\left(\omega_{1}, \ldots, \omega_{n}\right)}: \mathrm{SO}(2) \rightarrow \mathrm{GL}_{2 n}(\mathbb{R})$.
$\phi_{\left(\omega_{1}, \ldots, \omega_{n}\right)}(\theta)=\left(\begin{array}{cccc}R\left(\omega_{1} \theta\right) & & & \\ & R\left(\omega_{2} \theta\right) & & \\ & & \ddots & \\ & & & R\left(\omega_{n} \theta\right)\end{array}\right) \quad$ where $\quad R(\theta)=\left(\begin{array}{cc}\cos \theta & -\sin \theta \\ \sin \theta & \cos \theta\end{array}\right)$

Representation of Lie groups

Definition: A representation of a group G in \mathbb{R}^{n} is a smooth group morphism $G \rightarrow \mathrm{GL}_{n}(\mathbb{R})$ (the $n \times n$ invertible matrices).
In other words, it is an immersion of G in a matrix space, that preserves the algebraic structure.
Example: Of course, matrix Lie groups come with a canonical representation, since they are already included in a matrix space.

$$
\begin{aligned}
\mathrm{O}(n) & \hookrightarrow \mathrm{GL}_{n}(\mathbb{R}) \\
\mathrm{SO}(n) & \hookrightarrow \mathrm{GL}_{n}(\mathbb{R})
\end{aligned}
$$

$$
\begin{aligned}
& \mathrm{Sp}(2 n, \mathbb{C}) \hookrightarrow \mathrm{GL}_{n}(\mathbb{C}) \\
& \mathrm{U}(n) \hookrightarrow \mathrm{GL}_{2 n}(\mathbb{R}) \\
& \mathrm{SU}(n) \hookrightarrow \mathrm{GL}_{n}(\mathbb{C}) \\
& \hline \mathrm{GL}_{2 n}(\mathbb{R}) \\
& \mathrm{GL}_{2 n}(\mathbb{R})
\end{aligned}
$$

However, more sophisticated representations exist.
Definition: Two representations $\phi_{1}, \phi_{2}: G \rightarrow \mathrm{GL}_{n}(\mathbb{R})$ are equivalent if there exists $A \in \mathrm{GL}_{n}(\mathbb{R})$ such that $\phi_{2}=A \phi_{1} A^{-1}$.

They are "equal up to a change of coordinates'.
Proposition: Representations of $\mathrm{SO}(2)$ in $\mathbb{R}^{2 n}$ are classified by $\mathbb{Z}^{n} / \mathfrak{S}_{n}$ (tuples up to permutation). More precisely, to $\left(\omega_{1}, \ldots, \omega_{n}\right) \in \mathbb{Z}^{n}$ is associated a representation $\phi_{\left(\omega_{1}, \ldots, \omega_{n}\right)}: \mathrm{SO}(2) \rightarrow \mathrm{GL}_{2 n}(\mathbb{R})$.

Proposition: Representations of T^{2} in $\mathbb{R}^{2 n}$ are classified by $\left(\mathbb{Z}^{n}\right)^{2} / \mathfrak{S}_{n}(2 \times n$ matrix up to permutation of the columns).

More generally, the equivalence classes representations are studied through combinations of irreducible representations.

Orbits

Definition: Let $G \rightarrow \mathrm{GL}_{n}(\mathbb{R})$ be a representation of G in \mathbb{R}^{n}, and $x_{0} \in \mathbb{R}^{n}$ a point. The orbit of x_{0} under the action of G is $\mathcal{O}=\left\{\phi(g) x_{0} \mid g \in G\right\}$.

Example: Orbits of $\mathrm{SO}(2)$ are "circles". For instance, the orbit of $(1,0)$ under the representation

$$
\text { - } \begin{aligned}
\mathrm{SO}(2) & \longrightarrow \mathrm{GL}_{2}(\mathbb{R}) \\
\theta & \longmapsto\left(\begin{array}{cc}
\cos \theta & -\sin \theta \\
\sin \theta & \cos \theta
\end{array}\right)
\end{aligned}
$$

The orbit of $(1,0,1,0)$ under the representation

- $\mathrm{SO}(2) \longrightarrow \mathrm{GL}_{4}(\mathbb{R})$

$$
\theta \longmapsto\left(\begin{array}{cccc}
\cos \theta & -\sin \theta & 0 & 0 \\
\sin \theta & \cos \theta & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right)
$$

- $\mathrm{SO}(2) \longrightarrow \mathrm{GL}_{4}(\mathbb{R})$

$$
\theta \longmapsto\left(\begin{array}{ccc}
\cos 2 \theta & -\sin 2 \theta & 0 \\
\sin 2 \theta & \cos 2 \theta & 0 \\
0 & 0 & 0 \\
0 & 0 & \cos 5 \theta \\
0 & \sin 5 \theta & -\sin 5 \theta \\
0 & \sin 5 \theta
\end{array}\right)
$$

is $\mathcal{O}=\left\{\left.\left(\begin{array}{c}\cos \theta \\ \sin \theta \\ 1 \\ 0\end{array}\right) \right\rvert\, \theta \in \mathbb{R}\right\}$
is $\mathcal{O}=\left\{\left.\left(\begin{array}{c}\cos 2 \theta \\ \sin 2 \theta \\ \cos 5 \theta \\ \sin 5 \theta\end{array}\right) \right\rvert\, \theta \in \mathbb{R}\right\}$

Orbits

Definition: Let $G \rightarrow \mathrm{GL}_{n}(\mathbb{R})$ be a representation of G in \mathbb{R}^{n}, and $x_{0} \in \mathbb{R}^{n}$ a point. The orbit of x_{0} under the action of G is $\mathcal{O}=\left\{\phi(g) x_{0} \mid g \in G\right\}$.

Example: Orbits of $\mathrm{SO}(2)$ are "circles".
Example: Orbits of T^{2} are "tori". For instance, the orbit of $(1,0,1,0,1,0)$ under the representation

- $T^{2} \longrightarrow \mathrm{GL}_{6}(\mathbb{R})$

$$
\begin{aligned}
\theta & \longmapsto\left(\begin{array}{cccccc}
\cos \theta & -\sin \theta & 0 & 0 & 0 & 0 \\
\sin \theta & \cos \theta & 0 & 0 & 0 & 0 \\
0 & 0 & \cos \theta & -\sin \theta & 0 & 0 \\
0 & 0 & \sin \theta & \cos \theta & 0 & 0 \\
0 & 0 & 0 & 0 & \cos 3 \theta-\sin 3 \theta \\
0 & 0 & 0 & 0 & \sin 3 \theta & \cos 3 \theta
\end{array}\right) \text { is } \mathcal{O}=\left\{\left.\left(\begin{array}{c}
\cos \theta+\cos \mu \\
\sin \theta+\sin \mu \\
\cos \theta+\cos 2 \mu \\
\sin \theta+\sin 2 \mu \\
\cos 3 \theta+\cos \mu \\
\sin 3 \theta+\sin \mu
\end{array}\right) \right\rvert\,(\theta, \mu) \in \mathbb{R}^{2}\right\}
\end{aligned}
$$

Orbits

Definition: Let $G \rightarrow \mathrm{GL}_{n}(\mathbb{R})$ be a representation of G in \mathbb{R}^{n}, and $x_{0} \in \mathbb{R}^{n}$ a point. The orbit of x_{0} under the action of G is $\mathcal{O}=\left\{\phi(g) x_{0} \mid g \in G\right\}$.

Example: Orbits of $\mathrm{SO}(2)$ are "circles".
Example: Orbits of T^{2} are "tori".
Example: Orbits of $\mathrm{SO}(3)$ and $\mathrm{SU}(2)$ are "spheres".

$\psi_{(3,4)}$ in \mathbb{R}^{7}
$\psi_{(8)}$ in \mathbb{R}^{8}

Let G be a Lie group, $0 \in G$ the identity element and $\mathfrak{g}=\mathrm{T}_{0} G$ the tangent space.
There exists an exponential map, denoted exp: $\mathfrak{g} \rightarrow G$. It is smooth. When G is connected and compact, it is surjective.

Remark: Any compact Lie group admits a (bi-invariant) Riemannian metric for which the Lieexponential and Riemann-exponential coincide.

Example: In the case of matrix groups, the exponential map is simply the matrix exponential.

- $\mathrm{SO}(2)=\left\{\left.\left(\begin{array}{cc}\cos t & -\sin t \\ \sin t & \cos t\end{array}\right) \right\rvert\, t \in \mathbb{R}\right\} \quad \longleftarrow \exp \quad \mathfrak{s o}(2)=\left\{\left.\left(\begin{array}{cc}0 & -t \\ t & 0\end{array}\right) \right\rvert\, t \in \mathbb{R}\right\}$ One has $\exp \left(\begin{array}{cc}0 & -t \\ t & 0\end{array}\right)=\left(\begin{array}{cc}\cos t & -\sin t \\ \sin t & \cos t\end{array}\right)$

- $\mathrm{SO}(3)=\left\{A \in \mathrm{GL}_{3}(\mathbb{R}) \mid A^{\top}=A^{-1}, \operatorname{det} A=1\right\} \longleftarrow \exp \mathfrak{s o}(3)=\left\langle X_{1}, X_{2}, X_{3}\right\rangle$ where

$$
X_{1}=\left(\begin{array}{ccc}
0 & 0 & 0 \\
0 & 0 & -1 \\
0 & 1 & 0
\end{array}\right) \quad X_{2}=\left(\begin{array}{ccc}
0 & 0 & 1 \\
0 & 0 & 0 \\
-1 & 0 & 0
\end{array}\right) \quad X_{3}=\left(\begin{array}{ccc}
0 & -1 & 0 \\
1 & 0 & 0 \\
0 & 0 & 0
\end{array}\right)
$$

Caution: In general, $\exp \left(t_{1} X_{1}+t_{2} X_{2}+t_{3} X_{2}\right) \neq \exp \left(t_{1} X_{1}\right) \exp \left(t_{2} X_{2}\right) \exp \left(t_{3} X_{3}\right)$.

Actually, the Lie algebra \mathfrak{g} of a Lie group G admits an algebraic structure, called Lie bracket. It is a bilinear map $\mathfrak{g} \times \mathfrak{g} \rightarrow \mathfrak{g}$ that satisfies the Jacobi identity.

It is denoted $[A, B]$, where $A, B \in \mathfrak{g}$.

Example: In the case of matrix groups, the Lie bracket is simply the commutator

$$
[A, B]=A B-B A .
$$

For instance, in $\mathrm{SO}(3)$, one has $\left[X_{1}, X_{2}\right]=X_{3},\left[X_{2}, X_{3}\right]=X_{1}$ and $\left[X_{1}, X_{3}\right]=-X_{2}$, where

$$
X_{1}=\left(\begin{array}{ccc}
0 & 0 & 0 \\
0 & 0 & -1 \\
0 & 1 & 0
\end{array}\right) \quad X_{2}=\left(\begin{array}{ccc}
0 & 0 & 1 \\
0 & 0 & 0 \\
-1 & 0 & 0
\end{array}\right) \quad X_{3}=\left(\begin{array}{ccc}
0 & -1 & 0 \\
1 & 0 & 0 \\
0 & 0 & 0
\end{array}\right)
$$

Remark: The Lie algebra contains a lot of information regarding the Lie group. For instance, for simply connected Lie groups G_{1} and G_{2}, one has $\mathfrak{g}_{1} \simeq \mathfrak{g}_{2} \Longrightarrow G_{1} \simeq G_{2}$.

Lie algebras III/III: the correspondence group~algebra 11/22

Lie algebras allow to study representations from an infinitesimal viewpoint.
Proposition: Given a representation $\phi: G \rightarrow \mathrm{GL}_{n}(\mathbb{R})$, there exists a morphism $\mathrm{d} \phi: \mathfrak{g} \rightarrow \mathfrak{g l}_{n}(\mathbb{R})$ of Lie algebras, called derived representation, such that the following diagram commutes

Remark: In practice, we prefer to work with orthogonal representations, i.e., such that $\phi(G) \subset$ $\mathrm{SO}(n)$. In this case, the diagram reads

The image $\mathrm{d} \phi(\mathfrak{g}) \subset \mathfrak{s o}(n)$ is called the push-forward Lie algebra. It will play a key role in our problem.

1. Lie group - Lie algebra correspondence
2. Closest Lie algebra problem
3. Examples

Formulation of our problem - infinitesimal viewpoint13/22 (1/2)
Input: A point cloud $X=\left\{x_{1} \ldots, x_{N}\right\} \subset \mathbb{R}^{n}$.
Output: An orthogonal representation ϕ of a compact Lie group G in \mathbb{R}^{n}, and an orbit \mathcal{O} close to X.

Orbit of $\mathrm{SO}(2)$ in \mathbb{R}^{6}

Input:

Orbit of $\mathrm{SU}(2)$ in \mathbb{R}^{7}
Orbit of T^{2} in \mathbb{R}^{6}

Formulation of our problem - infinitesimal viewpoint13/22 (2/2)

Input: A point cloud $X=\left\{x_{1} \ldots, x_{N}\right\} \subset \mathbb{R}^{n}$.
Output: An orthogonal representation ϕ of a compact Lie group G in \mathbb{R}^{n}, and an orbit \mathcal{O} close to X.

Idea: Obtain the best orbit \mathcal{O} via mean squared error.
Problem: It is unclear how to compute the projection of X on \mathcal{O}.

Other idea: Instead of estimating the representation ϕ, aim for the push-forward algebra $\mathrm{d} \phi(\mathfrak{g})$.
Then \mathcal{O} is obtained by exponentiating $\mathrm{d} \phi(\mathfrak{g})$.

Definition of orbit: $\mathcal{O}=\left\{\phi(g) x_{0} \mid g \in G\right\}$
From the Lie algebra: $\mathcal{O}=\left\{\exp (h) x_{0} \mid h \in \mathrm{~d} \phi(\mathfrak{g})\right\}$
[Cahill, Mixon \& Parshall, Lie PCA: Density estimation for symmetric manifolds, 2023]
Lie-PCA is a recently developed algorithm allowing to estimate $\mathrm{d} \phi(\mathfrak{g})$ from X.
The output, denoted $\widehat{\mathfrak{g}}$, is a d-dimensional linear subspace of $\mathfrak{s o}(n)$.
It is spanned by the matrices $\widehat{\mathfrak{g}}_{1}, \ldots, \widehat{\mathfrak{g}}_{d}$.
Proposition: Under assumptions, $\widehat{\mathfrak{g}}$ is close to the "groundtruth" Lie algebra.

Definition of Lie-PCA

Lie-PCA operator: $\Lambda: \mathrm{M}_{n}(\mathbb{R}) \rightarrow \mathrm{M}_{n}(\mathbb{R})$ is defined as

$$
\Lambda(A)=\frac{1}{N} \sum_{1 \leq i \leq N} \widehat{\Pi}\left[\mathrm{~N}_{x_{i}} X\right] \cdot A \cdot \Pi\left[\left\langle x_{i}\right\rangle\right]
$$

where

- the $\widehat{\Pi}\left[\mathrm{N}_{x_{i}} X\right]$ are estimation of projection matrices on the normal spaces $\mathrm{N}_{x_{i}} \mathcal{O}$,
- the $\Pi\left[\left\langle x_{i}\right\rangle\right]$ are the projection matrices on the lines $\left\langle x_{i}\right\rangle$.

We define $\widehat{\mathfrak{g}}$ as the subspace spanned by the bottom eigenvectors $\widehat{\mathfrak{g}}_{1}, \ldots, \widehat{\mathfrak{g}}_{d}$ of Λ.

Definition of Lie-PCA

Lie-PCA operator: $\Lambda: \mathrm{M}_{n}(\mathbb{R}) \rightarrow \mathrm{M}_{n}(\mathbb{R})$ is defined as

$$
\Lambda(A)=\frac{1}{N} \sum_{1 \leq i \leq N} \widehat{\Pi}\left[\mathrm{~N}_{x_{i}} X\right] \cdot A \cdot \Pi\left[\left\langle x_{i}\right\rangle\right]
$$

where

- the $\widehat{\Pi}\left[\mathrm{N}_{x_{i}} X\right]$ are estimation of projection matrices on the normal spaces $\mathrm{N}_{x_{i}} \mathcal{O}$,
- the $\Pi\left[\left\langle x_{i}\right\rangle\right]$ are the projection matrices on the lines $\left\langle x_{i}\right\rangle$.

We define $\widehat{\mathfrak{g}}$ as the subspace spanned by the bottom eigenvectors $\widehat{\mathfrak{g}}_{1}, \ldots, \widehat{\mathfrak{g}}_{d}$ of Λ.
Derivation of Lie-PCA: Based on the fact that $\mathfrak{s y m}(\mathcal{O})=\left\{A \in \mathrm{M}_{n}(\mathbb{R}) \mid \forall x \in \mathcal{O}, A x \in \mathrm{~T}_{x} \mathcal{O}\right\}$, where $\mathrm{T}_{x} \mathcal{O}$ denotes the tangent space of \mathcal{O} at x. In other words,

$$
\mathfrak{s y m}(\mathcal{O})=\bigcap_{x \in \mathcal{O}} S_{x} \mathcal{O} \quad \text { where } \quad S_{x} \mathcal{O}=\left\{A \in \mathrm{M}_{n}(\mathbb{R}) \mid A x \in \mathrm{~T}_{x} \mathcal{O}\right\}
$$

Using only the point cloud $X=\left\{x_{1}, \ldots, x_{N}\right\}$, we consider

$$
\bigcap_{i=1}^{N} S_{x_{i}} \mathcal{O}=\operatorname{ker}\left(\sum_{i=1}^{N} \Pi\left[\left(S_{x_{i}} \mathcal{O}\right)^{\perp}\right]\right)
$$

Besides, the authors show that $\Pi\left[\left(S_{x_{i}} \mathcal{O}\right)^{\perp}\right](A)=\Pi\left[\mathrm{N}_{x_{i}} \mathcal{O}\right] \cdot A \cdot \Pi\left[\left\langle x_{i}\right\rangle\right]$. One naturally puts

$$
\Lambda(A)=\frac{1}{N} \sum_{i=1}^{N} \widehat{\Pi}\left[\mathrm{~N}_{x_{i}} X\right] \cdot A \cdot \Pi\left[\left\langle x_{i}\right\rangle\right]
$$

where $\widehat{\Pi}\left[\mathrm{N}_{x_{i}} X\right]$ is an estimation of $\Pi\left[\mathrm{N}_{x_{i}} \mathcal{O}\right]$ computed from the observation X.

Other idea: Instead of estimating the representation ϕ, aim for the push-forward algebra $\mathrm{d} \phi(\mathfrak{g})$. Then \mathcal{O} is obtained by exponentiating $\mathrm{d} \phi(\mathfrak{g})$.

Definition of orbit: $\quad \mathcal{O}=\left\{\phi(g) x_{0} \mid g \in G\right\}$
From the Lie algebra: $\mathcal{O}=\left\{\exp (h) x_{0} \mid h \in \mathrm{~d} \phi(\mathfrak{g})\right\}$

Via Lie-PCA, we get $\widehat{\mathfrak{g}}$, a d-dimensional linear subspace of $\mathfrak{s o}(n)$. It is an estimation of $\mathrm{d} \phi(\mathfrak{g})$.

Problem: The subspace $\widehat{\mathfrak{g}}$ is estimated as if it were a linear subspace. It may not be a Lie algebra (for $A, B \in \widehat{\mathfrak{g}}$, we must have $A B-B A \in \widehat{\mathfrak{g}}$).

exponentiating a non-Lie algebra may yield large errors

Closest Lie algebra I/II: Space of algebras

We wish to project $\widehat{\mathfrak{g}}$ on the closest Lie algebra. We work in $\mathfrak{s o}(n)$, the set of skew-symmetric $n \times n$ matrices. It has dimension $n(n+1) / 2$. It is endowed with the Frobenius inner product and norm

$$
\langle A, B\rangle=\sum_{i=1}^{n} \sum_{j=1}^{n} a_{i, j} b_{i, j} \quad \text { and } \quad\|A\|=\sqrt{\sum_{i=1}^{n} \sum_{j=1} a_{i, j}} .
$$

Stiefel variety of Lie algebras
Treat the d-dimensional subspaces of $\mathfrak{s o}(n)$ as $n(n-1) / 2 \times d$ matrices
$\mathcal{V}^{\mathrm{Lie}}(d, \mathfrak{s o}(n))$ is defined as the set of d-frames $\left(A_{1}, \ldots, A_{d}\right)$ of $\mathfrak{s o}(n)$ (i.e., normalized and pairwise orthogonal) with the Lie algebra condition: $\forall i, j \in[1, \ldots, n], A_{i} A_{j}-A_{j} A_{i} \in\left\langle A_{1}, \ldots, A_{d}\right\rangle$.

The problem is

$$
\min \left\{\sum_{i=1}^{d}\left\|\widehat{\mathfrak{g}}_{i}-A_{i}\right\|^{2} \mid\left(A_{1}, \ldots, A_{d}\right) \in \mathcal{V}^{\mathrm{Lie}}(d, \mathfrak{s o}(n))\right\}
$$

Grassmannian variety of Lie algebras

Treat the d-dimensional subspaces of $\mathfrak{s o}(n)$ as $n(n-1) / 2 \times n(n-1) / 2$ matrices
$\mathcal{G}^{\text {Lie }}(d, \mathfrak{s o}(n))$ is defined as the set of orthogonal projection matrices of rank d on $\mathfrak{s o}(n)$ with the Lie algebra condition: $\forall i, j \in[1, \ldots, n], \quad P\left(P e_{i} \cdot P e_{j}-P e_{j} \cdot P e_{i}\right)=P e_{i} \cdot P e_{j}-P e_{j} \cdot P e_{i}$ where $\left(e_{1}, \ldots, e_{n(n+1) / 2}\right)$ is an orthonormal basis of $\mathfrak{s o}(n)$.

The problem is

$$
\min \left\{\|\operatorname{proj}[\widehat{\mathfrak{g}}]-P\| \mid P \in \mathcal{G}^{\mathrm{Lie}}(d, \mathfrak{s o}(n))\right\}
$$

Closest Lie algebra I/II: Space of algebras

Written explicitely in matrix form, this reads:

Stiefel variety of Lie algebras

$\min \sum_{i=1}^{d}\left\|\widehat{\mathfrak{g}}_{i}-A_{i}\right\|^{2}$ such that $\begin{cases}\forall i \in[1 \ldots, d], & A_{i} \text { is a }(n \times n) \text {-matrix, } \\ \forall i \in[1 \ldots, d], & A^{\top}=-A, \\ \forall i, j \in[1 \ldots, d], & \sum_{k=1}^{d}\left\langle A_{k}, A_{i} A_{j}-A_{j} A_{i}\right\rangle^{2}=\left\|A_{i} A_{j}-A_{j} A_{i}\right\|^{2} .\end{cases}$

Grassmannian variety of Lie algebras
$\min \|\operatorname{proj}[\mathfrak{g}]-P\|$ such that $\left\{\begin{array}{l}P \text { is a }(n(n+1) / 2 \times n(n+1) / 2) \text {-matrix, } \\ P^{2}=P, \\ P^{\top}=P, \\ \operatorname{rank}(P)=d, \\ \forall i, j \in[1 \ldots, d], P\left(P e_{i} \cdot P e_{j}-P e_{j} \cdot P e_{i}\right)=P e_{i} \cdot P e_{j}-P e_{j} \cdot P e_{i} .\end{array}\right.$

Problem: (1) These programs seem intractable (they contain the classification of Lie algebras)
(2) Actually, a Lie algebra in $\mathfrak{s o}(n)$ may not even come from a compact Lie group.

Idea: Fix a compact Lie group G, and restrict the Stiefel $\mathcal{V}^{\text {Lie }}(d, \mathfrak{s o}(n))$ and the Grassmannian

Closest Lie algebra II/II: Pushforward algebras

From now on, G is a fixed compact Lie group of dimension d.

Stiefel variety of pushforward Lie algebras of G

$\mathcal{V}(G, \mathfrak{s o}(n))$ is defined as the set of $\left(A_{1}, \ldots, A_{d}\right) \in \mathcal{V}^{\text {Lie }}(d, \mathfrak{s o}(n))$ for which there exists an orthogonal representation $\phi: G \rightarrow \mathrm{SO}(n)$ such that $\mathrm{d} \phi(\mathfrak{g})$ is spanned by $\left(A_{1}, \ldots, A_{d}\right)$.

Lemma: Seen as a subset of the $n(n+1) / 2 \times d$ matrices, the connected components of $\mathcal{V}(G, \mathfrak{s o}(n))$ are in correspondence with the orbit-equivalence classes of orthogonal representations of G in \mathbb{R}^{n}.

Definition: We say that two representations $\phi, \phi^{\prime}: G \rightarrow \mathrm{GL}_{n}(\mathbb{R})$ are orbit-equivalent if there exists a matrix $M \in \mathrm{M}_{n}(\mathbb{R})$ such that $\mathrm{d} \phi(\mathfrak{g})=M \mathrm{~d} \phi^{\prime}(\mathfrak{g}) M^{-1}$. In particular, their orbits are conjugated. We shall denote by $\mathfrak{o r b}(G, n)$ a set of representatives of the orbit-equivalence classes.

Grassmannian variety of pushforward Lie algebras of G
$\mathcal{G}(G, \mathfrak{s o}(n))$ is defined as the set consisting of those elements $P \in \mathcal{G}^{\text {Lie }}(d, \mathfrak{s o}(n))$ for which there exists an orthogonal representation $\phi: G \rightarrow \mathrm{SO}(n)$ such that P is the projection matrix on $\mathrm{d} \phi(\mathfrak{g})$.

Lemma: Seen as a subset of the $n(n+1) / 2 \times n(n+1) / 2$ matrices, the connected components of $\mathcal{G}(G, \mathfrak{s o}(n))$ are also in correspondence with the orbit-equivalence of G in \mathbb{R}^{n}.

Closest Lie algebra II/II: Pushforward algebras

From now on, G is a fixed compact Lie group of dimension d.

Stiefel variety of pushforward Lie algebras of G

$\mathcal{V}(G, \mathfrak{s o}(n))$ is defined as the set of $\left(A_{1}, \ldots, A_{d}\right) \in \mathcal{V}^{\text {Lie }}(d, \mathfrak{s o}(n))$ for which there exists an orthogonal representation $\phi: G \rightarrow \mathrm{SO}(n)$ such that $\mathrm{d} \phi(\mathfrak{g})$ is spanned by $\left(A_{1}, \ldots, A_{d}\right)$.

Lemma: Seen as a subset of the $n(n+1) / 2 \times d$ matrices, the connected components of $\mathcal{V}(G, \mathfrak{s o}(n))$ are in correspondence with the orbit-equivalence classes of orthogonal representations of G in \mathbb{R}^{n}.

Definition: We say that two representations $\phi, \phi^{\prime}: G \rightarrow \mathrm{GL}_{n}(\mathbb{R})$ are orbit-equivalent if there exists a matrix $M \in \mathrm{M}_{n}(\mathbb{R})$ such that $\mathrm{d} \phi(\mathfrak{g})=M \mathrm{~d} \phi^{\prime}(\mathfrak{g}) M^{-1}$. In particular, their orbits are conjugated. We shall denote by $\mathfrak{o r b}(G, n)$ a set of representatives of the orbit-equivalence classes.

Lemma: For any $\left(A_{1}, \ldots, A_{d}\right) \in \mathcal{V}(G, \mathfrak{s o}(n))$, there exists an integer $p \geq 1$, a p-tuple $\left(B^{1}, \ldots, B^{p}\right) \in \mathfrak{o r b}(G, n)$ and two matrices $O \in \mathrm{O}(n)$ and $P \in \mathrm{O}(d)$ such that, for all $i \in[1 \ldots d]$,

$$
A_{i}=\sum_{j=1}^{d} P_{j, i} O \operatorname{diag}\left(B_{j}^{k}\right)_{k=1}^{p} O^{\top} .
$$

In particular, the subspace $\left\langle A_{1}, \ldots, A_{d}\right\rangle \subset \mathfrak{s o}(n)$ is spanned by the matrices

$$
O \operatorname{diag}\left(B_{1}^{k}\right)_{k=1}^{p} O^{\top}, \quad O \operatorname{diag}\left(B_{2}^{k}\right)_{k=1}^{p} O^{\top}, \quad \ldots, \quad O \operatorname{diag}\left(B_{p}^{k}\right)_{k=1}^{p} O^{\top} .
$$

Closest Lie algebra II/II: Pushforward algebras 16/22 (3/3)

Corollary: The problem $\min \{\|\operatorname{proj}[\mathfrak{\mathfrak { g }}]-P\| \mid P \in \mathcal{G}(G, \mathfrak{s o}(n))\}$ is equivalent to

$$
\min \left\|\operatorname{proj}[\mathfrak{g}]-\operatorname{proj}\left[\left\langle O \operatorname{diag}\left(B_{i}^{k}\right)_{k=1}^{p} O^{\top}\right\rangle_{i=1}^{d}\right]\right\| \text { s.t. }\left\{\begin{array}{l}
\left(B^{1}, \ldots, B^{p}\right) \in \mathfrak{o r b}(G, n), \\
O \in \mathrm{O}(n)
\end{array}\right.
$$

Remark: This is a discrete-continuous problem. It splits into N minimization problems over $\mathrm{O}(n)$, where N is the cardinal of $\mathfrak{o r b}(G, n)$.

In practice, we perform a gradient descent with line search over $\mathrm{O}(n)$, with $Q R$-retraction.

Remark: To apply this result in practice, one must have access to an explicit description of $\mathfrak{o r b}(G, n)$. We worked out the cases of $\mathrm{SO}(2), T^{d}, \mathrm{SO}(3)$ and $\mathrm{SU}(2)$.

Robustness

Theorem: Let G be a compact Lie group of dimension d, \mathcal{O} an orbit of an almost-faithful representation $\phi: G \rightarrow \mathbb{R}^{n}$, potentially non-orthogonal, and l its dimension. Let $\mu_{\mathcal{O}}$ be the uniform measure on \mathcal{O}, and $\mu_{\widetilde{\mathcal{O}}}$ that on the orthonormalized orbit.

Besides, let $X \subset \mathbb{R}^{n}$ be a finite point cloud and μ_{X} its empirical measure. Let $\widehat{\phi}, \widehat{\mathfrak{h}}$ and $\mu_{\widehat{\mathcal{O}}}$ be the output of the algorithm. Under technical assumptions, it holds that $\widehat{\phi}$ is equivalent to ϕ, and

$$
\begin{aligned}
\|\operatorname{proj}[\widehat{h}]-\operatorname{proj}[\mathfrak{s y m}(\mathcal{O})]\|_{\mathrm{F}} & \leq 9 d \frac{\rho}{\lambda}\left(r+4\left(\frac{\widetilde{\omega}}{r^{l+1}}\right)^{1 / 2}\right) \\
\mathrm{W}_{2}\left(\mu_{\widehat{\mathcal{O}}}, \mu_{\widetilde{\mathcal{O}}}\right) & \leq \frac{1}{\sqrt{2}} \frac{\mathrm{~W}_{2}\left(\mu_{X}, \mu_{\mathcal{O}}\right)}{\sigma_{\min }}+3 \sqrt{d n}\left(\frac{\rho}{\lambda}\right)^{1 / 2}\left(r+4\left(\frac{\widetilde{\omega}}{r^{l+1}}\right)^{1 / 2}\right)^{1 / 2}
\end{aligned}
$$

where

- $\rho=\left(16 l(l+2) 6^{l}\right) \frac{\max \left(\operatorname{vol}(\widetilde{\mathcal{O}}), \operatorname{vol}(\widetilde{\mathcal{O}})^{-1}\right)}{\min (1, \operatorname{reach}(\widetilde{\mathcal{O}}))}$
- $\sigma_{\text {max }}^{2}, \sigma_{\text {min }}^{2}$ the top and bottom nonzero eigenvalues of the covariance matrix $\Sigma\left[\mu_{\mathcal{O}}\right]$
- $\widetilde{\omega}=4(n+1)^{3 / 2}\left(\frac{\sigma_{\text {max }}^{3}}{\sigma_{\text {min }}^{3}}\right)(\omega(v+\omega))^{1 / 2}$ with $\omega=\frac{\mathrm{W}_{2}\left(\mu_{\mathcal{O}}, \mu_{X}\right)}{\sigma_{\min }}$ and $v=\left(\frac{\mathbb{V}\left[\left\|\mu_{\mathcal{O}}\right\|\right]}{\sigma_{\min }^{2}}\right)^{1 / 2}$
- r is the radius of local PCA (estimation of tangent spaces)
- λ the bottom nonzero eigenvalue of the ideal Lie-PCA operator $\Lambda_{\mathcal{O}}$

Robustness

Technical assumptions: Define the quantities

$$
\begin{array}{lr}
\omega=\frac{\mathrm{W}_{2}\left(\mu_{\mathcal{O}}, \mu_{X}\right)}{\sigma_{\min }}, & v=\left(\frac{\mathbb{V}\left[\left\|\mu_{\mathcal{O}}\right\|\right]}{\sigma_{\min }^{2}}\right)^{1 / 2}, \\
\widetilde{\omega}=4(n+1)^{3 / 2}\left(\frac{\sigma_{\max }^{3}}{\sigma_{\min }^{3}}\right)(\omega(v+\omega))^{1 / 2}, & \rho=\left(16 l(l+2) 6^{l}\right) \frac{\max \left(\operatorname{vol}(\widetilde{\mathcal{O}}), \operatorname{vol}(\widetilde{\mathcal{O}})^{-1}\right)}{\min (1, \operatorname{reach}(\widetilde{\mathcal{O}}))}, \\
\gamma=(4(2 d+1) \sqrt{2})^{-1} \cdot \lambda \cdot \Gamma\left(G, n, \omega_{\max }\right) & \text { (rigidity constant of Lie subalgebras) }
\end{array}
$$

Suppose that ω is small enough, so as to satisfy

$$
\omega<\left(\left(v^{2}+\frac{1}{2}\right)^{1 / 2}-v\right) /\left(3(n+1) \frac{\sigma_{\max }^{2}}{\sigma_{\min }^{2}}\right), \quad \widetilde{\omega} \leq \min \left\{\left(\frac{1}{6 \rho}\right)^{3(l+1)}, \frac{\gamma^{l+3}}{16},\left(\frac{\gamma}{(6 \rho)^{2}}\right)^{l+1}\right\}
$$

Choose two parameters ϵ and r in the following nonempty sets:

$$
\epsilon \in\left((2 v+\omega) \omega \sigma_{\min }^{2}, \frac{1}{2} \sigma_{\min }^{2}\right], \quad r \in\left[(6 \rho)^{2} \cdot \widetilde{\omega}^{1 /(l+1)},(6 \rho)^{-1}\right] \cap\left[(4 / \gamma)^{2 /(l+1)} \cdot \widetilde{\omega}^{1 /(l+1)}, \gamma\right] .
$$

Moreover, we suppose that

- the minimization problems are computed exactly,
- $\mathfrak{s y m}(\mathcal{O})$ is spanned by matrices whose spectra come from primitive integral vectors of coordinates at most $\omega_{\text {max }}$,
- $G=\operatorname{Sym}(\mathcal{O})$.

1. Lie group - Lie algebra correspondence
2. Closest Lie algebra problem
3. Examples

Closest Lie algebra - Case of $\mathrm{SO}(2)$

Let $G=\mathrm{SO}(2)$, whose dimension is $d=1$.
In this case, the output \widehat{g} of Lie-PCA is a skew symmetric $n \times n$ matrix. Let us denote it A. Suppose that n is even. The representations of $\operatorname{SO}(2)$ in \mathbb{R}^{n} take the form
$\phi_{\left(\omega_{1}, \ldots, \omega_{n / 2}\right)}(\theta)=\left(\begin{array}{ccc}R\left(\omega_{1} \theta\right) & & \\ & \ddots & \\ & & R\left(\omega_{n / 2} \theta\right)\end{array}\right) \quad$ where $\quad R(\theta)=\left(\begin{array}{cc}\cos \theta & -\sin \theta \\ \sin \theta & \cos \theta\end{array}\right)$
and where $\left(\omega_{1}, \ldots, \omega_{n / 2}\right) \in \mathbb{Z}^{n / 2}$. In practice, we fix a maximal frequence $\omega_{\max } \in \mathbb{N}$.
The corresponding pushforward Lie algebra is spanned by the matrix

$$
B_{\left(\omega_{1}, \ldots, \omega_{n / 2}\right)}=\left(\begin{array}{ccc}
L\left(\omega_{1}\right) & & \\
& \ddots & \\
& & L\left(\omega_{n / 2}\right)
\end{array}\right) \quad \text { where } \quad L(\omega)=\left(\begin{array}{cc}
0 & -\omega \\
\omega & 0
\end{array}\right)
$$

In this context, the minimization problem reads

$$
\min \left\|\operatorname{proj}[A]-\operatorname{proj}\left[O B_{\left(\omega_{1}, \ldots, \omega_{n / 2}\right)} O^{\top}\right]\right\| \text { s.t. }\left\{\begin{array}{l}
\left(\omega_{1}, \ldots, \omega_{n / 2}\right) \in \mathbb{Z}^{n / 2} \\
O \in \mathrm{O}(n)
\end{array}\right.
$$

This is equivalent to

$$
\min \left\|A \pm O B_{\left(\omega_{1}, \ldots, \omega_{n / 2}\right)} O^{\top}\right\| \text { s.t. }\left\{\begin{array}{l}
\left(\omega_{1}, \ldots, \omega_{n / 2}\right) \in \mathbb{Z}^{n / 2} \\
O \in \mathrm{O}(n)
\end{array}\right.
$$

We recognize a two-sided orthogonal Procrustes problem with one transformation.

Closest Lie algebra - Case of $\mathrm{SO}(2)$

Example: We consider a representation of $\mathrm{SO}(2)$ in \mathbb{R}^{10} with frequencies $(2,4,5,7,8)$ and sample 600 points on one of its orbits, that we corrupt with a Gaussian additive noise of deviation $\sigma=0.03$.

We perform the minimization over all representations of $\mathrm{SO}(2)$ in \mathbb{R}^{10}, with parameter $\omega_{\max }=10$.

Representation	$(2,4,5,7,8)$	$(2,5,6,8,9)$	$(3,5,7,9,10)$	$(3,6,7,9,10)$	$(3,5,6,8,9)$	$(2,4,5,6,7)$
Cost	$\mathbf{0 . 0 2 8}$	0.032	0.037	0.037	0.038	0.044
Representation	$(3,5,6,9,10)$	$(2,5,7,9,10)$	$(2,3,4,5,6)$	$(2,5,6,9,10)$	$(2,6,7,9,10)$	$(3,5,6,8,10)$
Cost	0.046	0.055	0.057	0.058	0.058	0.058

The correct representation is found.
As a sanity check, we compute the Hausdorff distance between the point cloud and the estimated orbit: $\mathrm{d}_{\mathrm{H}}(X, \widehat{\mathcal{O}}) \approx 0.231$.

Closest Lie algebra - Case of T^{d}

20/22 (1/2)
Let $G=T^{d}$, the torus of dimension d.
In this case, the output \widehat{g} of Lie-PCA is a d-tuple $\left(A_{1}, \ldots, A_{d}\right)$ of skew symmetric $n \times n$ matrices. The representations of T^{d} in \mathbb{R}^{n} take the form

$$
\phi_{\left(\omega_{i}^{j}\right)}\left(\theta_{1}, \ldots, \theta_{d}\right)=\sum_{j=1}^{d} \phi_{\left(\omega_{1}^{j}, \ldots, \omega_{n / 2}^{j}\right)}\left(\theta_{j}\right)
$$

where $\left(\omega_{i}^{j}\right)_{1 \leq j \leq i \leq n / 2}^{1 \leq i \leq d}$ is a $n / 2 \times d$ matrix with integer coefficients.
The push-forward Lie algebra is spanned by

$$
B_{\left(\omega_{1}^{1}, \ldots, \omega_{n / 2}^{1}\right)}, \quad B_{\left(\omega_{1}^{2}, \ldots, \omega_{n / 2}^{2}\right)}, \ldots, \quad B_{\left(\omega_{1}^{d}, \ldots, \omega_{n / 2}^{d}\right)} .
$$

In this context, the minimization problem reads

$$
\left.\min \| \operatorname{proj}\left[\left\langle A_{i}\right\rangle_{j=1}^{d}\right]-\operatorname{proj}\left[\left\langle O B_{\left(\omega_{1}^{j}, \ldots, \omega_{n / 2}^{j}\right)} O^{\top}\right]\right\rangle_{j=1}^{d}\right) \| \text { s.t. }\left\{\begin{array}{l}
\left(\omega_{i}^{j}\right)_{1 \leq j \leq i \leq n / 2}^{1 \leq i \leq \mathbb{Z}^{n / 2 \times d}} \\
O \in \mathrm{O}(n)
\end{array}\right.
$$

This is linked to the simultaneous reduction of a tuple of skew-symmetric matrices.
Lemma: Denote by $\left(\rho_{i}\right)_{i=1}^{d}$ the coefficients of an optimal simultaneous reduction of the matrices $\left(A_{i}\right)_{i=1}^{d}$ in normal form. Then the problem is equivalent to

$$
\min _{\left(\omega_{i}^{j}\right)} \sum_{k=1}^{d} f\left(\left(\rho_{i}^{k}\right)_{i=1}^{n / 2},\left(\omega_{i}^{k}\right)_{i=1}^{n / 2}\right) \quad \text { where } \quad f(x, y)=\|x /\| x\|-y /\| y\| \|^{2}
$$

We perform the simultaneous reduction via projected gradient descent over $\mathrm{O}(n)$.

Closest Lie algebra - Case of T^{d}

20/22 (2/2)
Example: Let X be a uniform 750 -sample of an orbit of the representation $\phi_{\left(\begin{array}{lll}1 & 1 & 2 \\ 1 & 2 & 1\end{array}\right)}$ of the torus T^{2} in \mathbb{R}^{6}.

We apply the algorithm with $G=T^{2}$ on X, and restrict the representations to those with frequencies at most $\omega_{\max }=2$.

Representation	$\left(\begin{array}{ccc}0 & 1 & 1 \\ 2 & -2 & 1\end{array}\right)$	$\left(\begin{array}{ccc}1 & 1 & 2 \\ -2 & 2 & -1\end{array}\right)$	$\left(\begin{array}{cccc}0 & 1 & 2 \\ 2 & -2 & -1\end{array}\right)$	$\left(\begin{array}{ccc}0 & 1 & 1 \\ 1 & -2 & 0\end{array}\right)$	$\left(\begin{array}{ccc}0 & 1 & 1 \\ 1 & -2 & -1\end{array}\right)$	$\left(\begin{array}{lll}0 & 1 & 2 \\ 2 & -2 & 1\end{array}\right)$
Cost	0.036	0.136	0.198	0.233	0.244	0.312
Representation	$\left(\begin{array}{ccc}0 \\ 0 & 1 & 2 \\ 1 & -2 & -2\end{array}\right)$	$\left(\begin{array}{ccc}0 & 1 & \\ 1 & 1 & 2 \\ 1 & -2 & -1\end{array}\right)$	$\left(\begin{array}{ccc}1 & 2 & 2 \\ -2 & -2 & 1\end{array}\right)$	$\left(\begin{array}{ccc}1 & 1 & 1 \\ -2 & -1 & 2\end{array}\right)$	$\left(\begin{array}{cccc}0 & 1 & 2 \\ 1 & -2 & 0\end{array}\right)$	$\left(\begin{array}{llll}0 & 1 & 1 \\ 1 & -2 & 1\end{array}\right)$
Cost	0.331	0.348	0.388	0.447	0.457	0.472

The algorithm's output is $\left(\begin{array}{ccc}0 & 1 & 1 \\ 2 & -2 & 1\end{array}\right)$, i.e., the representation $\phi\left(\begin{array}{lll}0 & 1 & 1 \\ 2 & -2 & 1\end{array}\right)$. It is equivalent to $\phi\left(\begin{array}{lll}1 & 1 & 2 \\ 1 & 2 & 1\end{array}\right)$. Moreover, the Hausdorff distance is $\mathrm{d}_{\mathrm{H}}(X \mid \widehat{\mathcal{O}}) \approx 0.071$.

Closest Lie algebra - Case of $\mathrm{SO}(3)$ and $\mathrm{SU}(2)$

For $\mathrm{SO}(3)$ and $\mathrm{SU}(2)$, we have found no interesting reduction. We perform the minimization as is.

Example: Let X be a 3000 -sample of the 3×3 special orthogonal matrices.
Fact: $\mathrm{SO}(3)$ acts transitively on itself.
The irreps of $\mathrm{SU}(2)$ and $\mathrm{SO}(3)$ in \mathbb{R}^{n} are parametrized by the partitions of n. The algorithm yields:

Representation	$(3,5)$	$(3,3,3)$	$(4,5)$	(8)	(5)	(7)
Cost	$\mathbf{2 \times 1 0 ^ { - 5 }}$	$\mathbf{4 \times \mathbf { 1 0 } ^ { - \mathbf { 5 } }}$	0.001	0.001	0.03	0.004
Representation	(9)	$(3,3)$	$(3,4)$	$(4,4)$	(3)	(4)
Cost	0.004	0.006	0.007	0.009	0.011	0.013

Representation $(3,5)$: we get the (non-symmetric) Hausdorff distance $\mathrm{d}_{\mathrm{H}}(X \mid \widehat{\mathcal{O}}) \approx 2.658$.
In comparison, $\mathrm{d}_{\mathrm{H}}(\widehat{\mathcal{O}} \mid X) \approx 0.543$.
This indicates that the representation is not transitive on X.

Representation $(3,3,3): \mathrm{d}_{\mathrm{H}}(X \mid \widehat{\mathcal{O}}) \approx 0.061$.

Closest Lie algebra - Case of $\mathrm{SO}(3)$ and $\mathrm{SU}(2)$

For $\mathrm{SO}(3)$ and $\mathrm{SU}(2)$, we have found no interesting reduction. We perform the minimization as is.

Example: Let X be a 3000 -sample of the 3×3 special orthogonal matrices.
Fact: $\mathrm{SO}(3)$ acts transitively on itself.
The irreps of $\mathrm{SU}(2)$ and $\mathrm{SO}(3)$ in \mathbb{R}^{n} are parametrized by the partitions of n. The algorithm yields:

Representation	$(3,5)$	$(3,3,3)$	$(4,5)$	(8)	(5)	(7)
Cost	$\mathbf{2 \times \mathbf { 1 0 } ^ { - \mathbf { 5 } }}$	$\mathbf{4 \times \mathbf { 1 0 } ^ { - \mathbf { 5 } }}$	0.001	0.001	0.03	0.004
Representation	(9)	$(3,3)$	$(3,4)$	$(4,4)$	(3)	(4)
Cost	0.004	0.006	0.007	0.009	0.011	0.013

Representation (3, 5): we get the (non-symmetric) Hausdorff distance $\mathrm{d}_{\mathrm{H}}(X \mid \widehat{\mathcal{O}}) \approx 2.658$.
In comparison, $\mathrm{d}_{\mathrm{H}}(\widehat{\mathcal{O}} \mid X) \approx 0.543$.
This indicates that the representation is not transitive on X.

$$
\text { action } \mathrm{SO}(3) \rightarrow \mathrm{SO}(3) \text { by conjugation (not transitive) }
$$

Representation $(3,3,3)$: $\mathrm{d}_{\mathrm{H}}(X \mid \widehat{\mathcal{O}}) \approx 0.061$.

$$
\text { action } \mathrm{SO}(3) \rightarrow \mathrm{SO}(3) \text { by translation (transitive) }
$$

Conclusion

- First algorithm to find the representation type (not only a subspace close to the Lie algebra)
- Implementation for $G=\mathrm{SO}(2), T^{d}, \mathrm{SO}(3)$ and $\mathrm{SU}(2)$
- Can be adapted to other compact Lie group provided an explicit description of its representations
- Experiments on image analysis, harmonic analysis and physical systems at https://github.com/HLovisiEnnes/LieDetect

Limitations:

- Optimizations over $\mathrm{O}(n)$ are computationally expansive and instable
- The algorithm does not handle entangled orbits
- Restricted to representations of Lie groups

Next goals:

- Detections of actions via the induced representation on space of vector fields

- Group Equivariant Convolutional Networks

