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2/22The idea of symmetry in the late XIX century

Felix Klein
1849 – 1925

Wilhelm Killing
1847 - 1923

Bernhard Riemann
1826 - 1866

Sophus Lie
1842 – 1899

Hermann Weyl
1885 – 1955

Élie Cartan
1869 - 1951

Winter 1873, S. Lie:
A Lie group is a manifold equipped with a group structure. A Lie group posseses a Lie algebra,
which allows to work infinitesimally (Lie group–Lie algebra correspondence).

1872, F. Klein, Vergleichende Betrachtungen über neuere geometrische Forschungen:
Non-Euclidean geometries should be studied through their symmetries (Erlangen program).

1935, V. Fock, Zur theorie des wasserstoffatoms:
Description of the hydrogen atom through SO(4)-symmetry on top of the Schrödinger equation.

1913, E. Cartan, Theorem of the highest weight:
The irreducible representations of Lie groups are classified by their highest weights.

1939, Myers–Steenrod theorem:
The isometry group of a Riemannian manifold is a Lie group.



3/22 (1/3)Symmetries in datasets

(1) Certain real-life experiments exhibit symmetric objects.

[Martin, Thompson, Coutsias &Watson,Topology
of cyclo-octane energy landscape, 2010]

[Richard J. Gardner et al, Toroidal topology of
population activity in grid cells, 2022]

The space of conformation of C8H16 molecules
is the union of a Klein bottle and a sphere.

The firing matrix of grid cells in rat brains shows
the connecivity of a torus.



3/22 (2/3)Symmetries in datasets

(1) Certain real-life experiments exhibit symmetric objects.

(2) Euclidean transformations are governed by Lie group representations.

SO(2) SO(2)

SO(2)× SO(2) ≃ T 2

The n×m-images can be embedded in Rn×m.

After applying permutations of the pixels,
the embedded images lie on an orbit of a
Lie group representation.



3/22 (3/3)Symmetries in datasets

(1) Certain real-life experiments exhibit symmetric objects.

(2) Euclidean transformations are governed by Lie group representations.

(3) Symmetries in Hamiltonian systems yield conservation laws.

Hamiltonian’s systems follow the equations

Noether’s theorem (1915):
If H is invariant under the action of G, then the moment mapping is conserved.

dp

dt
= −∂H

∂q

dq

dt
=
∂H

∂p
.

Let ω be the canonical symplectic form in R2n. A symplectomorphism is a Lie group representation
L : G→ GL2n(R) on R2n that preserves the the system’s dynamics, i.e. L(g)∗ω = ω ∀g ∈ G.

Emmy Noether
1882 - 1935



4/22Formulation of our problem

Input: A point cloud X = {x1 . . . , xN} ⊂ Rn.

Output: A compact Lie group G, a representation ϕ of it in Rn, and an orbit O close to X.

Orbit of T 2 in R6 Orbit of SU(2) in R7Orbit of SO(2) in R6

Input:

Output:
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1. Lie group - Lie algebra correspondence

2. Closest Lie algebra problem

3. Examples
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Definition: A Lie group is a groupG that is also a smooth manifold, and such that the multiplication
map (g, h) 7→ gh and the inverse map g 7→ g−1 are smooth.

Example: Given n ∈ N positive, on has the matrix groups

• SU(n)

• U(n)

• Sp(2n,C)

• SO(n)

• O(n)

special unitary group: the set of complex unitary n× n matrices of determinant +1

unitary group: the set of complex unitary n× n matrices (A∗ = A−1)

symplectic group: the set of complex sympletic n× n matrices

special orthogonal group: set of orthogonal n× n matrices of determinant +1

orthogonal group: the set of orthogonal n× n matrices (A⊤ = A−1)

Products of Lie groups are Lie groups:

• Tn n-torus: the product SO(2)× · · · × SO(2)

θ1θ2

θ1 + θ2

Group structure on SO(2)
(the circle)

Group structure on T 2

(Pac-Man’s world) (
x1
y1

)
(
x2
y2

) (
x1 + x2
y1 + y2

)
(
cos θ − sin θ
sin θ cos θ

) (
cos x − sin x 0 0
sin x cos x 0 0
0 0 cos y − sin y
0 0 sin y cos y

)



7/22 (1/4)Representation of Lie groups

Definition: A representation of a group G in Rn is a smooth group morphism G→ GLn(R) (the
n× n invertible matrices).

In other words, it is an immersion of G in a matrix space, that preserves the algebraic structure.

Example: Of course, matrix Lie groups come with a canonical representation, since they are already
included in a matrix space.

O(n) ↪→ GLn(R)
SO(n) ↪→ GLn(R)

Sp(2n,C) ↪→ GLn(C) ↪→ GL2n(R)
U(n) ↪→ GLn(C) ↪→ GL2n(R)

SU(n) ↪→ GLn(C) ↪→ GL2n(R)
However, more sophisticated representations exist.

SO(2)

GL2(R) GL2(R)

θ 7→
(
cos θ − sin θ
sin θ cos θ

) (
cos 3θ − sin 3θ
sin 3θ cos 3θ

)



7/22 (2/4)Representation of Lie groups

Definition: A representation of a group G in Rn is a smooth group morphism G→ GLn(R) (the
n× n invertible matrices).

In other words, it is an immersion of G in a matrix space, that preserves the algebraic structure.

Example: Of course, matrix Lie groups come with a canonical representation, since they are already
included in a matrix space.

O(n) ↪→ GLn(R)
SO(n) ↪→ GLn(R)

Sp(2n,C) ↪→ GLn(C) ↪→ GL2n(R)
U(n) ↪→ GLn(C) ↪→ GL2n(R)

SU(n) ↪→ GLn(C) ↪→ GL2n(R)
However, more sophisticated representations exist.

SO(2)

GL4(R) GL4(R)

GL4(R)

θ 7→


cos θ − sin θ 0 0
sin θ cos θ 0 0
0 0 1 0
0 0 0 1



1 0 0 0
0 1 0 0
0 0 cos θ − sin θ
0 0 sin θ cos θ



cos 2θ − sin 2θ 0 0
sin 2θ cos 2θ 0 0
0 0 cos 5θ − sin 5θ
0 0 sin 5θ cos 5θ





7/22 (3/4)Representation of Lie groups

Definition: A representation of a group G in Rn is a smooth group morphism G→ GLn(R) (the
n× n invertible matrices).

In other words, it is an immersion of G in a matrix space, that preserves the algebraic structure.

Example: Of course, matrix Lie groups come with a canonical representation, since they are already
included in a matrix space.

O(n) ↪→ GLn(R)
SO(n) ↪→ GLn(R)

Sp(2n,C) ↪→ GLn(C) ↪→ GL2n(R)
U(n) ↪→ GLn(C) ↪→ GL2n(R)

SU(n) ↪→ GLn(C) ↪→ GL2n(R)
However, more sophisticated representations exist.

Definition: Two representations ϕ1, ϕ2 : G→ GLn(R) are equivalent if there exists A ∈ GLn(R)
such that ϕ2 = Aϕ1A

−1.

They are “equal up to a change of coordinates’.

Proposition: Representations of SO(2) in R2n are classified by Zn/Sn (tuples up to permutation).
More precisely, to (ω1, . . . , ωn) ∈ Zn is associated a representation ϕ(ω1,...,ωn) : SO(2)→ GL2n(R).

ϕ(ω1,...,ωn)(θ) =


R(ω1θ)

R(ω2θ)
. . .

R(ωnθ)

 R(θ) =

(
cos θ − sin θ
sin θ cos θ

)
where



7/22 (4/4)Representation of Lie groups

Definition: A representation of a group G in Rn is a smooth group morphism G→ GLn(R) (the
n× n invertible matrices).

In other words, it is an immersion of G in a matrix space, that preserves the algebraic structure.

Example: Of course, matrix Lie groups come with a canonical representation, since they are already
included in a matrix space.

O(n) ↪→ GLn(R)
SO(n) ↪→ GLn(R)

Sp(2n,C) ↪→ GLn(C) ↪→ GL2n(R)
U(n) ↪→ GLn(C) ↪→ GL2n(R)

SU(n) ↪→ GLn(C) ↪→ GL2n(R)
However, more sophisticated representations exist.

Definition: Two representations ϕ1, ϕ2 : G→ GLn(R) are equivalent if there exists A ∈ GLn(R)
such that ϕ2 = Aϕ1A

−1.

They are “equal up to a change of coordinates’.

Proposition: Representations of SO(2) in R2n are classified by Zn/Sn (tuples up to permutation).
More precisely, to (ω1, . . . , ωn) ∈ Zn is associated a representation ϕ(ω1,...,ωn) : SO(2)→ GL2n(R).

Proposition: Representations of T 2 in R2n are classified by (Zn)2/Sn (2 × n matrix up to per-
mutation of the columns).

More generally, the equivalence classes representations are studied through combinations of irre-
ducible representations.



8/22 (1/3)Orbits

Definition: Let G→ GLn(R) be a representation of G in Rn, and x0 ∈ Rn a point. The orbit of
x0 under the action of G is O =

{
ϕ(g)x0 | g ∈ G

}
.

Example: Orbits of SO(2) are “circles”.

• SO(2) −→ GL2(R)

θ 7−→
(
cos θ − sin θ
sin θ cos θ

)
The orbit of (1, 0, 1, 0) under the representation

• SO(2) −→ GL4(R)

θ 7−→
(

cos θ − sin θ 0 0
sin θ cos θ 0 0
0 0 1 0
0 0 0 1

)
• SO(2) −→ GL4(R)

θ 7−→
(

cos 2θ − sin 2θ 0 0
sin 2θ cos 2θ 0 0

0 0 cos 5θ − sin 5θ
0 0 sin 5θ cos 5θ

)

is O =

{(
cos θ
sin θ

)
| θ ∈ R

}

is O =



cos θ
sin θ
1
0

 | θ ∈ R


is O =



cos 2θ
sin 2θ
cos 5θ
sin 5θ

 | θ ∈ R



ϕ(1,0) ϕ(2,5) ϕ(3,5) ϕ(2,3,11) ϕ(2,3,4,11)

For instance, the orbit of (1, 0) under the representation



8/22 (2/3)Orbits

Definition: Let G→ GLn(R) be a representation of G in Rn, and x0 ∈ Rn a point. The orbit of
x0 under the action of G is O =

{
ϕ(g)x0 | g ∈ G

}
.

Example: Orbits of SO(2) are “circles”.

Example: Orbits of T 2 are “tori”.

• T 2 −→ GL6(R)

θ 7−→

 cos θ − sin θ 0 0 0 0
sin θ cos θ 0 0 0 0
0 0 cos θ − sin θ 0 0
0 0 sin θ cos θ 0 0
0 0 0 0 cos 3θ − sin 3θ
0 0 0 0 sin 3θ cos 3θ



µ 7−→


cosµ − sinµ 0 0 0 0
sinµ cosµ 0 0 0 0
0 0 cos 2µ − sin 2µ 0 0
0 0 sin 2µ cos 2µ 0 0
0 0 0 0 cosµ − sinµ
0 0 0 0 sinµ cosµ


is O =




cos θ + cosµ
sin θ + sinµ
cos θ + cos 2µ
sin θ + sin 2µ
cos 3θ + cosµ
sin 3θ + sinµ

 | (θ, µ) ∈ R2



For instance, the orbit of (1, 0, 1, 0, 1, 0) under the representation

ϕ( 1 1 3
1 2 1 )

ϕ( 1 2 2
2 1 1 )

ϕ(−2 2 0 1
−1 0 −2 1

) ϕ( 2 −2 0 2
1 1 −1 2

)



8/22 (3/3)Orbits

Definition: Let G→ GLn(R) be a representation of G in Rn, and x0 ∈ Rn a point. The orbit of
x0 under the action of G is O =

{
ϕ(g)x0 | g ∈ G

}
.

Example: Orbits of SO(2) are “circles”.

Example: Orbits of T 2 are “tori”.

Example: Orbits of SO(3) and SU(2) are “spheres”.

ψ(5) in R5 ψ(3,4) in R7 ψ(8) in R8



9/22Lie algebras I/III: the exponential map

Let G be a Lie group, 0 ∈ G the identity element and g = T0G the tangent space.

There exists an exponential map, denoted exp: g→ G. It is smooth. When G is connected and
compact, it is surjective.

Remark: Any compact Lie group admits a (bi-invariant) Riemannian metric for which the Lie-
exponential and Riemann-exponential coincide.

Example: In the case of matrix groups, the exponential map is simply the matrix exponential.

so(2) =

{(
0 −t
t 0

)
| t ∈ R

}
so(2) ≈ R

One has exp

(
0 −t
t 0

)
=

(
cos t − sin t
sin t cos t

)
• SO(2) =

{(
cos t − sin t
sin t cos t

)
| t ∈ R

}

• SO(3) =
{
A ∈ GL3(R) | A⊤ = A−1,detA = 1

}
so(3) = ⟨X1, X2, X3⟩ where

Caution: In general, exp(t1X1 + t2X2 + t3X2) ̸= exp(t1X1) exp(t2X2) exp(t3X3).

exp←−−−−−−−−−−

exp←−−−−−−−

X1 =

0 0 0
0 0 −1
0 1 0

 X2 =

 0 0 1
0 0 0
−1 0 0

 X3 =

0 −1 0
1 0 0
0 0 0





10/22Lie algebras II/III: the Lie bracket

Actually, the Lie algebra g of a Lie group G admits an algebraic structure, called Lie bracket.

It is a bilinear map g× g→ g that satisfies the Jacobi identity.

It is denoted [A,B], where A,B ∈ g.

Example: In the case of matrix groups, the Lie bracket is simply the commutator

[A,B] = AB −BA.

For instance, in SO(3), one has [X1, X2] = X3, [X2, X3] = X1 and [X1, X3] = −X2, where

X1 =

0 0 0
0 0 −1
0 1 0

 X2 =

 0 0 1
0 0 0
−1 0 0

 X3 =

0 −1 0
1 0 0
0 0 0



Remark: The Lie algebra contains a lot of information regarding the Lie group.
For instance, for simply connected Lie groups G1 and G2, one has g1 ≃ g2 =⇒ G1 ≃ G2.



11/22Lie algebras III/III: the correspondence group∼algebra

Lie algebras allow to study representations from an infinitesimal viewpoint.

Proposition: Given a representation ϕ : G → GLn(R), there exists a morphism dϕ : g → gln(R)
of Lie algebras, called derived representation, such that the following diagram commutes

G GLn(R)

g gln(R)

ϕ

exp

dϕ

exp

Remark: In practice, we prefer to work with orthogonal representations, i.e., such that ϕ(G) ⊂
SO(n). In this case, the diagram reads

G SO(n)

g so(n)

ϕ

exp

dϕ

exp

The image dϕ(g) ⊂ so(n) is called the push-forward Lie algebra. It will play a key role in our problem.

= n× n matrices

= skew-symmetric n× n matrices
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1. Lie group - Lie algebra correspondence

2. Closest Lie algebra problem

3. Examples



13/22 (1/2)Formulation of our problem - infinitesimal viewpoint

Input: A point cloud X = {x1 . . . , xN} ⊂ Rn.

Output: An orthogonal representation ϕ of a compact Lie group G in Rn, and an orbit O close to X.

Orbit of T 2 in R6 Orbit of SU(2) in R7Orbit of SO(2) in R6

Input:

Output:



13/22 (2/2)Formulation of our problem - infinitesimal viewpoint

Input: A point cloud X = {x1 . . . , xN} ⊂ Rn.

Output: An orthogonal representation ϕ of a compact Lie group G in Rn, and an orbit O close to X.

Other idea: Instead of estimating the representation ϕ, aim for the push-forward algebra dϕ(g).
Then O is obtained by exponentiating dϕ(g).

Lie-PCA is a recently developed algorithm allowing to estimate dϕ(g) from X.

The output, denoted ĝ, is a d-dimensional linear subspace of so(n).
It is spanned by the matrices ĝ1, . . . , ĝd.

Definition of orbit: O =
{
ϕ(g)x0 | g ∈ G

}
From the Lie algebra: O =

{
exp(h)x0 | h ∈ dϕ(g)

}

Proposition: Under assumptions, ĝ is close to the “groundtruth” Lie algebra.

Problem: Lie-PCA estimates dϕ(g) as if it were a linear subspace of so(n). There is no guarantee
regarding the Lie algebra structure. It may not be a Lie algebra.
These small errors would result in large descrepancy after exponentiating.

G SO(n)

g so(n)

ϕ

exp

dϕ

exp

Idea: Obtain the best orbit O via mean squared error.

Problem: It is unclear how to compute the projection of X on O.

[Cahill, Mixon & Parshall, Lie PCA: Density estimation for symmetric manifolds, 2023]



14/22 (1/2)Definition of Lie-PCA

Lie-PCA operator: Λ: Mn(R)→ Mn(R) is defined as

Λ(A) =
1

N

∑
1≤i≤N

Π̂
[
Nxi

X
]
·A ·Π

[
⟨xi⟩

]
• the Π̂

[
NxiX

]
are estimation of projection matrices on the normal spaces NxiO,

• the Π
[
⟨xi⟩

]
are the projection matrices on the lines ⟨xi⟩.

where

We define ĝ as the subspace spanned by the bottom eigenvectors ĝ1, . . . , ĝd of Λ.



14/22 (2/2)Definition of Lie-PCA

Lie-PCA operator: Λ: Mn(R)→ Mn(R) is defined as

Λ(A) =
1

N

∑
1≤i≤N

Π̂
[
Nxi

X
]
·A ·Π

[
⟨xi⟩

]
• the Π̂

[
NxiX

]
are estimation of projection matrices on the normal spaces NxiO,

• the Π
[
⟨xi⟩

]
are the projection matrices on the lines ⟨xi⟩.

where

Derivation of Lie-PCA: Based on the fact that sym(O) =
{
A ∈ Mn(R) | ∀x ∈ O, Ax ∈ TxO

}
,

where TxO denotes the tangent space of O at x. In other words,

sym(O) =
⋂
x∈O

SxO where SxO = {A ∈ Mn(R) | Ax ∈ TxO},

Using only the point cloud X = {x1, . . . , xN}, we consider

N⋂
i=1

Sxi
O = ker

( N∑
i=1

Π
[
(Sxi
O)⊥

])
,

Besides, the authors show that Π
[
(Sxi
O)⊥

]
(A) = Π

[
Nxi
O
]
·A ·Π

[
⟨xi⟩

]
. One naturally puts

Λ(A) =
1

N

N∑
i=1

Π̂
[
Nxi

X
]
·A ·Π

[
⟨xi⟩

]
where Π̂

[
Nxi

X
]
is an estimation of Π

[
Nxi
O
]
computed from the observation X.

We define ĝ as the subspace spanned by the bottom eigenvectors ĝ1, . . . , ĝd of Λ.



15/22 (1/3)Closest Lie algebra I/II: Space of algebras

Other idea: Instead of estimating the representation ϕ, aim for the push-forward algebra dϕ(g).
Then O is obtained by exponentiating dϕ(g).

Via Lie-PCA, we get ĝ, a d-dimensional linear subspace of so(n). It is an estimation of dϕ(g).

Definition of orbit: O =
{
ϕ(g)x0 | g ∈ G

}
From the Lie algebra: O =

{
exp(h)x0 | h ∈ dϕ(g)

}
G SO(n)

g so(n)

ϕ

exp

dϕ

exp

Problem: The subspace ĝ is estimated as if it were a linear subspace. It may not be a Lie algebra
(for A,B ∈ ĝ, we must have AB −BA ∈ ĝ).

exponentiating a non-Lie algebra
may yield large errors

exact ĝ inexact ĝ



15/22 (2/3)Closest Lie algebra I/II: Space of algebras

We wish to project ĝ on the closest Lie algebra. We work in so(n), the set of skew-symmetric n×n
matrices. It has dimension n(n+ 1)/2. It is endowed with the Frobenius inner product and norm

Stiefel variety of Lie algebras

Grassmannian variety of Lie algebras

Represent ĝ

Represent the d-linear subspaces of so(n) as
a d-frame (A1, . . . , Ad)
(i.e., a d-tuple of pairwise orthogonal matri-
ces)

Treat the d-dimensional subspaces of so(n) as n(n− 1)/2× d matrices

Treat the d-dimensional subspaces of so(n) as n(n− 1)/2× n(n− 1)/2 matrices

VLie(d, so(n)) is defined as the set of d-frames (A1, . . . , Ad) of so(n) (i.e., normalized and pairwise
orthogonal) with the Lie algebra condition: ∀i, j ∈ [1, . . . , n], AiAj −AjAi ∈ ⟨A1, . . . , Ad⟩.

GLie(d, so(n)) is defined as the set of orthogonal projection matrices of rank d on so(n) with
the Lie algebra condition: ∀i, j ∈ [1, . . . , n], P (Pei · Pej − Pej · Pei) = Pei · Pej − Pej · Pei
where (e1, . . . , en(n+1)/2) is an orthonormal basis of so(n).

⟨A,B⟩ =
n∑

i=1

n∑
j=1

ai,jbi,j and ∥A∥ =

√√√√ n∑
i=1

∑
j=1

ai,j .

The problem is
min

{
d∑

i=1

∥ĝi −Ai∥2 | (A1, . . . , Ad) ∈ VLie(d, so(n))

}

The problem is min
{
∥proj[ĝ]− P∥ | P ∈ GLie(d, so(n))

}



15/22 (3/3)Closest Lie algebra I/II: Space of algebras

Written explicitely in matrix form, this reads:

Stiefel variety of Lie algebras

Grassmannian variety of Lie algebras

min
d∑

i=1

∥ĝi−Ai∥2 such that


∀i ∈ [1 . . . , d], Ai is a (n× n)-matrix,
∀i ∈ [1 . . . , d], A⊤ = −A,
∀i, j ∈ [1 . . . , d],

∑d
k=1⟨Ak, AiAj −AjAi⟩2 = ∥AiAj −AjAi∥2.

min ∥proj[ĝ]−P∥ such that


P is a

(
n(n+ 1)/2× n(n+ 1)/2

)
-matrix,

P 2 = P,
P⊤ = P,
rank(P ) = d,
∀i, j ∈ [1 . . . , d], P (Pei · Pej − Pej · Pei) = Pei · Pej − Pej · Pei.

Idea: Fix a compact Lie group G, and restrict the Stiefel VLie(d, so(n)) and the Grassmannian

GLie(d, so(n)) to the Lie algebras that are push-forward of G.

(1) These programs seem intractable (they contain the classification of Lie algebras)
(2) Actually, a Lie algebra in so(n) may not even come from a compact Lie group.

Problem:



16/22 (1/3)Closest Lie algebra II/II: Pushforward algebras

Stiefel variety of pushforward Lie algebras of G

Grassmannian variety of pushforward Lie algebras of G

V(G, so(n)) is defined as the set of (A1, . . . , Ad) ∈ VLie(d, so(n)) for which there exists an orthog-
onal representation ϕ : G→ SO(n) such that dϕ(g) is spanned by (A1, . . . , Ad).

Now, the problem min
{
∥projĝ − P∥ | P ∈ G(G, so(n))

}
is tractable, as long as one knows

explicitely the irreducible representations of G.

From now on, G is a fixed compact Lie group of dimension d.

G(G, so(n)) is defined as the set consisting of those elements P ∈ GLie(d, so(n)) for which there
exists an orthogonal representation ϕ : G→ SO(n) such that P is the projection matrix on dϕ(g).

(We worked out the cases SO(2), T d, SO(3) and SU(2).

Lemma: Seen as a subset of the n(n+1)/2×d matrices, the connected components of V(G, so(n))
are in correspondence with the orbit-equivalence classes of orthogonal representations of G in Rn.

Definition: We say that two representations ϕ, ϕ′ : G→ GLn(R) are orbit-equivalent if there exists
a matrix M ∈ Mn(R) such that dϕ(g) =Mdϕ′(g)M−1. In particular, their orbits are conjugated.
We shall denote by orb(G,n) a set of representatives of the orbit-equivalence classes.

Lemma: Seen as a subset of the n(n + 1)/2 × n(n + 1)/2 matrices, the connected components of
G(G, so(n)) are also in correspondence with the orbit-equivalence of G in Rn.



16/22 (2/3)Closest Lie algebra II/II: Pushforward algebras

Stiefel variety of pushforward Lie algebras of G

V(G, so(n)) is defined as the set of (A1, . . . , Ad) ∈ VLie(d, so(n)) for which there exists an orthog-
onal representation ϕ : G→ SO(n) such that dϕ(g) is spanned by (A1, . . . , Ad).

Now, the problem min
{
∥projĝ − P∥ | P ∈ G(G, so(n))

}
is tractable, as long as one knows

explicitely the irreducible representations of G.

From now on, G is a fixed compact Lie group of dimension d.

(We worked out the cases SO(2), T d, SO(3) and SU(2).

Lemma: For any (A1, . . . , Ad) ∈ V(G, so(n)), there exists an integer p ≥ 1, a p-tuple
(B1, . . . , Bp) ∈ orb(G,n) and two matrices O ∈ O(n) and P ∈ O(d) such that, for all i ∈ [1 . . . d],

Lemma: Seen as a subset of the n(n+1)/2×d matrices, the connected components of V(G, so(n))
are in correspondence with the orbit-equivalence classes of orthogonal representations of G in Rn.

Definition: We say that two representations ϕ, ϕ′ : G→ GLn(R) are orbit-equivalent if there exists
a matrix M ∈ Mn(R) such that dϕ(g) =Mdϕ′(g)M−1. In particular, their orbits are conjugated.
We shall denote by orb(G,n) a set of representatives of the orbit-equivalence classes.

Ai =
d∑

j=1

Pj,iOdiag
(
Bk

j

)p
k=1

O⊤.

In particular, the subspace ⟨A1, . . . , Ad⟩ ⊂ so(n) is spanned by the matrices

Odiag
(
Bk

1

)p
k=1

O⊤, Odiag
(
Bk

2

)p
k=1

O⊤, . . . , Odiag
(
Bk

p

)p
k=1

O⊤.
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Corollary: The problem min {∥proj[ĝ]− P∥ | P ∈ G(G, so(n))} is equivalent to

min
∥∥proj[ĝ]− proj[⟨Odiag(Bk

i )
p
k=1O

⊤⟩di=1]
∥∥ s.t.

{
(B1, . . . , Bp) ∈ orb(G,n),

O ∈ O(n).

Remark: To apply this result in practice, one must have access to an explicit description of orb(G,n).
We worked out the cases of SO(2), T d, SO(3) and SU(2).

Remark: This is a discrete-continuous problem.
It splits into N minimization problems over O(n), where N is the cardinal of orb(G,n).

In practice, we perform a gradient descent with line search over O(n), with QR-retraction.
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Theorem: Let G be a compact Lie group of dimension d, O an orbit of an almost-faithful rep-
resentation ϕ : G → Rn, potentially non-orthogonal, and l its dimension. Let µO be the uniform
measure on O, and µÕ that on the orthonormalized orbit.

Besides, let X ⊂ Rn be a finite point cloud and µX its empirical measure. Let ϕ̂, ĥ and µÔ be the

output of the algorithm. Under technical assumptions, it holds that ϕ̂ is equivalent to ϕ, and

∥proj
[
ĥ
]
− proj

[
sym(O)

]
∥F ≤ 9d

ρ

λ

(
r + 4

(
ω̃

rl+1

)1/2)
W2

(
µÔ, µÕ

)
≤ 1√

2

W2(µX , µO)

σmin
+ 3
√
dn

(
ρ

λ

)1/2(
r + 4

(
ω̃

rl+1

)1/2)1/2

where

• ρ =

(
16l(l + 2)6l

)
max(vol(Õ),vol(Õ)−1)

min(1,reach(Õ))

• σ2
max, σ

2
min the top and bottom nonzero eigenvalues of the covariance matrix Σ[µO]

• ω̃ = 4(n+ 1)3/2
(

σ3
max

σ3
min

)(
ω(υ + ω)

)1/2

with ω = W2(µO,µX)
σmin

and υ =

(
V
[
∥µO∥

]
σ2
min

)1/2

• r is the radius of local PCA (estimation of tangent spaces)

• λ the bottom nonzero eigenvalue of the ideal Lie-PCA operator ΛO
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Technical assumptions: Define the quantities

Suppose that ω is small enough, so as to satisfy

Choose two parameters ϵ and r in the following nonempty sets:

Moreover, we suppose that

• the minimization problems are computed exactly,

• sym(O) is spanned by matrices whose spectra come from primitive integral vectors of coordinates
at most ωmax,

• G = Sym(O).

ω =
W2(µO, µX)

σmin
, υ =

(V
[
∥µO∥

]
σ2
min

)1/2

,

ω̃ = 4(n+ 1)3/2
(
σ3
max

σ3
min

)(
ω(υ + ω)

)1/2

, ρ =

(
16l(l + 2)6l

)
max(vol(Õ), vol(Õ)−1)

min(1, reach(Õ))
,

γ =
(
4(2d+ 1)

√
2
)−1 · λ · Γ(G,n, ωmax) (rigidity constant of Lie subalgebras)

ω <

((
υ2 +

1

2

)1/2

− υ

)/(
3(n+ 1)

σ2
max

σ2
min

)
, ω̃ ≤ min

{(
1

6ρ

)3(l+1)

,
γl+3

16
,

(
γ

(6ρ)2

)l+1}
.

ϵ ∈
(
(2υ + ω)ωσ2

min,
1

2
σ2
min

]
, r ∈

[(
6ρ

)2 · ω̃1/(l+1),
(
6ρ

)−1
]
∩
[(

4/γ
)2/(l+1) · ω̃1/(l+1), γ

]
.
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1. Lie group - Lie algebra correspondence

2. Closest Lie algebra problem

3. Examples
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Let G = SO(2), whose dimension is d = 1.
In this case, the output ĝ of Lie-PCA is a skew symmetric n× n matrix. Let us denote it A.

Suppose that n is even. The representations of SO(2) in Rn take the form

ϕ(ω1,...,ωn/2)(θ) =

R(ω1θ)
. . .

R(ωn/2θ)

 R(θ) =

(
cos θ − sin θ
sin θ cos θ

)
where

and where (ω1, . . . , ωn/2) ∈ Zn/2. In practice, we fix a maximal frequence ωmax ∈ N.

The corresponding pushforward Lie algebra is spanned by the matrix

B(ω1,...,ωn/2) =

L(ω1)
. . .

L(ωn/2)

 L(ω) =

(
0 −ω
ω 0

)
where

Corollary: The problem min {∥proj[ĝ]− P∥ | P ∈ G(G, so(n))} is equivalent to

min
∥∥proj[A]− proj[OB(ω1,...,ωn/2)O

⊤]
∥∥ s.t.

{
(ω1, . . . , ωn/2) ∈ Zn/2,

O ∈ O(n).

In this context, the minimization problem reads

This is equivalent to

min
∥∥A±OB(ω1,...,ωn/2)O

⊤∥∥ s.t.

{
(ω1, . . . , ωn/2) ∈ Zn/2,

O ∈ O(n).

We recognize a two-sided orthogonal Procrustes problem with one transformation.
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Example: We consider a representation of SO(2) in R10 with frequencies (2, 4, 5, 7, 8) and sample
600 points on one of its orbits, that we corrupt with a Gaussian additive noise of deviation σ = 0.03.

We perform the minimization over all representations of SO(2) in R10, with parameter ωmax = 10.

The correct representation is found.

As a sanity check, we compute the Hausdorff distance between the point cloud and the estimated
orbit: dH

(
X, Ô

)
≈ 0.231.

Representation (2, 4, 5, 7, 8) (2, 5, 6, 8, 9) (3, 5, 7, 9, 10) (3, 6, 7, 9, 10) (3, 5, 6, 8, 9) (2, 4, 5, 6, 7)
Cost 0.028 0.032 0.037 0.037 0.038 0.044

Representation (3, 5, 6, 9, 10) (2, 5, 7, 9, 10) (2, 3, 4, 5, 6) (2, 5, 6, 9, 10) (2, 6, 7, 9, 10) (3, 5, 6, 8, 10)
Cost 0.046 0.055 0.057 0.058 0.058 0.058
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Let G = T d, the torus of dimension d.
In this case, the output ĝ of Lie-PCA is a d-tuple (A1, . . . , Ad) of skew symmetric n× n matrices.

The representations of T d in Rn take the form

ϕ(ωj
i )
(θ1, . . . , θd) =

∑d
j=1 ϕ(ωj

1,...,ω
j
n/2

)(θj)

where (ωj
i )

1≤j≤d
1≤i≤n/2 is a n/2× d matrix with integer coefficients.

min
∥∥∥proj[⟨Ai⟩dj=1

]
− proj

[
⟨OB(ωj

1,...,ω
j
n/2

)O
⊤]⟩dj=1)

∥∥∥ s.t.

{
(ωj

i )
1≤j≤d
1≤i≤n/2 ∈ Zn/2×d,

O ∈ O(n).

In this context, the minimization problem reads

This is linked to the simultaneous reduction of a tuple of skew-symmetric matrices.

The push-forward Lie algebra is spanned by

B(ω1
1 ,...,ω

1
n/2

), B(ω2
1 ,...,ω

2
n/2

), . . . , B(ωd
1 ,...,ω

d
n/2

).

Lemma: Denote by (ρi)
d
i=1 the coefficients of an optimal simultaneous reduction of the matrices

(Ai)
d
i=1 in normal form. Then the problem is equivalent to

min
(ωj

i )

d∑
k=1

f

(
(ρki )

n/2
i=1, (ω

k
i )

n/2
i=1

)
where f(x, y) =

∥∥x/∥x∥ − y/∥y∥∥∥2.
We perform the simultaneous reduction via projected gradient descent over O(n).
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Example: Let X be a uniform 750-sample of an orbit of the representation ϕ( 1 1 2
1 2 1 )

of the torus

T2 in R6.

We apply the algorithm withG = T 2 onX, and restrict the representations to those with frequencies
at most ωmax = 2.

Representation
(
0 1 1
2 −2 1

) (
1 1 2
−2 2 −1

) (
0 1 2
2 −2 −1

) (
0 1 1
1 −2 0

) (
0 1 1
1 −2 −1

) (
0 1 2
2 −2 1

)
Cost 0.036 0.136 0.198 0.233 0.244 0.312

Representation
(
0 1 2
1 −2 −2

) (
0 1 2
1 −2 −1

) (
1 2 2
−2 −2 1

) (
1 1 1
−2 −1 2

) (
0 1 2
1 −2 0

) (
0 1 1
1 −2 1

)
Cost 0.331 0.348 0.388 0.447 0.457 0.472

The algorithm’s output is
(
0 1 1
2 −2 1

)
, i.e., the representation ϕ( 0 1 1

2 −2 1

). It is equivalent to ϕ( 1 1 2
1 2 1 )

.

Moreover, the Hausdorff distance is dH
(
X|Ô

)
≈ 0.071.
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For SO(3) and SU(2), we have found no interesting reduction. We perform the minimization as is.

Example: Let X be a 3000-sample of the 3× 3 special orthogonal matrices.

Fact: SO(3) acts transitively on itself.

The irreps of SU(2) and SO(3) in Rn are parametrized by the partitions of n. The algorithm yields:

Representation (3, 5) (3, 3, 3) (4, 5) (8) (5) (7)
Cost 2× 10−5 4× 10−5 0.001 0.001 0.03 0.004

Representation (9) (3, 3) (3, 4) (4, 4) (3) (4)
Cost 0.004 0.006 0.007 0.009 0.011 0.013

Representation (3, 5): we get the (non-symmetric) Hausdorff distance dH
(
X|Ô

)
≈ 2.658.

In comparison, dH
(
Ô|X

)
≈ 0.543.

This indicates that the representation is not transitive on X.

Representation (3, 3, 3): dH
(
X|Ô

)
≈ 0.061.

This is a case where dimG < dimSym(O).
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For SO(3) and SU(2), we have found no interesting reduction. We perform the minimization as is.

Example: Let X be a 3000-sample of the 3× 3 special orthogonal matrices.

Fact: SO(3) acts transitively on itself.

The irreps of SU(2) and SO(3) in Rn are parametrized by the partitions of n. The algorithm yields:

Representation (3, 5) (3, 3, 3) (4, 5) (8) (5) (7)
Cost 2× 10−5 4× 10−5 0.001 0.001 0.03 0.004

Representation (9) (3, 3) (3, 4) (4, 4) (3) (4)
Cost 0.004 0.006 0.007 0.009 0.011 0.013

Representation (3, 5): we get the (non-symmetric) Hausdorff distance dH
(
X|Ô

)
≈ 2.658.

In comparison, dH
(
Ô|X

)
≈ 0.543.

This indicates that the representation is not transitive on X.

Representation (3, 3, 3): dH
(
X|Ô

)
≈ 0.061.

action SO(3)→ SO(3) by conjugation (not transitive)

action SO(3)→ SO(3) by translation (transitive)

This is a case where dimG < dimSym(O).
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• First algorithm to find the representation type (not only a subspace close to the Lie algebra)

• Implementation for G = SO(2), T d, SO(3) and SU(2)

• Can be adapted to other compact Lie group provided an explicit description of its representations

• Experiments on image analysis, harmonic analysis and physical systems
at https://github.com/HLovisiEnnes/LieDetect

Limitations:

• Optimizations over O(n) are computationally expansive and instable

• The algorithm does not handle entangled orbits

• Restricted to representations of Lie groups

Next goals:

• Detections of actions via the induced rep-
resentation on space of vector fields

G Diff(M)

g X (M)

ϕ

exp

dϕ

exp

• Group Equivariant Convolutional Networks


