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2/16Pixel permutations

Eigenvalues of the point cloud’s covariance matrix:

311.2, 311.2, 221.3, 221.3, 82.3, 82.3, 79.4, 79.4, ...

In these eigenplanes, the orbit is close to

θ 7−→



µ1 cosω1θ

µ1 sinω1θ

µ2 cosω2θ

µ2 sinω2θ
...

µk cosωkθ

µk sinωkθ


=



cosω1θ − sinω1θ

sinω1θ cosω1θ

cosω2θ − sinω2θ

sinω2θ cosω2θ
. . .

cosωkθ − sinωkθ

sinωkθ cosωkθ





µ1

0

µ2

0
...

µk

0



Rotations of m×m RGB image Embedding in Rm×m×3 Projection in eigenplanes



3/16Three-body problem

In 1975, Roger Broucke found several periodic orbits.

Let x1(t), x2(t), x3(t) be the three bodies, and define z(t) = (x1(t), x2(t), x3(t)) ∈ R6.

Trajectory of x1, x2, x3

(found by integration)
Trajectory of z Reconstructed orbit of SO(2)

Orbit A3



4/16Formulation of the problem

Input: A point cloud X = {x1 . . . , xN} ⊂ Rn.

Output: A compact Lie group G, a representation ϕ in Rn, and an orbit O close to X.

Orbit of T 2 in R6Orbit of SO(2) in R6

Input:

Output:

Orbit of SO(3) in R9



5/16 (1/5)Definitions

A Lie group is a smooth manifold endowed with a group operation, and such that (g, h) 7→ gh−1 is smooth.

• SU(n)

• U(n)

• SO(n)

• O(n)

special unitary group: n× n (complex) unitary matrices with determinant +1.

unitary group: n× n (complex) unitary matrices (A∗ = A−1).

special orthogonal group: the n× n orthogonal matrices with determinant +1.

orthogonal group: the n× n orthogonal matrices (A⊤ = A−1).

• T d d-torus: the product SO(2)× · · · × SO(2).

A (real) representation of dimension n is a smooth homomorphism ϕ : G→ GLn(R).

• For G = SO(2) and ω ∈ Z, one has θ 7→
(
cosωθ − sinωθ
sinωθ cosωθ

)
.

• If G is a matrix group, the natural embedding G→ GLn(R) is a representation.

• GLn(R) general linear group: the n× n invertible matrices.



5/16 (2/5)Definitions

A representation ϕ : G→ GLn(R) is irreducible (irrep) if no non-trivial subspace V ⊂ Rn is stabilized.

Fact: Every representation ϕ is equivalent to a sum of irreps. That is, one has a decomposition Rn = V1⊕· · ·⊕Vk,
irreps ϕi : G→ Vi and a change of basis A ∈ GLn(R) such that

AϕA−1 = ϕ1 ⊕ · · · ⊕ ϕk.

Irreps can be explicitely enumerated:

• SU(2)

• SO(3)

• T d

• SO(2) the θ 7→ R(ωθ) for ω ∈ Z \ {0}, where R(θ) 7→
(
cos θ − sin θ
sin θ cos θ

)
.

the (θi)
d
i=1 7→ R(

∑d
i=1 ωiθi) for (ωi)

d
i=1 ∈ Zd \ {0}.

one irrep in Rn for n odd.

one irrep in Rn for n odd or n ≡ 0 mod 4.



5/16 (3/5)Definitions

The orbit of x0 ∈ Rn under a representation ϕ : G→ GLn(R) is O = {ϕ(g)x0 | g ∈ G}.

Example: Orbits of SO(2) in R2k.

Let us write ϕ ≃ ϕω1
⊕ · · · ⊕ ϕωk

. The orbit is made of the points

ϕ(θ)x0 =



cosω1θ − sinω1θ

sinω1θ cosω1θ

cosω2θ − sinω2θ

sinω2θ cosω2θ
. . .

cosωkθ − sinωkθ

sinωkθ cosωkθ


x0

ϕ(1,0) ϕ(2,5) ϕ(3,5) ϕ(2,3,11) ϕ(2,3,4,11)



5/16 (4/5)Definitions

The orbit of x0 ∈ Rn under a representation ϕ : G→ GLn(R) is O = {ϕ(g)x0 | g ∈ G}.

Example: Orbits of T 2 in R2k.

Let us write
ϕ ≃ ϕ(

ω
(1)
1

ω
(2)
1

) ⊕ · · · ⊕ ϕ(
ω
(1)
k

ω
(2)
k

)

ϕ( 1 1 3
1 2 1 )

ϕ( 1 2 2
2 1 1 )

ϕ(−2 2 0 1
−1 0 −2 1

) ϕ(
2 −2 0 2
1 1 −1 2

)

One builds the integer matrix of weights

(
ω

(1)
1 ··· ω

(1)
k

ω
(2)
1 ··· ω

(2)
k

)
.



5/16 (5/5)Definitions

The orbit of x0 ∈ Rn under a representation ϕ : G→ GLn(R) is O = {ϕ(g)x0 | g ∈ G}.

Example: Orbits of SO(3) and SU(2) in Rn.

ϕ(5) in R5 ϕ(3,4) in R7 ϕ(8) in R8

SO(3) has a finite number of (equivalence classes) of representations in Rn: one for each decomposition

n = ω1 + · · ·+ ωk

where the ωi are odd.

For SU(2), one can also use multiples of 4.



6/16Orbit-equivalence of representations

Say we observe an orbit O of a representation ϕ1 : G→ GLn(R), and we want to find ϕ1.

Identifiability problem: another representation ϕ2 may generate O.

The representations are said orbit-equivalent if there exists a A ∈ GLn(R) such that for all x0 ∈ Rn,

Example: The orbit-equivalence classes of representations of SO(2) in R2k are the primitive k-tuples of integers.

Example: The orbit-equivalence classes of representations of T d in R2k are the primitive d-dimensional k-
lattices.

Say we observe an orbit O of a representation ϕ : G→ GLn(R), and we want to identify ϕ.

Identifiability problems:

(1) Two distinct groups G1, G2 may generate O.

(2) Two distinct representations ϕ1, ϕ2 of G may generate O.

To avoid (1), we can suppose that the representation is almost-faithful, i.e., has discrete kernel.

For (2), we must consider another notion of equivalence. Two representations ϕ1, ϕ2 are said orbit-equivalent
is there exists a A ∈ GLn(R) such that for all x0 ∈ Rn, Oϕ1(x0) = Oϕ2(x0).

ϕ1 : θ 7→
(
cos θ − sin θ
sin θ cos θ

)
ϕ2 : θ 7→

(
cos 2θ − sin 2θ
sin 2θ cos 2θ

)

Example: The orbit-equivalence classes of representations of SO(3)

{Aϕ1(g)A
−1x0 | g ∈ G}︸ ︷︷ ︸

orbit of x0 under Aϕ1A−1

= {ϕ2(g)x0 | g ∈ G}︸ ︷︷ ︸
orbit of x0 under ϕ2

.

The orbit-equivalence classes of representations of:

• T d in R2k

• SO(2) in R2k are the (increasing and positive) primitive k-tuples of integers.

are the primitive d-dimensional lattices in Zk.

For SO(3) and SU(2), equivalence and orbit-equivalence coincide.



7/16 (1/2)Derived representation

A Lie group G admits a Lie algebra, denoted g. It is a vector space endowed with a Lie bracket g× g→ g.

For G ⊂ Mn(R), g is the tangent space of G at identity, and the bracket is the commutator [A,B] = AB−BA.

One has an exponential map exp: g→ G. Is it surjective when G is connected and compact.

• SU(n)

• SO(n)

• Tn

• GLn(R) gl(n) is the set of n× n matrices.

For Abelian Lie groups, the bracket is trivial.

For so(3), it reads [X1, X2] = X3, [X2, X3] = X1, and [X1, X3] = −X2, where

so(n) is the set of n× n skew-symmetric matrices.

sun is the set of n× n skew-Hermitian matrices.

tn is the set of 2n× 2n skew-symmetric matrices that are 2× 2 block-diagonal.

X1 =

0 0 0
0 0 −1
0 1 0

 X2 =

 0 0 1
0 0 0
−1 0 0

 X3 =

0 −1 0
1 0 0
0 0 0



(
cosω1θ − sinω1θ
sinω1θ cosω1θ

)(
cosω2θ − sinω2θ
sinω2θ cosω2θ

)
=

(
cos(ω1 + ω2)θ − sin(ω1 + ω2)θ
sin(ω1 + ω2)θ cos(ω1 + ω2)θ

)



7/16 (2/2)Derived representation

Given a representation ϕ : G→ GLn(R), one builds the derived homomorphism dϕ:

G GLn(R)

g gl(n)

ϕ

exp

dϕ

exp

We call dϕ(g) the pushforward Lie algebra. It is a subalgebra of gl(n).

Fact: Two representations ϕ1, ϕ2 are orbit-equivalent iff there exists A ∈ GLn(R) such that

Adϕ1(g)A
−1 = dϕ2(g).

Moduli space of Lie algebras: This is an invitation to work in

GLie(d, gl(n))⧸GLn(R)

where GLie(d, gl(n)) is the Grassmannian of d-dimensional Lie subalgebras of gl(n), acted upon by GLn(R).



8/16 (1/3)Symmetry algebra through LiePCA

Denote h = dϕ(g). There exists a intermediate space between dϕ(g) ⊂ gl(n).

G ϕ(G) ⊂ Sym(O) ⊂ GLn(R)

g dϕ(g) ⊂ sym(O) ⊂ gl(n)

ϕ

exp

dϕ

exp exp exp

Sym(O) = {P ∈ GLn(R) | PO = O} sym(O) = {P ∈ gl(n) | exp(P ) ∈ Sym(O)}

Symmetry group: Symmetry algebra:

Temporary hypothesis: We will suppose that dϕ(g) = sym(O).

[Cahill, Mixon, Parshall, Lie PCA: Density estimation for symmetric manifolds, 2023]

Good news: sym(O) can be estimated from O.



8/16 (2/3)Symmetry algebra through LiePCA

LiePCA operator: Say we observe X = {x1, . . . , xN} ⊂ Rn, assumed close to O.

Λ(A) =
1

N

∑
1≤i≤N

Π̂
[
Nxi

X
]
·A ·Π

[
⟨xi⟩

]
• Π̂

[
NxiX

]
are estimations of projection matrices onto the normal spaces NxiO,

• Π
[
⟨xi⟩

]
the are projection matrices on the lines ⟨xi⟩.

where

Define ĥ as the subspace of gl(n) spanned by the d bottom eigenvectors of Λ.

Define Λ: Mn(R)→ Mn(R) as

Lemma: kerΛ ≈ sym(O).



8/16 (3/3)Symmetry algebra through LiePCA

What can go wrong: ĥ is estimated as if it were a vector subspace.

• It may not come from a compact Lie group.

• It may not be a Lie algebra (A,B ∈ ĥ =⇒ AB −BA ∈ ĥ).

• We still do not know what is the representation.

exact ĥ inexact ĥ

We wish to find the Lie algebra closest to ĥ. The problem reads

min
{
d(ĥ, V ) | V ∈ GLie(d, gl(n))

}
.



9/16 (1/6)Closest Lie algebra

min
{
d(ĥ, V ) | V ∈ GLie(d, gl(n))

}
.

min tr(Λ2P ) such that


P is a n2 × n2 matrix,
P 2 = P,
P⊤ = P,
rank(P ) = d,
∀i, j ∈ [1 . . . , d], P (Pei · Pej − Pej · Pei) = Pei · Pej − Pej · Pei.

Remember that dϕ(g) ⊂ sym(O) and kerΛ ≈ sym(O) (LiePCA operator).

Case dϕ(g) = sym(O): We compute the span ĥ of bottom eigenvectors of Λ, and solve

Case dϕ(g) ⊊ sym(O): We consider instead

min

{
d∑

i=1

∥Λ(Ai)∥2 | ⟨A1, . . . , Ad⟩ = V ∈ GLie(d, gl(n))

}

Equivalently, on the Stiefel manifold,

max

{
d∑

i=1

∥∥proj[ĥ](Ai)
∥∥2 | (A1, . . . , Ad) ∈ VLie(G, gl(n))

}

Tentative implementation: Let us embed GLie(d, gl(n)) ↪→ Mn2(R), the n2 × n2 matrices, via V 7→ proj[V ].

min

{
d∑

i=1

∥Λ(Ai)∥2 | (A1, . . . , Ad) ∈ VLie(G, gl(n))

}



9/16 (2/6)Closest Lie algebra

Fix G and let G(G, gl(n)) be the d-dimensional Lie subalgebras of gl(n) that are pushforward of g.

Lemma: The optimization problem is equivalent to

min
d∑

i=1

∥∥Λ(Adiag(Bk
i )

p
k=1A

−1
)∥∥2 such that

{
(B1, . . . , Bp) ∈ orb(G,n),

A ∈ GLn(R),

The set G(G, gl(n))⧸GLn(R) is in correspondence with the orbit-equivalence classes of reps of G in Rn.

Any representation ϕ : G→ GLn(R), up to a change of basis, decomposes as ϕ = ϕ1 ⊕ · · · ⊕ ϕp.

Let orb(G,n) denote a choice of representatives.

By denoting Bi = dϕi(g), the element dϕ(g) of orb(G,n) is associated to (B1, . . . , Bp).

min
∥∥proj[ĥ]− proj[⟨Adiag(Bk

i )
p
k=1A

−1⟩di=1]
∥∥ such that

{
(B1, . . . , Bp) ∈ orb(G,n),

A ∈ GLn(R),



9/16 (3/6)Closest Lie algebra

Fix G and let G(G, gl(n)) be the d-dimensional Lie subalgebras of gl(n) that are pushforward of g.

Lemma: The optimization problem is equivalent to

min
d∑

i=1

∥∥Λ(Adiag(Bk
i )

p
k=1A

−1
)∥∥2 such that

{
(B1, . . . , Bp) ∈ orb(G,n),

A ∈ GLn(R),

The set G(G, gl(n))⧸GLn(R) is in correspondence with the orbit-equivalence classes of reps of G in Rn.

Any representation ϕ : G→ GLn(R), up to a change of basis, decomposes as ϕ = ϕ1 ⊕ · · · ⊕ ϕp.

Let orb(G,n) denote a choice of representatives.

Orthonormalization trick: After a pre-processing step, we can reduce the program to A ∈ O(n).

A ∈ O(n)

By denoting Bi = dϕi(g), the element dϕ(g) of orb(G,n) is associated to (B1, . . . , Bp).

min
∥∥proj[ĥ]− proj[⟨Adiag(Bk

i )
p
k=1A

−1⟩di=1]
∥∥ such that

{
(B1, . . . , Bp) ∈ orb(G,n),

A ∈ GLn(R),



9/16 (4/6)Closest Lie algebra

SO(2)-orbit in R4

Rep Score

(1,2) +1 : 0.020

−1 : 0.001

(1,3) +1 : 0.017

−1 : 1× 10−5

(1,4) +1 : 0.014

−1 : 4× 10−4

(2,3) +1 : 0.020

−1 : 0.004

(3,4) +1 : 0.022

−1 : 0.005



9/16 (5/6)Closest Lie algebra

SU(2)-orbit in R7

Rep Score

(3) +1 : 0.008

(4) +1 : 0.013

(5) +1 : 0.003

(7) +1 : 0.005

(3,3) +1 : 0.003

(3,4) +1 : 3× 10−5



9/16 (6/6)Closest Lie algebra

Reformulation of the optimization program:

reduces to:

• SO(3), SU(2)

• T d

• SO(2) two-sided orthogonal Procrustes problem −→ reduction of skew-symmetric matrix

simultaneous reduction of d skew-symmetric matrices −→ optimization over O(n)

no reduction found

min

{
d∑

i=1

∥Λ(Ai)∥2 | ⟨A1, . . . , Ad⟩ ∈ GLie(d, gl(n))

}

min
{
d(ĥ, V ) | V ∈ GLie(d, gl(n))

}
.



10/16Orthonormalization

Given an orbit O = G · x0, consider the Haar measure µG, and define the covariance matrix

Example: With M = 1√
2
diag

(
1, 1/2, 1, 1

)
,

O =
{
(cos t, 2 sin t, cos 4t, sin 4t) | t ∈ [0, 2π)

}
.ϕ : t 7→ diag

((
cos t −(1/2) sin t
2 sin t cos t

)
,

(
cos 4t − sin 4t
sin 4t cos 4t

))
,

MϕM−1 : t 7→ diag

((
cos t sin t
sin t cos t

)
,

(
cos 4t − sin 4t
sin 4t cos 4t

))
, MO =

{
1√
2
(cos t, sin t, cos 4t, sin 4t) | t ∈ [0, 2π)

}
.

Fact: If G is compact, for every representation G→ GLn(R), there exists M positive-definite such that

∀g ∈ G, Mϕ(g)M−1 ∈ O(n).

M is found as the square root of the Moore-Penrose pseudo-inverse:

Σ[O] =
∫
G

(
ϕ(g)x0

)(
ϕ(g)x0

)⊤
dµG(g).

M [O] =
√
Σ[O]+.

Given a sample X, we build Σ[X] = 1
N

∑N
i=1 xix

⊤
i and M [X] =

√
Σ[X]+.

Example: With M = 1√
2
diag

(
1, 1/2, 1, 1

)
,



11/16 (1/4)The algorithm

Step 1 (Orthonormalization): Reduce the dimension and orthonormalize the orbit.

Step 2 (LiePCA): Diagonalize the operator Λ: Mn(R)→ Mn(R).

Step 3 (Closest Lie algebra): Estimate ĥ through an optimization over O(n).

Step 4 (Distance to orbit): Choose a x ∈ X, generate Ôx = exp(ĥ) · x and verify that it is close to X.

Input Output

Input: A point cloud X = {x1 . . . , xN} ⊂ Rn and a candidate Lie group G.

Output: A representation ϕ of G in Rn, and an orbit O close to X.

In Step 4, we compute the (non-symmetric)

Hausdorff distance dH
(
X|Ôx

)
.



11/16 (2/4)The algorithm

Step 1 (Orthonormalization): Reduce the dimension and orthonormalize the orbit.

Step 2 (LiePCA): Diagonalize the operator Λ: Mn(R)→ Mn(R).

Step 3 (Closest Lie algebra): Estimate ĥ through an optimization over O(n).

Step 4 (Distance to orbit): Choose a x ∈ X, generate Ôx = exp(ĥ) · x and verify that it is close to X.

Input: A point cloud X = {x1 . . . , xN} ⊂ Rn and a candidate Lie group G.

Output: A representation ϕ of G in Rn, and an orbit O close to X.

Step 4’ (Distance to noisy orbit): Build the measure µÔ = 1
N

∑
x∈X µÔx

and verify that it is close to µX .

In Step 4, we compute the (non-symmetric)

Hausdorff distance dH
(
X|Ôx

)
.

In Step 4’, we compute the Wasserstein dis-
tance W2

(
µX , µÔ

)
.

Step 4 Step 4’



11/16 (3/4)The algorithm

Example: Embed SO(3) ↪→ R9 and sample 3000 points on it.

LiePCA shows a kernel of dimension 6.

We look for an action of SO(3) or SU(2). Step 3 yields

Representation (3, 5) (3, 3, 3) (4, 5) (8) (5) (7)
Cost 2× 10−5 4× 10−5 0.001 0.001 0.03 0.004

Representation (9) (3, 3) (3, 4) (4, 4) (3) (4)
Cost 0.004 0.006 0.007 0.009 0.011 0.013

Representation (3, 5): dH
(
X|Ôx

)
≈ 2.658. However, dH

(
Ôx|X

)
≈ 0.543.

Representation (3, 3, 3): dH
(
X|Ôx

)
≈ 0.061.

This is consistent with Isom(SO(3)) ≃ SO(3)⋊ SO(3)× {±1}



11/16 (4/4)The algorithm

Example: Embed SO(3) ↪→ R9 and sample 3000 points on it.

LiePCA shows a kernel of dimension 6.

We look for an action of SO(3) or SU(2). Step 3 yields

Representation (3, 5) (3, 3, 3) (4, 5) (8) (5) (7)
Cost 2× 10−5 4× 10−5 0.001 0.001 0.03 0.004

Representation (9) (3, 3) (3, 4) (4, 4) (3) (4)
Cost 0.004 0.006 0.007 0.009 0.011 0.013

Representation (3, 5): dH
(
X|Ôx

)
≈ 2.658. However, dH

(
Ôx|X

)
≈ 0.543.

Representation (3, 3, 3): dH
(
X|Ôx

)
≈ 0.061.

This is consistent with Isom(SO(3)) ≃ SO(3)⋊ SO(3)× {±1}

action SO(3) ↷ SO(3) by conjugation (not transitive)

action SO(3) ↷ SO(3) by translation (transitive)



12/16 (1/5)Robustness

Model:

Step 1:

Step 2:

Step 3:

Step 4:

X sampled close to an orbit O of a
representation ϕ : G→ Rn

Orthonormalization via
X ←

√
Σ[X]+ ·Π>ϵ

Σ[X] ·X

Diagonalize the operator
Λ: A 7→ 1

N

∑N
i=1 Π̂

[
Nxi

X
]
·A ·Π

[
⟨xi⟩

]
Solve argmin

∑d
i=1 ∥Λ(Ai)∥2

with (Ai)
d
i=1 ∈ VLie(G, so(n))

Output Ôx =
{
exp(A)x | A ∈ ĥ

}
Goal: Show that Ôx is close to O

Input: X = {x1 . . . , xN} ⊂ Rn and G compact.



12/16 (2/5)Robustness

Model:

Step 1:

Step 2:

Step 3:

Step 4:

X sampled close to an orbit O of a
representation ϕ : G→ Rn

Orthonormalization via
X ←

√
Σ[X]+ ·Π>ϵ

Σ[X] ·X

Diagonalize the operator
Λ: A 7→ 1

N

∑N
i=1 Π̂

[
Nxi

X
]
·A ·Π

[
⟨xi⟩

]
Solve argmin

∑d
i=1 ∥Λ(Ai)∥2

with (Ai)
d
i=1 ∈ VLie(G, so(n))

Output Ôx =
{
exp(A)x | A ∈ ĥ

}

µ measure on Rn. E.g., µX empirical measure on X

µ←
√

Σ[µ]+ ·Π>ϵ
Σ[µ] · µ

Λ[µ] : A 7→
∫ N

i=1
Π̂
[
NxiX

]
·A ·Π

[
⟨xi⟩

]
dµ

Goal: Show that Ôx is close to O

argmin
∑d

i=1 ∥Λ[µ](Ai)∥2
with (Ai)

d
i=1 ∈ VLie(G, so(n))

µÔx
= exp(ĥ) · µ

Show that W2

(
µ Ôx

, µO
)
is small

Input: X = {x1 . . . , xN} ⊂ Rn and G compact.

µO uniform measure on O



12/16 (3/5)Robustness

Theorem: Under technical assumptions (sufficiently small W2

(
µX , µO

)
), for a certain choice of parameters,

the algorithm outputs a representation ϕ̂ that is orbit-equivalent to ϕ.

dH
(
Ôx,O

)
≤ constant · d(x,O) + constant ·W2

(
µX , µO

)1/4(l+3)
.

W2

(
µÔ, µO

)
≤ constant ·W2

(
µX , µO

)1/4(l+3)
.

Let l = dimO. The output measure µÔ satisfies

In addition, for all x ∈ X, the output orbit Ôx satisfies



12/16 (4/5)Robustness

Theorem: Let G be a compact Lie group of dimension d, O an orbit of an almost-faithful representation
ϕ : G → Rn, potentially non-orthogonal, and l its dimension. Let µO be the uniform measure on O, and µÕ
that on the orthonormalized orbit. Let X ⊂ Rn be a finite point cloud and µX its empirical measure.

Let ϕ̂, ĥ, Ôx and µÔ be the output of the algorithm. Under technical assumptions, ϕ̂ is equivalent to ϕ, and

∥Π
[
ĥ
]
−Π

[
sym(O)

]
∥F ≤ 9d

ρ

λ

(
r + 4

(
ω̃

rl+1

)1/2)
dH
(
Ôx,O

)
≤
√
2
d(x,O)
σmin

+ 3
√
dn

(
ρ

λ

)1/2(
r + 4

(
ω̃

rl+1

)1/2)1/2

W2

(
µÔ, µÕ

)
≤ 1√

2

W2(µX , µO)

σmin
+ 3
√
dn

(
ρ

λ

)1/2(
r + 4

(
ω̃

rl+1

)1/2)1/2

where

• ρ = 16l(l + 2)6l max(vol(Õ), vol(Õ)−1)/min(1, reach(Õ)),
• σ2

max, σ
2
min the top and bottom nonzero eigenvalues of the covariance matrix Σ[µO],

• ω̃ = 4(n+ 1)3/2
(

σ3
max

σ3
min

)(
ω(υ + ω)

)1/2

with ω = W2(µO,µX)
σmin

and υ =

(
V
[
∥µO∥

]
σ2
min

)1/2

,

• r is the radius of local PCA (estimation of tangent spaces),

• λ the bottom nonzero eigenvalue of the ideal Lie-PCA operator ΛO.



12/16 (5/5)Robustness

Technical assumptions: Define the quantities

Suppose that ω is small enough, so as to satisfy

Choose two parameters ϵ and r in the following nonempty sets:

Moreover, we suppose that

• the minimization problems are computed exactly,

• sym(O) is spanned by matrices whose spectra come from primitive vectors of coordinates at most ωmax,

• the candidate Lie group has Lie algebra ≃ sym(O).

ω =
W2(µO, µX)

σmin
, υ =

(
V
[
∥µO∥

]
σ2
min

)1/2

,

ω̃ = 4(n+ 1)3/2
(
σ3
max

σ3
min

)(
ω(υ + ω)

)1/2

, ρ =

(
16l(l + 2)6l

)
max(vol(Õ), vol(Õ)−1)

min(1, reach(Õ))
,

γ =
(
4(2d+ 1)

√
2
)−1 · λ · Γ(G,n, ωmax) (rigidity constant of Lie subalgebras)

ω <

((
υ2 +

1

2

)1/2

− υ

)/(
3(n+ 1)

σ2
max

σ2
min

)
, ω̃ ≤ min

{(
1

6ρ

)3(l+1)

,
γl+3

16
,

(
γ

(6ρ)2

)l+1}
.

ϵ ∈
(
(2υ + ω)ωσ2

min,
1

2
σ2
min

]
, r ∈

[(
6ρ
)2 · ω̃1/(l+1),

(
6ρ
)−1
]
∩
[(
4/γ
)2/(l+1) · ω̃1/(l+1), γ

]
.



13/16 (1/3)Orientation estimation

(1) Take a m×m×m image. (3) Project X in Rn via PCA.

Problem: given x ∈ X, estimate the unit vector F (x) ∈ R3 that points toward the armadillo’s head.

F (x)1 F (x)2 F (x)3

(2) Generate several rotations to
get a point cloud X ⊂ Rm×m×m.

We define train/test sets of 90%/10%.



13/16 (2/3)Orientation estimation

F (x)1 F (x)2 F (x)3

Conventional solution: Train a SVM.

Orthogonal coordinates: Our algorithm detect a SO(3)-orbit in R8 that is close to X: dH
(
X,O

)
≃ 0.1909.

minc∈so(3) ∥x− ϕ(exp(c)) · x0∥.

SO(3) GLn(R)

so(3) gl(n)

ϕ

exp

dϕ

exp

The orbit is O = {ϕ(g) · x0 | g ∈ G}. Every x ∈ X can be pulled back to so(3) via



13/16 (3/3)Orientation estimation

F (x)1 F (x)2 F (x)3

Conventional solution: Train a SVM.

Orthogonal coordinates: Our algorithm detect a SO(3)-orbit in R8 that is close to X: dH
(
X,O

)
≃ 0.1909.

minc∈so(3) ∥x− ϕ(exp(c)) · x0∥.

SO(3) GLn(R)

so(3) gl(n)

ϕ

exp

dϕ

exp

The orbit is O = {ϕ(g) · x0 | g ∈ G}. Every x ∈ X can be pulled back to so(3) via



14/16 (1/3)Conformational space of cyclooctane C8H16

A conformer of cyclooctane can be seen as a point in R72 (3× 24 = 72).

[Martin, Thompson, Coutsias & Watson, Topology of cyclo-octane energy landscape, 2010]

Idea: check whether X lies close to a linear orbit of a Lie group.

A collection of conformers yield a point cloud X ⊂ R72.



14/16 (2/3)Conformational space of cyclooctane C8H16

Unaligned confomers: We generate 10,000 cyclooctane confomers without aligning them.

Projected in dimension 3, we see
a cylinder surrounded by a circle.

X is projected onto R4 and orthonormalized.
After discarding 15% of the outliers (gray),
two clusters appear. We take the red one.

LiePCA has two small eigenvalues,
suggesting a symmetry group of dim 2.

We find a T 2-orbit in R4 close X:
dH
(
X,O

)
≃ 0.2.



14/16 (3/3)Conformational space of cyclooctane C8H16

Aligned confomers: We now generate 10,000 aligned confomers (AlignMolConformers in RDKit).

We see three components:
a surface and two clusters.

After discarding 10% of the outliers (gray),
the points are grouped into three classes.
We keep the red class.

We find a SO(2)-action that stabilizes X.

Average distance: dH
(
Ôx|X

)
≃ 0.1.

LiePCA has one small eigenvalue,
suggesting a symmetry group of dim 1.



15/16Equivariant neural networks

V = V1
f1−→ V2

f2−→ V3
f3−→ · · · fp−1−−−→ Vp = W.Consider a neural network

The output is invariant if ∀x ∈ V , ∀g ∈ G, g ∈ G, F(ϕ(g)x) = F(x).

Say G acts linearly on V , via ϕ : G→ GL(V ).

The network is equivariant if there exists representations ϕi : G→ GL(Vi) such that ∀x ∈ V , ∀g ∈ G,

Fi(ϕ(g)x) = ϕi(g)Fi(x).

F(ϕ(g)x) = F(x).

Equivariance can be obtained:

• Through equivariant architectures (G-CNNs, steerable CNNs).

• By enforcing equivariance during the training,

• Via augmentation of the training set,

Experiment: Consider steerable CNNs for several rotation groups Rn. We pick an image, and generate 500
rotations. In each of the layers, we apply our algorithm to find a linear-orbit of SO(2).

Denote Fi = f1 · · · fi and F = Fp−1.



16/16Conclusion

• Primeiro algoritmo para encontrar o tipo de representação (não apenas como sube-
spaço linear)

• Implementação para G = SO(2), T d, SO(3) e SU(2)

• Pode ser adaptado a outro grupo de Lie compacto desde que seja fornecida uma descrição
expĺıcita de suas representações

• Experimentos em análise de imagens, análise harmônica, sistemas f́ısicos, aprendizado de
máquina e redes neurais equivariantes no https://github.com/HLovisiEnnes/LieDet

ect

https://github.com/HLovisiEnnes/LieDetect

https://arxiv.org/abs/2309.03086

Thanks!



17/16Next goals

Detection of actions via the induced representation on space of vector fields

G Diff(M)

g X (M)

ϕ

exp

dϕ

exp

Statistical guarantees to test the linear-orbit hypothesis.



18/16 (1/3)Additional experiments: Pixel permutations

Eigenvalues of the point cloud’s covariance matrix:

0.155, 0.155, 0.11, 0.11, 0.041, 0.041, 0.04, 0.04, 0.038, 0.038, 0.026, 0.026, ...

In these eigenplanes, the orbit is close to

θ 7−→



µ1 cosω1θ

µ1 sinω1θ

µ2 cosω2θ

µ2 sinω2θ
...

µk cosωkθ

µk sinωkθ


=



cosω1θ − sinω1θ

sinω1θ cosω1θ

cosω2θ − sinω2θ

sinω2θ cosω2θ
. . .

cosωkθ − sinωkθ

sinωkθ cosωkθ





µ1

0

µ2

0
...

µk

0



Rotations of m×m RGB image Embedding in Rm×m×3 Projection in eigenplanes



18/16 (2/3)Additional experiments: Pixel permutations

Now, translate the image in both directions.

Covariance matrix eigenvalues: 0.228, 0.228, 0.142, 0.142, 0.108, 0.108, 0.022, 0.022, ...

In these eigenplanes, the orbit is close to

θ(1), θ(2) 7−→



µ1 cos
(
ω
(1)
1 θ(1) + ω

(2)
1 θ(2)

)
µ1 sin

(
ω
(1)
1 θ(1) + ω

(2)
1 θ(2)

)
µ2 cos

(
ω
(1)
2 θ(1) + ω

(2)
2 θ(2)

)
µ2 cos

(
ω
(1)
2 θ(1) + ω

(2)
2 θ(2)

)
...

µk cos
(
ω
(1)
k θ(1) + ω

(2)
k θ(2)

)
µk cos

(
ω
(1)
k θ(1) + ω

(2)
k θ(2)

)


= linear action of T 2 on



µ1

0

µ2

0
...

µk

0



Translations of m×m RGB image Embedding in Rm×m×3



18/16 (3/3)Additional experiments: Pixel permutations

Rotate a 3D object, and embed the images in Rm×m×m.

Covariance matrix eigenvalues: 0.246, 0.239, 0.234, 0.058, 0.057, 0.056, 0.055, 0.054 ...

In these eigenplanes, the orbit is close to

θ(1), θ(2), θ(3) 7−→ linear action of SO(3) on


µ1

0
...

µ2

0
...



Rotations ofm×m×m greyscale object Embedding in Rm×m×m



19/16 (1/2)Additional experiments: Three-body problem

In 1975, Roger Broucke found several periodic orbits.

Let x1(t), x2(t), x3(t) be the three bodies, and define z(t) = (x1(t), x2(t), x3(t)) ∈ R6.

Trajectory of x1, x2, x3

(found by integration)
Trajectory of z Reconstructed orbit of SO(2)

Orbit A3



19/16 (2/2)Additional experiments: Three-body problem

In 1975, Roger Broucke found several periodic orbits.

Let x1(t), x2(t), x3(t) be the three bodies, and define z(t) = (x1(t), x2(t), x3(t)) ∈ R6.

Trajectory of x1, x2, x3

(found by integration)
Trajectory of z Reconstructed orbit of SO(2)

Orbit R2



20/16 (1/2)Step 3 - Case of SO(2)

Let G = SO(2), whose dimension is d = 1. The output ĥ of LiePCA is a skew symmetric n× n matrix A.

Suppose that n is even. The representations of SO(2) in Rn take the form

ϕ(ω1,...,ωn/2)(θ) =

R(ω1θ)
. . .

R(ωn/2θ)

 R(θ) =

(
cos θ − sin θ
sin θ cos θ

)
where

and where (ω1, . . . , ωn/2) ∈ Zn/2. In practice, we fix a maximal frequence ωmax ∈ N.

The corresponding pushforward Lie algebra is spanned by the matrix

B(ω1,...,ωn/2) =

L(ω1)
. . .

L(ωn/2)

 L(ω) =

(
0 −ω
ω 0

)
where

Corollary: The problem min {∥proj[ĝ]− P∥ | P ∈ G(G, so(n))} is equivalent to

min
∥∥proj[A]− proj[OB(ω1,...,ωn/2)O

⊤]
∥∥ s.t.

{
(ω1, . . . , ωn/2) ∈ Zn/2,

O ∈ O(n).

In this context, the minimization problem reads

This is equivalent to

min
∥∥A±OB(ω1,...,ωn/2)O

⊤∥∥ s.t.

{
(ω1, . . . , ωn/2) ∈ Zn/2,

O ∈ O(n).

We recognize a two-sided orthogonal Procrustes problem with one transformation.



20/16 (2/2)Step 3 - Case of SO(2)

Example: We consider a representation of SO(2) in R10 with frequencies (2, 4, 5, 7, 8) and sample 600 points
on one of its orbits, that we corrupt with a Gaussian additive noise of deviation σ = 0.03.

We perform the minimization over all representations of SO(2) in R10, with parameter ωmax = 10.

The correct representation is found.

The Hausdorff distance between the point cloud and the estimated orbit is dH
(
X | Ô

)
≈ 0.231.

Representation (2, 4, 5, 7, 8) (2, 5, 6, 8, 9) (3, 5, 7, 9, 10) (3, 6, 7, 9, 10) (3, 5, 6, 8, 9) (2, 4, 5, 6, 7)
Cost 0.028 0.032 0.037 0.037 0.038 0.044

Representation (3, 5, 6, 9, 10) (2, 5, 7, 9, 10) (2, 3, 4, 5, 6) (2, 5, 6, 9, 10) (2, 6, 7, 9, 10) (3, 5, 6, 8, 10)
Cost 0.046 0.055 0.057 0.058 0.058 0.058



21/16 (1/2)Step 3 - Case of T d

Let G = T d the torus of dim d. The output of LiePCA is a d-tuple (A1, . . . , Ad) of skew symmetric matrices.

The representations of T d in Rn take the form

ϕ(ωj
i )
(θ1, . . . , θd) =

∑d
j=1 ϕ(ωj

1,...,ω
j
n/2

)(θj)

where (ωj
i )

1≤j≤d
1≤i≤n/2 is a n/2× d matrix with integer coefficients.

min
∥∥∥proj[⟨Ai⟩dj=1

]
− proj

[
⟨OB(ωj

1,...,ω
j
n/2

)O
⊤]⟩dj=1)

∥∥∥ s.t.

{
(ωj

i )
1≤j≤d
1≤i≤n/2 ∈ Zn/2×d,

O ∈ O(n).

In this context, the minimization problem reads

This is linked to the simultaneous reduction of a tuple of skew-symmetric matrices.

The push-forward Lie algebra is spanned by

B(ω1
1 ,...,ω

1
n/2

), B(ω2
1 ,...,ω

2
n/2

), . . . , B(ωd
1 ,...,ω

d
n/2

).

Lemma: Denote by (ρi)
d
i=1 the coefficients of an optimal simultaneous reduction of the matrices (Ai)

d
i=1 in

normal form. Then the problem is equivalent to

min
(ωj

i )

d∑
k=1

f

(
(ρki )

n/2
i=1, (ωk

i )
n/2
i=1

)
where f(x, y) =

∥∥x/∥x∥ − y/∥y∥
∥∥2.



21/16 (2/2)Step 3 - Case of T d

Example: Let X be a uniform 750-sample of an orbit of the representation ϕ( 1 1 2
1 2 1 )

of the torus T2 in R6.

We apply the algorithm with G = T 2 restrict to representations with frequencies at most ωmax = 2.

Representation
(
0 1 1
2 −2 1

) (
1 1 2
−2 2 −1

) (
0 1 2
2 −2 −1

) (
0 1 1
1 −2 0

) (
0 1 1
1 −2 −1

) (
0 1 2
2 −2 1

)
Cost 0.036 0.136 0.198 0.233 0.244 0.312

Representation
(
0 1 2
1 −2 −2

) (
0 1 2
1 −2 −1

) (
1 2 2
−2 −2 1

) (
1 1 1
−2 −1 2

) (
0 1 2
1 −2 0

) (
0 1 1
1 −2 1

)
Cost 0.331 0.348 0.388 0.447 0.457 0.472

The algorithm’s output is
(
0 1 1
2 −2 1

)
. It is equivalent to ϕ( 1 1 2

1 2 1 )
.

Moreover, the Hausdorff distance is dH
(
X|Ô

)
≈ 0.071.



22/16Testing several groups

Example: Let X be a 1500-sample of an orbit of the representation (1, 5) of SU(2) in R6.

We see a Lie algebra of dimension 3. One expects the torus T 3, SO(3) or SU(2).

Representation of SU(2) (1, 5) (1, 1, 1, 3) (1, 1, 4) (3, 3)
Cost 8.6× 10−5 0.007 0.008 0.015

Representation of T 3
(

1 0 0
0 1 0
0 0 1

)
Cost 0.014

Representation (1, 5): we get the (non-symmetric) Hausdorff distance dH
(
X|Ô

)
≈ 0.062.

Representation
(

1 0 0
0 1 0
0 0 1

)
: we get the (non-symmetric) Hausdorff distance dH

(
X|Ô

)
≈ 0.751.

When the underlying group is unknown, we can guess it from LiePCA or test several candidates.



23/16 (1/2)Proof of robustness - Orthonormalization

Ideal covariance matrix: Suppose that O is an orbit of the representation ϕ : G → Mn(R), and µO the
uniform measure on it. With x0 ∈ O an arbitrary point, the covariance matrix can be written

Σ[µO] =

∫ (
ϕ(g)x0

)
·
(
ϕ(g)x0

)⊤
dµG(g).

Now, let Rn =
⊕m

i=1 Vi be the decomposition of ϕ into irreps, and denote as (Π
[
Vi

]
)mi=1 the projection matrices

on these subspaces. We can decompose

Σ[µO] =
m∑
i=1

Ci where Ci =

∫
ϕi(g)

(
Π
[
Vi

]
(x0) ·Π

[
Vi

]
(x0)

⊤
)
ϕi(g)

⊤dµG(g).

If ϕ is orthogonal, then by Schur’s lemma, the Ci are homotheties:

Σ[µO] =
m∑
i=1

σ2
iΠ
[
Vi

]
where σ2

i =

∥∥Π[Vi

]
(x0)

∥∥2
dim(Vi)

.

This shows that, in general, important quantities are:

• The variance V[∥µO∥], a measure of deviation from orthogonality of O

• The ratio σ2
max/σ

2
min, a measure of homogeneity of O.



23/16 (2/2)Proof of robustness - Orthonormalization

Proposition: Let O ⊂ Rn be the orbit of a representation, potentially non-orthogonal, µO its uniform measure,

Π
[
⟨O⟩

]
the projection on its span, and σ2

max, σ
2
min the top and bottom nonzero eigenvalues of Σ[µO].

Besides, let ν be a measure, Σ[ν] its covariance matrix, ϵ > 0 and Π>ϵ
Σ[ν] the projection on the subspace spanned

by eigenvectors with eigenvalue at least ϵ.

If W2(µO, ν) is small enough, we have the following bound between the pushforward measures after Step 1:

W2

(√
Σ[µO]+Π

[
⟨O⟩

]
µO,

√
Σ[ν]+Π>ϵ

Σ[ν]ν

)
≤ 8(n+ 1)3/2

(
σ3
max

σ3
min

)(
W2(µO, ν)

σmin

)1/2((V
[
∥µO∥

]
σ2
min

)1/2

+
W2(µO, ν)

σmin

)1/2

.

Proof: Consequence of Davis-Kahan theorem, together with

∥∥Σ[µO]
−1/2 − Σ[ν]−1/2

∥∥
op
≤
√
2

σ2
min

·
(
2V
[
∥µO∥

]1/2
+W2(µO, ν)

)1/2

·W2(µO, ν)
1/2.



24/16 (1/4)Proof of robustness - LiePCA

LiePCA operator: Say we observe X = {x1, . . . , xN} ⊂ Rn, assumed close to O.

Λ(A) =
1

N

∑
1≤i≤N

Π̂
[
Nxi

X
]
·A ·Π

[
⟨xi⟩

]
• Π̂

[
NxiX

]
are estimations of projection matrices onto the normal spaces NxiO,

• Π
[
⟨xi⟩

]
the are projection matrices on the lines ⟨xi⟩.

where

Explanation: On the one hand, sym(O) =
{
A ∈ Mn(R) | ∀x ∈ O, Ax ∈ TxO

}
. Thus,

sym(O) =
⋂
x∈O

SxO where SxO = {A ∈ Mn(R) | Ax ∈ TxO}.

On the other hand, considering only X, one has

N⋂
i=1

Sxi
O ≈ ker

( N∑
i=1

Π
[
(Sxi
O)⊥

])
,

Last, the authors showed that Π
[
(Sxi
O)⊥

]
(A) = Π

[
Nxi
O
]
·A ·Π

[
⟨xi⟩

]
.

Define Λ: Mn(R)→ Mn(R) as



24/16 (2/4)Proof of robustness - LiePCA

Ideal Lie-PCA: Suppose that O is an orbit of the representation ϕ : G→ Mn(R), and µO its uniform measure.
We define

ΛO(A) =

∫
Π
[
NxO

]
·A ·Π

[
⟨x⟩
]
dµO(x).

Proposition: Its kernel is equal to sym(O). Moreover, when O = Sn−1, its nonzero eigenvalues are exactly δn
and δ′n where

δn =
2(n− 1)

n(n(n+ 1)− 2)
and δ′n =

1

n
.

Proof: Show that ΛO is equivariant with respect to the action of G by conjugation:

ϕ(g)Λ(A)ϕ(g)−1 = Λ

(
ϕ(g)Aϕ(g)−1

)
Then use Schur’s lemma.

Empirical observation: More generally, the nonzero eigenvalues of ΛO belong to [1/n2, 1/n] when O is
homogenous, i.e., σ2

max/σ
2
min = 1.



24/16 (3/4)Proof of robustness - LiePCA

Stability: Comparing

Λ(A) =
∑

1≤i≤N

Π̂
[
Nxi

X
]
·A ·Π

[
⟨xi⟩

]
and ΛO(A) =

∫
Π
[
NxO

]
·A ·Π

[
⟨x⟩
]
dµO(x).

amounts to quantifying the quality of normal space estimation. We use local PCA:

Π̂
[
NxiX

]
= I −Πl,r

xi
[X],

where Πl,r
xi
[X] is the projection matrix on any l top eigenvectors of the local covariance matrix Σr

xi
[X] centered

at xi and at scale r, itself defined as

Σr
xi
[X] =

1

|Y |
∑
y∈Y

(y − xi)(y − xi)
⊤,

where Y = {y ∈ X | ∥y − xi∥ ≤ r}, the set input points at distance at most r from xi.

Measure-theoretic formulation: If µ is a measure on Rn, we define its local covariance matrix centered at
x at scale r as

Σr
x[µ] =

∫
B(x,r)

(y − x)(y − x)⊤
dµ(x)

µ(B(x, r))
.



24/16 (4/4)Proof of robustness - LiePCA

Bias-variance tradeoff: Let µM be measure on a submanifoldM⊂ Rn of dimension l, x ∈M, ν a measure
on Rn and y ∈ supp(ν). We decompose

∥∥∥∥ 1

l + 2
Π
[
TxM

]
− 1

r2
Σr

y[ν]

∥∥∥∥
F

≤∥∥∥∥ 1

l + 2
Π
[
TxM

]
− 1

r2
Σr

x[µM]

∥∥∥∥
F︸ ︷︷ ︸

consistency

+

∥∥∥∥ 1

r2
Σr

x[µM]− 1

r2
Σr

y[µM]

∥∥∥∥
F︸ ︷︷ ︸

spatial stability

+

∥∥∥∥ 1

r2
Σr

y[µM]− 1

r2
Σr

y[ν]

∥∥∥∥
F︸ ︷︷ ︸

measure stability

Lemma: If the parameters are chosen correctly, this is

≲ r + ∥x− y∥+
(
W2(µ, ν)

rl+1

) 1
2

.

Corollary: We deduce a bound between Lie-PCA operators:

∥ΛO − Λ∥op ≤
√
2ρ

(
r + 4

(
W2(µO, µX)

rl+1

)1/2)
.



25/16Proof of robustness - rigidity of Lie subalgebras

In Step 3, we consider the bottom eigenvectors A1, . . . , Ad of Lie-PCA, and solve

argmin
∥∥Π[⟨Ai⟩di=1

]
−Π

[
ĥ
]∥∥ s.t. ĥ ∈ G(G, so(n)),

with G(G, so(n)) the subspace of so(n) consisting of the Lie subalgebras pushforward of G by a representation.

The set G(G, so(n)) has many connected components, one for each orbit-equivalence class of representations.
We want to make sure that the minimizer belongs to the correct connected component.

The distance from ⟨Ai⟩di=1 to h must be lower than the reach of G(G, so(n)). In this context, it is called rigidity :

Lemma: Consider the subset of G(G, so(n)) with weights at most ωmax. Then

h

⟨Ai⟩di=1

Γ(G,n, ωmax) ≥ 4/(nω2
max).

min
d∑

i=1

∥Λ(Ai)∥2 s.t. ⟨A1, . . . , Ad⟩ ∈ GLie(G, gl(n)).

Γ(G,n) = inf ∥Π[h]Π[s⊥]∥2 s.t. h ∈ GLie(G, gl(n)), s ∈ GLie(H, gl(n)), s ̸≃ h.



26/16Typical distance between orbits

Left: empirical estimation of the minimal non-symmetric Hausdorff distance dH
(
Ô1

x|Ô2
x

)
between two orbits

of a same initial point x for two non-orbit equivalent representations ϕ1, ϕ2 of a compact Lie group G in Rn.
The minimal value is approximately 0.35.

Right: same for the symmetric Hausdorff distance dH
(
Ô1

x, Ô2
x

)
. The minimal value is 0.42.



27/16Running time and convergence

Running time (in seconds or minutes) and success rate (percentage) of full execution of LieDetect, as a function
of the input group, and the dimension of the ambient Euclidean space. The input of the algorithm is a point
cloud sampled from the uniform measure on an orbit chosen randomly.

For the Abelian groups SO(2), T 2, and T 3, the representations are considered up to a maximal frequency, 100
runs of the algorithm are performed, and the results are averaged. For SU(2), 10 runs have been performed.


