AATRN Applied Topology Seminar - 11/06/2025

Detection of representation orbits of compact Lie groups from point clouds

> <u>Raphaël Tinarrage</u> – IST Austria Henrique Ennes – INRIA Sophia

Pixel permutations

Eigenvalues of the point cloud's covariance matrix:

 $311.2, 311.2, 221.3, 221.3, 82.3, 82.3, 79.4, 79.4, \dots$

In these eigenplanes, the orbit is close to

$$\theta \mapsto \begin{pmatrix} \mu_{1} \cos \omega_{1} \theta \\ \mu_{1} \sin \omega_{1} \theta \\ \mu_{2} \cos \omega_{2} \theta \\ \mu_{2} \sin \omega_{2} \theta \\ \vdots \\ \mu_{k} \cos \omega_{k} \theta \\ \mu_{k} \sin \omega_{k} \theta \end{pmatrix} = \begin{pmatrix} \cos \omega_{1} \theta & -\sin \omega_{1} \theta \\ \sin \omega_{1} \theta & \cos \omega_{1} \theta \\ & \cos \omega_{2} \theta & -\sin \omega_{2} \theta \\ & \sin \omega_{2} \theta & \cos \omega_{2} \theta \\ & & \ddots \\ & & & \\ & & \\ & & & \\ & & \\ & & & \\ & & \\ & & & \\ & &$$

Three-body problem

3/16

In 1975, Roger Broucke found several periodic orbits.

Let $x_1(t)$, $x_2(t)$, $x_3(t)$ be the three bodies, and define $z(t) = (x_1(t), x_2(t), x_3(t)) \in \mathbb{R}^6$.

Orbit A3

Formulation of the problem

- **Input:** A point cloud $X = \{x_1 \dots, x_N\} \subset \mathbb{R}^n$.
- **Output:** A compact Lie group G, a representation ϕ in \mathbb{R}^n , and an orbit \mathcal{O} close to X.

5/16 (1/5)

A Lie group is a smooth manifold endowed with a group operation, and such that $(g,h) \mapsto gh^{-1}$ is smooth.

• $\operatorname{GL}_n(\mathbb{R})$ general linear group: the $n \times n$ invertible matrices.

• O(n) orthogonal group: the $n \times n$ orthogonal matrices $(A^{\top} = A^{-1})$.

- SO(n) special orthogonal group: the $n \times n$ orthogonal matrices with determinant +1.
- U(n) unitary group: $n \times n$ (complex) unitary matrices $(A^* = A^{-1})$.
- SU(n) special unitary group: $n \times n$ (complex) unitary matrices with determinant +1.

•
$$T^d$$
 d-torus: the product $SO(2) \times \cdots \times SO(2)$.

A (real) **representation** of dimension n is a smooth homomorphism $\phi \colon G \to \mathrm{GL}_n(\mathbb{R})$.

• If G is a matrix group, the natural embedding $G \to \operatorname{GL}_n(\mathbb{R})$ is a representation.

• For
$$G = \mathrm{SO}(2)$$
 and $\omega \in \mathbb{Z}$, one has $\theta \mapsto \begin{pmatrix} \cos \omega \theta & -\sin \omega \theta \\ \sin \omega \theta & \cos \omega \theta \end{pmatrix}$

5/16(2/5)

A representation $\phi: G \to \operatorname{GL}_n(\mathbb{R})$ is **irreducible** (irrep) if no non-trivial subspace $V \subset \mathbb{R}^n$ is stabilized.

Fact: Every representation ϕ is equivalent to a sum of irreps. That is, one has a decomposition $\mathbb{R}^n = V_1 \oplus \cdots \oplus V_k$, irreps $\phi_i \colon G \to V_i$ and a change of basis $A \in \mathrm{GL}_n(\mathbb{R})$ such that

$$A\phi A^{-1} = \phi_1 \oplus \cdots \oplus \phi_k.$$

Irreps can be explicitly enumerated:

• SO(2) the
$$\theta \mapsto R(\omega\theta)$$
 for $\omega \in \mathbb{Z} \setminus \{0\}$, where $R(\theta) \mapsto \begin{pmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{pmatrix}$.

•
$$T^d$$
 the $(\theta_i)_{i=1}^d \mapsto R(\sum_{i=1}^d \omega_i \theta_i)$ for $(\omega_i)_{i=1}^d \in \mathbb{Z}^d \setminus \{0\}$.

- SO(3) one irrep in \mathbb{R}^n for n odd.
- SU(2) one irrep in \mathbb{R}^n for n odd or $n \equiv 0 \mod 4$.

The **orbit** of $x_0 \in \mathbb{R}^n$ under a representation $\phi \colon G \to \operatorname{GL}_n(\mathbb{R})$ is $\mathcal{O} = \{\phi(g)x_0 \mid g \in G\}$.

Example: Orbits of SO(2) in \mathbb{R}^{2k} .

Let us write $\phi \simeq \phi_{\omega_1} \oplus \cdots \oplus \phi_{\omega_k}$. The orbit is made of the points

The **orbit** of $x_0 \in \mathbb{R}^n$ under a representation $\phi \colon G \to \operatorname{GL}_n(\mathbb{R})$ is $\mathcal{O} = \{\phi(g)x_0 \mid g \in G\}$.

Example: Orbits of T^2 in \mathbb{R}^{2k} .

Let us write

One builds the integer matrix of weights

$$\phi \simeq \phi_{\begin{pmatrix} \omega_1^{(1)} \\ \omega_1^{(2)} \\ u_1^{(2)} \end{pmatrix}} \oplus \cdots \oplus \phi_{\begin{pmatrix} \omega_k^{(1)} \\ \omega_k^{(2)} \\ \omega_k^{(2)} \\ \omega_1^{(2)} \cdots & \omega_k^{(2)} \\ \omega_1^{(2)} \cdots & \omega_k^{(2)} \end{pmatrix}.$$

The **orbit** of $x_0 \in \mathbb{R}^n$ under a representation $\phi \colon G \to \operatorname{GL}_n(\mathbb{R})$ is $\mathcal{O} = \{\phi(g)x_0 \mid g \in G\}$.

Example: Orbits of SO(3) and SU(2) in \mathbb{R}^n .

SO(3) has a finite number of (equivalence classes) of representations in \mathbb{R}^n : one for each decomposition

$$n = \omega_1 + \dots + \omega_k$$

where the ω_i are odd.

For SU(2), one can also use multiples of 4.

Orbit-equivalence of representations

6/16

Say we observe an orbit \mathcal{O} of a representation $\phi_1 \colon G \to \mathrm{GL}_n(\mathbb{R})$, and we want to find ϕ_1 .

Identifiability problem: another representation ϕ_2 may generate \mathcal{O} .

$$\phi_1 \colon \theta \mapsto \begin{pmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{pmatrix} \qquad \qquad \phi_2 \colon \theta \mapsto \begin{pmatrix} \cos 2\theta & -\sin 2\theta \\ \sin 2\theta & \cos 2\theta \end{pmatrix}$$

The representations are said **orbit-equivalent** if there exists a $A \in GL_n(\mathbb{R})$ such that for all $x_0 \in \mathbb{R}^n$,

$$\underbrace{\{A\phi_1(g)A^{-1}x_0 \mid g \in G\}}_{\text{orbit of } x_0 \text{ under } A\phi_1A^{-1}} = \underbrace{\{\phi_2(g)x_0 \mid g \in G\}}_{\text{orbit of } x_0 \text{ under } \phi_2}.$$

The orbit-equivalence classes of representations of:

- SO(2) in \mathbb{R}^{2k} are the (increasing and positive) primitive k-tuples of integers.
- T^d in \mathbb{R}^{2k} are the primitive *d*-dimensional lattices in \mathbb{Z}^k .

For SO(3) and SU(2), equivalence and orbit-equivalence coincide.

Derived representation

7/16(1/2)

A Lie group G admits a Lie algebra, denoted \mathfrak{g} . It is a vector space endowed with a Lie bracket $\mathfrak{g} \times \mathfrak{g} \to \mathfrak{g}$.

For $G \subset M_n(\mathbb{R})$, \mathfrak{g} is the tangent space of G at identity, and the bracket is the commutator [A, B] = AB - BA.

- $\operatorname{GL}_n(\mathbb{R})$ $\mathfrak{gl}(n)$ is the set of $n \times n$ matrices.
- SO(n) $\mathfrak{so}(n)$ is the set of $n \times n$ skew-symmetric matrices.
- T^n tⁿ is the set of $2n \times 2n$ skew-symmetric matrices that are 2×2 block-diagonal.

One has an **exponential map** exp: $\mathfrak{g} \to G$. Is it surjective when G is connected and compact.

Derived representation

7/16(2/2)

Given a representation $\phi: G \to \operatorname{GL}_n(\mathbb{R})$, one builds the **derived homomorphism** $\mathrm{d}\phi$:

We call $d\phi(\mathfrak{g})$ the **pushforward** Lie algebra. It is a subalgebra of $\mathfrak{gl}(n)$.

Fact: Two representations ϕ_1, ϕ_2 are orbit-equivalent iff there exists $A \in GL_n(\mathbb{R})$ such that $Ad\phi_1(\mathfrak{g})A^{-1} = d\phi_2(\mathfrak{g}).$

Moduli space of Lie algebras: This is an invitation to work in

$$\mathcal{G}^{\mathrm{Lie}}(d,\mathfrak{gl}(n))/\mathrm{GL}_n(\mathbb{R})$$

where $\mathcal{G}^{\text{Lie}}(d,\mathfrak{gl}(n))$ is the Grassmannian of *d*-dimensional Lie subalgebras of $\mathfrak{gl}(n)$, acted upon by $\text{GL}_n(\mathbb{R})$.

Symmetry algebra through LiePCA

Denote $\mathfrak{h} = \mathrm{d}\phi(\mathfrak{g})$. There exists a intermediate space between $\mathrm{d}\phi(\mathfrak{g}) \subset \mathfrak{gl}(n)$.

$$\begin{array}{ccc} G & & \stackrel{\phi}{\longrightarrow} \phi(G) & \subset \operatorname{Sym}(\mathcal{O}) & \subset \operatorname{GL}_{n}(\mathbb{R}) \\ & & & & & & \\ exp & & & exp & & exp & & exp \\ & & & & & & \\ \mathfrak{g} & & & & & & \\ & & & & & & \\ \mathfrak{g} & & & & & & & \\ \end{array} \xrightarrow{d\phi} & & & & & & & \\ \mathfrak{g} & & & & & & & & \\ \end{array}$$

Temporary hypothesis: We will suppose that $d\phi(\mathfrak{g}) = \mathfrak{sym}(\mathcal{O})$.

<u>Good news:</u> $\mathfrak{sym}(\mathcal{O})$ can be estimated from \mathcal{O} .

[Cahill, Mixon, Parshall, Lie PCA: Density estimation for symmetric manifolds, 2023]

8/16(1/3)

Symmetry algebra through LiePCA

8/16(2/3)

LiePCA operator: Say we observe $X = \{x_1, \ldots, x_N\} \subset \mathbb{R}^n$, assumed close to \mathcal{O} .

Define
$$\Lambda: \mathcal{M}_n(\mathbb{R}) \to \mathcal{M}_n(\mathbb{R})$$
 as $\Lambda(A) = \frac{1}{N} \sum_{1 \le i \le N} \widehat{\Pi} [\mathcal{N}_{x_i} X] \cdot A \cdot \Pi [\langle x_i \rangle]$

where • $\widehat{\Pi}[N_{x_i}X]$ are estimations of projection matrices onto the normal spaces $N_{x_i}\mathcal{O}$, • $\Pi[\langle x_i \rangle]$ the are projection matrices on the lines $\langle x_i \rangle$.

Define $\widehat{\mathfrak{h}}$ as the subspace of $\mathfrak{gl}(n)$ spanned by the *d* bottom eigenvectors of Λ .

Symmetry algebra through LiePCA

What can go wrong: $\hat{\mathfrak{h}}$ is estimated as if it were a vector subspace.

- It may not be a Lie algebra $(A, B \in \widehat{\mathfrak{h}} \implies AB BA \in \widehat{\mathfrak{h}})$.
- It may not come from a compact Lie group.
- We still do not know what is the representation.

We wish to find the Lie algebra closest to $\widehat{\mathfrak{h}}$. The problem reads

 $\min\left\{ \mathrm{d}(\widehat{\mathfrak{h}}, V) \mid V \in \mathcal{G}^{\mathrm{Lie}}(d, \mathfrak{gl}(n)) \right\}.$

Remember that $d\phi(\mathfrak{g}) \subset \mathfrak{sym}(\mathcal{O})$ and $\ker \Lambda \approx \mathfrak{sym}(\mathcal{O})$ (LiePCA operator).

Case $d\phi(\mathfrak{g}) = \mathfrak{sym}(\mathcal{O})$: We compute the span $\widehat{\mathfrak{h}}$ of bottom eigenvectors of Λ , and solve

$$\min\left\{ \mathrm{d}(\widehat{\mathfrak{h}}, V) \mid V \in \mathcal{G}^{\mathrm{Lie}}(d, \mathfrak{gl}(n)) \right\}.$$

Case $d\phi(\mathfrak{g}) \subsetneq \mathfrak{sym}(\mathcal{O})$: We consider instead

$$\min\left\{\sum_{i=1}^{d} \|\Lambda(A_i)\|^2 \mid \langle A_1, \dots, A_d \rangle = V \in \mathcal{G}^{\text{Lie}}(d, \mathfrak{gl}(n))\right\}$$

Tentative implementation: Let us embed $\mathcal{G}^{\text{Lie}}(d,\mathfrak{gl}(n)) \hookrightarrow M_{n^2}(\mathbb{R})$, the $n^2 \times n^2$ matrices, via $V \mapsto \text{proj}[V]$.

$$\min \operatorname{tr}(\Lambda^2 P) \quad \text{such that} \quad \begin{cases} P \text{ is a } n^2 \times n^2 \text{ matrix,} \\ P^2 = P, \\ P^\top = P, \\ \operatorname{rank}(P) = d, \\ \forall i, j \in [1 \dots, d], \ P(Pe_i \cdot Pe_j - Pe_j \cdot Pe_i) = Pe_i \cdot Pe_j - Pe_j \cdot Pe_i \end{cases}$$

Fix G and let $\mathcal{G}(G, \mathfrak{gl}(n))$ be the d-dimensional Lie subalgebras of $\mathfrak{gl}(n)$ that are pushforward of \mathfrak{g} .

The set $\mathcal{G}(G,\mathfrak{gl}(n))/_{\mathrm{GL}_n(\mathbb{R})}$ is in correspondence with the orbit-equivalence classes of reps of G in \mathbb{R}^n .

Let $\mathfrak{orb}(G, n)$ denote a choice of representatives.

Lemma: The optimization problem is equivalent to

$$\min \sum_{i=1}^{d} \left\| \Lambda \left(A \operatorname{diag}(B_{i}^{k})_{k=1}^{p} A^{-1} \right) \right\|^{2} \quad \text{such that} \quad \begin{cases} (B^{1}, \dots, B^{p}) \in \mathfrak{orb}(G, n), \\ A \in \operatorname{GL}_{n}(\mathbb{R}), \end{cases}$$

Any representation $\phi: G \to \operatorname{GL}_n(\mathbb{R})$, up to a change of basis, decomposes as $\phi = \phi_1 \oplus \cdots \oplus \phi_p$. By denoting $B^i = \mathrm{d}\phi_i(\mathfrak{g})$, the element $\mathrm{d}\phi(\mathfrak{g})$ of $\mathfrak{orb}(G, n)$ is associated to (B^1, \ldots, B^p) .

Fix G and let $\mathcal{G}(G, \mathfrak{gl}(n))$ be the d-dimensional Lie subalgebras of $\mathfrak{gl}(n)$ that are pushforward of \mathfrak{g} .

The set $\mathcal{G}(G,\mathfrak{gl}(n))/_{\mathrm{GL}_n(\mathbb{R})}$ is in correspondence with the orbit-equivalence classes of reps of G in \mathbb{R}^n .

Let $\mathfrak{orb}(G, n)$ denote a choice of representatives.

Lemma: The optimization problem is equivalent to

$$\min \sum_{i=1}^{d} \left\| \Lambda \left(A \operatorname{diag}(B_{i}^{k})_{k=1}^{p} A^{-1} \right) \right\|^{2} \quad \text{such that} \quad \begin{cases} (B^{1}, \dots, B^{p}) \in \mathfrak{orb}(G, n), \\ \mathcal{A} \in \operatorname{GL}_{n}(\mathbb{R}), \\ \mathcal{A} \in \operatorname{O}(n) \end{cases}$$

Any representation $\phi: G \to \operatorname{GL}_n(\mathbb{R})$, up to a change of basis, decomposes as $\phi = \phi_1 \oplus \cdots \oplus \phi_p$. By denoting $B^i = \mathrm{d}\phi_i(\mathfrak{g})$, the element $\mathrm{d}\phi(\mathfrak{g})$ of $\mathfrak{orb}(G, n)$ is associated to (B^1, \ldots, B^p) .

Orthonormalization trick: After a pre-processing step, we can reduce the program to $A \in O(n)$.

Closest Lie algebra

9/16~(4/6)

9/16~(5/6)

Reformulation of the optimization program:

 $\min\left\{ \mathrm{d}(\widehat{\mathfrak{h}}, V) \mid V \in \mathcal{G}^{\mathrm{Lie}}(d, \mathfrak{gl}(n)) \right\}.$

reduces to:

- SO(2) two-sided orthogonal Procrustes problem \rightarrow reduction of skew-symmetric matrix
- T^d simultaneous reduction of d skew-symmetric matrices \longrightarrow optimization over O(n)
- SO(3), SU(2) no reduction found

Orthonormalization

<u>Fact</u>: If G is compact, for every representation $G \to \operatorname{GL}_n(\mathbb{R})$, there exists M positive-definite such that $\forall g \in G, \ M\phi(g)M^{-1} \in \mathcal{O}(n).$

Given an orbit $\mathcal{O} = G \cdot x_0$, consider the Haar measure μ_G , and define the **covariance matrix**

$$\Sigma[\mathcal{O}] = \int_G (\phi(g)x_0) (\phi(g)x_0)^\top \mathrm{d}\mu_G(g).$$

M is found as the square root of the Moore-Penrose pseudo-inverse:

$$M[\mathcal{O}] = \sqrt{\Sigma[\mathcal{O}]^+}.$$

<u>Given a sample X</u>, we build $\Sigma[X] = \frac{1}{N} \sum_{i=1}^{N} x_i x_i^{\top}$ and $M[X] = \sqrt{\Sigma[X]^+}$.

Example: With
$$M = \frac{1}{\sqrt{2}} \operatorname{diag}(1, 1/2, 1, 1),$$

 $\phi: t \mapsto \operatorname{diag}\left(\begin{pmatrix}\cos t & -(1/2)\sin t\\ 2\sin t & \cos t\end{pmatrix}, \begin{pmatrix}\cos 4t & -\sin 4t\\ \sin 4t & \cos 4t\end{pmatrix}\right), \qquad \mathcal{O} = \left\{(\cos t, 2\sin t, \cos 4t, \sin 4t) \mid t \in [0, 2\pi)\right\},$
 $M\phi M^{-1}: t \mapsto \operatorname{diag}\left(\begin{pmatrix}\cos t & \sin t\\ \sin t & \cos t\end{pmatrix}, \begin{pmatrix}\cos 4t & -\sin 4t\\ \sin 4t & \cos 4t\end{pmatrix}\right), \qquad M\mathcal{O} = \left\{\frac{1}{\sqrt{2}}(\cos t, \sin t, \cos 4t, \sin 4t) \mid t \in [0, 2\pi)\right\},$

Input: A point cloud $X = \{x_1 \dots, x_N\} \subset \mathbb{R}^n$ and a candidate Lie group G.

Output: A representation ϕ of G in \mathbb{R}^n , and an orbit \mathcal{O} close to X.

Step 1 (Orthonormalization): Reduce the dimension and orthonormalize the orbit.

Step 2 (LiePCA): Diagonalize the operator $\Lambda: M_n(\mathbb{R}) \to M_n(\mathbb{R})$.

Step 3 (Closest Lie algebra): Estimate $\hat{\mathfrak{h}}$ through an optimization over O(n).

Step 4 (Distance to orbit): Choose a $x \in X$, generate $\widehat{\mathcal{O}}_x = \exp(\widehat{\mathfrak{h}}) \cdot x$ and verify that it is close to X.

In **Step 4**, we compute the (non-symmetric) Hausdorff distance $d_H(X|\widehat{\mathcal{O}}_x)$.

- **Input:** A point cloud $X = \{x_1 \dots, x_N\} \subset \mathbb{R}^n$ and a candidate Lie group G.
- **Output:** A representation ϕ of G in \mathbb{R}^n , and an orbit \mathcal{O} close to X.

Step 1 (Orthonormalization): Reduce the dimension and orthonormalize the orbit.

Step 2 (LiePCA): Diagonalize the operator $\Lambda: M_n(\mathbb{R}) \to M_n(\mathbb{R})$.

Step 3 (Closest Lie algebra): Estimate $\hat{\mathfrak{h}}$ through an optimization over O(n).

Step 4 (Distance to orbit): Choose a $x \in X$, generate $\widehat{\mathcal{O}}_x = \exp(\widehat{\mathfrak{h}}) \cdot x$ and verify that it is close to X.

Step 4' (Distance to noisy orbit): Build the measure $\mu_{\widehat{\mathcal{O}}} = \frac{1}{N} \sum_{x \in X} \mu_{\widehat{\mathcal{O}}_x}$ and verify that it is close to μ_X .

In **Step 4**, we compute the (non-symmetric) Hausdorff distance $d_H(X|\widehat{\mathcal{O}}_x)$.

In Step 4', we compute the Wasserstein distance $W_2(\mu_X, \mu_{\widehat{O}})$.

Example: Embed SO(3) $\hookrightarrow \mathbb{R}^9$ and sample 3000 points on it.

LiePCA shows a kernel of dimension 6.

This is consistent with $\text{Isom}(\text{SO}(3)) \simeq \text{SO}(3) \rtimes \text{SO}(3) \times \{\pm 1\}$

We look for an action of SO(3) or SU(2). Step 3 yields

Representation	(3,5)	(3,3,3)	(4,5)	(8)	(5)	(7)
Cost	$2 imes 10^{-5}$	$4 imes 10^{-5}$	0.001	0.001	0.03	0.004
Representation	(9)	(3,3)	(3,4)	(4, 4)	(3)	(4)
Cost	0.004	0.006	0.007	0.009	0.011	0.013

Representation (3,5): $d_H(X|\widehat{\mathcal{O}}_x) \approx 2.658$. However, $d_H(\widehat{\mathcal{O}}_x|X) \approx 0.543$.

Representation (3, 3, 3): $d_{\rm H}(X|\widehat{\mathcal{O}}_x) \approx 0.061.$

Example: Embed SO(3) $\hookrightarrow \mathbb{R}^9$ and sample 3000 points on it.

LiePCA shows a kernel of dimension 6.

This is consistent with $\text{Isom}(\text{SO}(3)) \simeq \text{SO}(3) \rtimes \text{SO}(3) \times \{\pm 1\}$

We look for an action of SO(3) or SU(2). Step 3 yields

Representation	(3,5)	(3,3,3)	(4,5)	(8)	(5)	(7)
Cost	$2 imes 10^{-5}$	$4 imes 10^{-5}$	0.001	0.001	0.03	0.004
Representation	(9)	(3,3)	(3,4)	(4,4)	(3)	(4)
Cost	0.004	0.006	0.007	0.009	0.011	0.013

<u>Representation (3,5)</u>: $d_H(X|\widehat{\mathcal{O}}_x) \approx 2.658$. However, $d_H(\widehat{\mathcal{O}}_x|X) \approx 0.543$.

action $SO(3) \curvearrowright SO(3)$ by conjugation (not transitive)

Representation (3,3,3): $d_H(X|\widehat{\mathcal{O}}_x) \approx 0.061$.

action SO(3) \curvearrowright SO(3) by translation (transitive)

 $12/16 \ (1/5)$

- **Input:** $X = \{x_1 \dots, x_N\} \subset \mathbb{R}^n$ and G compact.
- **Model:** X sampled close to an orbit \mathcal{O} of a representation $\phi \colon G \to \mathbb{R}^n$
- **Step 1:** Orthonormalization via $X \leftarrow \sqrt{\Sigma[X]^+} \cdot \prod_{\Sigma[X]}^{>\epsilon} \cdot X$
- **Step 2:** Diagonalize the operator $\Lambda: A \mapsto \frac{1}{N} \sum_{i=1}^{N} \widehat{\Pi} [N_{x_i} X] \cdot A \cdot \Pi [\langle x_i \rangle]$
- Step 3: Solve $\arg\min \sum_{i=1}^{d} \|\Lambda(A_i)\|^2$ with $(A_i)_{i=1}^d \in \mathcal{V}^{\text{Lie}}(G, \mathfrak{so}(n))$

Step 4: Output $\widehat{\mathcal{O}}_x = \{ \exp(A)x \mid A \in \widehat{\mathfrak{h}} \}$

Goal: Show that $\widehat{\mathcal{O}}_x$ is close to \mathcal{O}

 $12/16 \ (2/5)$

Input: $X = \{x_1 \dots, x_N\} \subset \mathbb{R}^n$ and G compact.

- **Model:** X sampled close to an orbit \mathcal{O} of a representation $\phi: G \to \mathbb{R}^n$
- **Step 1:** Orthonormalization via $X \leftarrow \sqrt{\Sigma[X]^+} \cdot \prod_{\Sigma[X]}^{>\epsilon} \cdot X$
- **Step 2:** Diagonalize the operator $\Lambda: A \mapsto \frac{1}{N} \sum_{i=1}^{N} \widehat{\Pi} [N_{x_i} X] \cdot A \cdot \Pi [\langle x_i \rangle]$
- Step 3: Solve $\arg\min \sum_{i=1}^{d} \|\Lambda(A_i)\|^2$ with $(A_i)_{i=1}^d \in \mathcal{V}^{\text{Lie}}(G, \mathfrak{so}(n))$

Step 4: Output $\widehat{\mathcal{O}}_x = \{ \exp(A)x \mid A \in \widehat{\mathfrak{h}} \}$

Goal: Show that $\widehat{\mathcal{O}}_x$ is close to \mathcal{O}

 μ measure on \mathbb{R}^n . E.g., μ_X empirical measure on X

 $\mu_{\mathcal{O}}$ uniform measure on \mathcal{O}

$$\boldsymbol{\mu} \leftarrow \sqrt{\boldsymbol{\Sigma}[\boldsymbol{\mu}]^+} \cdot \boldsymbol{\Pi}_{\boldsymbol{\Sigma}[\boldsymbol{\mu}]}^{>\epsilon} \cdot \boldsymbol{\mu}$$

$$\Lambda[\mu] \colon A \mapsto \int_{i=1}^{N} \widehat{\Pi} \big[N_{x_i} X \big] \cdot A \cdot \Pi \big[\langle x_i \rangle \big] d\mu$$

 $\underset{(A_i)_{i=1}^d}{\operatorname{arg\,min}} \sum_{i=1}^d \|\Lambda[\mu](A_i)\|^2$ with $(A_i)_{i=1}^d \in \mathcal{V}^{\operatorname{Lie}}(G, \mathfrak{so}(n))$

$$\mu_{\widehat{\mathcal{O}}_x} = \exp(\widehat{\mathfrak{h}}) \cdot \mu$$

Show that $W_2(\mu_{\widehat{\mathcal{O}}_r}, \mu_{\mathcal{O}})$ is small

12/16 (3/5)

Theorem: Under technical assumptions (sufficiently small $W_2(\mu_X, \mu_O)$), for a certain choice of parameters, the algorithm outputs a representation $\hat{\phi}$ that is orbit-equivalent to ϕ .

Let $l = \dim \mathcal{O}$. The output measure $\mu_{\widehat{\mathcal{O}}}$ satisfies

$$W_2(\mu_{\widehat{\mathcal{O}}},\mu_{\mathcal{O}}) \leq \text{constant} \cdot W_2(\mu_X,\mu_{\mathcal{O}})^{1/4(l+3)}.$$

In addition, for all $x \in X$, the output orbit $\widehat{\mathcal{O}}_x$ satisfies

$$d_{\mathrm{H}}(\widehat{\mathcal{O}}_{x}, \mathcal{O}) \leq \mathrm{constant} \cdot d(x, \mathcal{O}) + \mathrm{constant} \cdot \mathrm{W}_{2}(\mu_{X}, \mu_{\mathcal{O}})^{1/4(l+3)}$$

 $12/16 \ (4/5)$

Theorem: Let G be a compact Lie group of dimension d, \mathcal{O} an orbit of an almost-faithful representation $\phi: G \to \mathbb{R}^n$, potentially non-orthogonal, and l its dimension. Let $\mu_{\mathcal{O}}$ be the uniform measure on \mathcal{O} , and $\mu_{\widetilde{\mathcal{O}}}$ that on the orthonormalized orbit. Let $X \subset \mathbb{R}^n$ be a finite point cloud and μ_X its empirical measure.

Let $\hat{\phi}$, $\hat{\mathfrak{h}}$, $\hat{\mathcal{O}}_x$ and $\mu_{\widehat{\mathcal{O}}}$ be the output of the algorithm. Under technical assumptions, $\underline{\hat{\phi}}$ is equivalent to ϕ , and

$$\begin{split} \|\Pi[\widehat{h}] - \Pi[\mathfrak{sym}(\mathcal{O})]\|_{\mathrm{F}} &\leq 9d\frac{\rho}{\lambda} \left(r + 4\left(\frac{\widetilde{\omega}}{r^{l+1}}\right)^{1/2}\right) \\ \mathrm{d}_{\mathrm{H}}(\widehat{\mathcal{O}}_{x}, \mathcal{O}) &\leq \sqrt{2} \frac{\mathrm{d}(x, \mathcal{O})}{\sigma_{\min}} + 3\sqrt{dn} \left(\frac{\rho}{\lambda}\right)^{1/2} \left(r + 4\left(\frac{\widetilde{\omega}}{r^{l+1}}\right)^{1/2}\right)^{1/2} \\ \mathrm{W}_{2}(\mu_{\widehat{\mathcal{O}}}, \mu_{\widetilde{\mathcal{O}}}) &\leq \frac{1}{\sqrt{2}} \frac{\mathrm{W}_{2}(\mu_{X}, \mu_{\mathcal{O}})}{\sigma_{\min}} + 3\sqrt{dn} \left(\frac{\rho}{\lambda}\right)^{1/2} \left(r + 4\left(\frac{\widetilde{\omega}}{r^{l+1}}\right)^{1/2}\right)^{1/2} \end{split}$$

where

- $\rho = 16l(l+2)6^l \max(\operatorname{vol}(\widetilde{\mathcal{O}}), \operatorname{vol}(\widetilde{\mathcal{O}})^{-1}) / \min(1, \operatorname{reach}(\widetilde{\mathcal{O}})),$
- σ_{\max}^2 , σ_{\min}^2 the top and bottom nonzero eigenvalues of the covariance matrix $\Sigma[\mu_{\mathcal{O}}]$,

•
$$\widetilde{\omega} = 4(n+1)^{3/2} \left(\frac{\sigma_{\max}^3}{\sigma_{\min}^3}\right) \left(\omega(\upsilon+\omega)\right)^{1/2}$$
 with $\omega = \frac{W_2(\mu_{\mathcal{O}},\mu_X)}{\sigma_{\min}}$ and $\upsilon = \left(\frac{\mathbb{V}\left[\|\mu_{\mathcal{O}}\|\right]}{\sigma_{\min}^2}\right)^{1/2}$,

- r is the radius of local PCA (estimation of tangent spaces),
- λ the bottom nonzero eigenvalue of the ideal Lie-PCA operator $\Lambda_{\mathcal{O}}$.

12/16 (5/5)

Technical assumptions: Define the quantities

 $\gamma = \left(4(2d+1)\sqrt{2}\right)^{-1} \cdot \lambda \cdot \Gamma(G, n, \omega_{\max}) \quad \text{(rigidity constant of Lie subalgebras)}$

Suppose that ω is small enough, so as to satisfy

$$\omega < \left(\left(v^2 + \frac{1}{2} \right)^{1/2} - v \right) \middle/ \left(3(n+1) \frac{\sigma_{\max}^2}{\sigma_{\min}^2} \right), \qquad \widetilde{\omega} \le \min\left\{ \left(\frac{1}{6\rho} \right)^{3(l+1)}, \frac{\gamma^{l+3}}{16}, \left(\frac{\gamma}{(6\rho)^2} \right)^{l+1} \right\}.$$

Choose two parameters ϵ and r in the following nonempty sets:

$$\epsilon \in \left((2\upsilon + \omega)\omega\sigma_{\min}^2, \ \frac{1}{2}\sigma_{\min}^2 \right], \qquad r \in \left[(6\rho)^2 \cdot \widetilde{\omega}^{1/(l+1)}, \ (6\rho)^{-1} \right] \cap \left[(4/\gamma)^{2/(l+1)} \cdot \widetilde{\omega}^{1/(l+1)}, \ \gamma \right].$$

Moreover, we suppose that

- the minimization problems are computed exactly,
- $\mathfrak{sym}(\mathcal{O})$ is spanned by matrices whose spectra come from primitive vectors of coordinates at most ω_{\max} ,
- the candidate Lie group has Lie algebra $\simeq \mathfrak{sym}(\mathcal{O})$.

Orientation estimation

Generate several rotations to $(\mathbf{2})$ get a point cloud $X \subset \mathbb{R}^{m \times m \times m}$.

(3) Project X in \mathbb{R}^n via PCA.

Problem: given $x \in X$, estimate the unit vector $F(x) \in \mathbb{R}^3$ that points toward the armadillo's head. We define train/test sets of 90%/10%.

Orientation estimation

 $13/16 \ (2/3)$

Conventional solution: Train a SVM.

Orthogonal coordinates: Our algorithm detect a SO(3)-orbit in \mathbb{R}^8 that is close to X: $d_H(X, \mathcal{O}) \simeq 0.1909$.

The orbit is $\mathcal{O} = \{\phi(g) \cdot x_0 \mid g \in G\}$. Every $x \in X$ can be pulled back to $\mathfrak{so}(3)$ via $\min_{c \in \mathfrak{so}(3)} \|x - \phi(\exp(c)) \cdot x_0\|.$

Orientation estimation

13/16(3/3)

Conventional solution: Train a SVM.

Orthogonal coordinates: Our algorithm detect a SO(3)-orbit in \mathbb{R}^8 that is close to X: $d_H(X, \mathcal{O}) \simeq 0.1909$.

The orbit is $\mathcal{O} = \{\phi(g) \cdot x_0 \mid g \in G\}$. Every $x \in X$ can be pulled back to $\mathfrak{so}(3)$ via $\min_{c \in \mathfrak{so}(3)} \|x - \phi(\exp(c)) \cdot x_0\|.$

			Model	MSE on test data
			SVM in dimension 3	0.4003
		A CONTRACTOR OF	SVM in dimension 4	0.2496
		A A AN AN A A SAN A A A A A A A A A A A	SVM in dimension 5	0.1295
			SVM in dimension 6	0.0380
		Marine Carlos P. J.	SVM in dimension 7	0.0148
	Section and the A		SVM in dimension 8	0.0119
			SVM in dimension 9	0.0114
		- Aller Aller	SVM in dimension 10	0.0122
$F(x)_1$	$F(x)_2$	$F(x)_3$	SVM on orthogonal coordinates	0.0066

Conformational space of cyclooctane C_8H_{16}

14/16 (1/3)

र्भ मेरे र्भ

A conformer of cyclooctane can be seen as a point in \mathbb{R}^{72} (3 × 24 = 72).

A collection of conformers yield a point cloud $X \subset \mathbb{R}^{72}$.

[Martin, Thompson, Coutsias & Watson, Topology of cyclo-octane energy landscape, 2010]

Idea: check whether X lies close to a linear orbit of a Lie group.

Conformational space of cyclooctane C_8H_{16} 14/16 (2/3)

Unaligned conformers: We generate 10,000 cyclooctane conformers without aligning them.

Projected in dimension 3, we see a cylinder surrounded by a circle.

> X is projected onto \mathbb{R}^4 and orthonormalized. After discarding 15% of the outliers (gray), two clusters appear. We take the red one.

LiePCA has two small eigenvalues, suggesting a symmetry group of dim 2.

We find a T^2 -orbit in \mathbb{R}^4 close X: d_H $(X, \mathcal{O}) \simeq 0.2$.

Conformational space of cyclooctane C_8H_{16} 14/16 (3/3)

Aligned conformers: We now generate 10,000 aligned conformers (AlignMolConformers in RDKit).

We see three components: $_{0.5}$ a surface and two clusters.

After discarding 10% of the outliers (gray), the points are grouped into three classes. We keep the red class.

Eigenvalues of LiePCA operator

5

10

Index of eigenvalue

15

0.00

LiePCA has one small eigenvalue, suggesting a symmetry group of dim 1.

> We find a SO(2)-action that stabilizes X. Average distance: $d_{\rm H}(\widehat{\mathcal{O}}_x|X) \simeq 0.1$.

Equivariant neural networks

Consider a neural network $V = V_1 \xrightarrow{f_1} V_2 \xrightarrow{f_2} V_3 \xrightarrow{f_3} \cdots \xrightarrow{f_{p-1}} V_p = W.$

Denote $\mathcal{F}_i = f_1 \cdots f_i$ and $\mathcal{F} = \mathcal{F}_{p-1}$.

Say G acts linearly on V, via $\phi: G \to GL(V)$.

The network is **equivariant** if there exists representations $\phi_i : G \to \operatorname{GL}(V_i)$ such that $\forall x \in V, \forall g \in G$,

$$\mathcal{F}_i(\phi(g)x) = \phi_i(g)\mathcal{F}_i(x).$$

Experiment: Consider steerable CNNs for several rotation groups R_n . We pick an image, and generate 500 rotations. In each of the layers, we apply our algorithm to find a linear-orbit of SO(2).

https://arxiv.org/abs/2309.03086

https://github.com/HLovisiEnnes/LieDetect

Thanks!

Next goals

Detection of **actions** via the induced representation on space of vector fields

Statistical guarantees to test the linear-orbit hypothesis.

Additional experiments: Pixel permutations 18/16 (1/3)

Eigenvalues of the point cloud's covariance matrix:

 $0.155, \ 0.155, \ 0.11, \ 0.11, \ 0.041, \ 0.041, \ 0.04, \ 0.038, \ 0.038, \ 0.026, \ 0.026, \ \dots$ In these eigenplanes, the orbit is close to

$$\theta \mapsto \begin{pmatrix} \mu_{1} \cos \omega_{1} \theta \\ \mu_{1} \sin \omega_{1} \theta \\ \mu_{2} \cos \omega_{2} \theta \\ \mu_{2} \sin \omega_{2} \theta \\ \vdots \\ \mu_{k} \cos \omega_{k} \theta \\ \mu_{k} \sin \omega_{k} \theta \end{pmatrix} = \begin{pmatrix} \cos \omega_{1} \theta & -\sin \omega_{1} \theta \\ \sin \omega_{1} \theta & \cos \omega_{1} \theta \\ & \cos \omega_{2} \theta & -\sin \omega_{2} \theta \\ & \sin \omega_{2} \theta & \cos \omega_{2} \theta \\ & & \ddots \\ & & & \\ & &$$

Additional experiments: Pixel permutations 18/16 (2/3)

Translations of $m \times m$ RGB image

Embedding in $\mathbb{R}^{m\times m\times 3}$

Covariance matrix eigenvalues: $0.228, 0.228, 0.142, 0.142, 0.108, 0.108, 0.022, 0.022, \dots$

In these eigenplanes, the orbit is close to

$$\theta^{(1)}, \theta^{(2)} \longmapsto \begin{pmatrix} \mu_{1} \cos\left(\omega_{1}^{(1)} \theta^{(1)} + \omega_{1}^{(2)} \theta^{(2)}\right) \\ \mu_{1} \sin\left(\omega_{1}^{(1)} \theta^{(1)} + \omega_{1}^{(2)} \theta^{(2)}\right) \\ \mu_{2} \cos\left(\omega_{2}^{(1)} \theta^{(1)} + \omega_{2}^{(2)} \theta^{(2)}\right) \\ \mu_{2} \cos\left(\omega_{2}^{(1)} \theta^{(1)} + \omega_{2}^{(2)} \theta^{(2)}\right) \\ \vdots \\ \mu_{k} \cos\left(\omega_{k}^{(1)} \theta^{(1)} + \omega_{k}^{(2)} \theta^{(2)}\right) \\ \mu_{k} \cos\left(\omega_{k}^{(1)} \theta^{(1)} + \omega_{k}^{(2)} \theta^{(2)}\right) \end{pmatrix} = \text{ linear action of } T^{2} \text{ on } \begin{pmatrix} \mu_{1} \\ 0 \\ \mu_{2} \\ 0 \\ \vdots \\ \mu_{k} \\ 0 \end{pmatrix}$$

Additional experiments: Pixel permutations 18/16 (3/3)

Rotations of $m \times m \times m$ greyscale object

Embedding in $\mathbb{R}^{m \times m \times m}$

Covariance matrix eigenvalues: $0.246, 0.239, 0.234, 0.058, 0.057, 0.056, 0.055, 0.054 \dots$ In these eigenplanes, the orbit is close to

$$\theta^{(1)}, \theta^{(2)}, \theta^{(3)} \longmapsto \text{ linear action of SO(3) on} \begin{pmatrix} \mu_1 \\ 0 \\ \vdots \\ \mu_2 \\ 0 \\ \vdots \end{pmatrix}$$

Additional experiments: Three-body problem 19/16 (1/2)

In 1975, Roger Broucke found several periodic orbits.

Let $x_1(t)$, $x_2(t)$, $x_3(t)$ be the three bodies, and define $z(t) = (x_1(t), x_2(t), x_3(t)) \in \mathbb{R}^6$.

Orbit A3

Additional experiments: Three-body problem 19/16 (2/2)

In 1975, Roger Broucke found several periodic orbits.

Let $x_1(t)$, $x_2(t)$, $x_3(t)$ be the three bodies, and define $z(t) = (x_1(t), x_2(t), x_3(t)) \in \mathbb{R}^6$.

Orbit R2

Step 3 - Case of SO(2)

Let G = SO(2), whose dimension is d = 1. The output \hat{h} of LiePCA is a skew symmetric $n \times n$ matrix A. Suppose that n is even. The representations of SO(2) in \mathbb{R}^n take the form

$$\phi_{(\omega_1,\dots,\omega_{n/2})}(\theta) = \begin{pmatrix} R(\omega_1\theta) & & \\ & \ddots & \\ & & R(\omega_{n/2}\theta) \end{pmatrix} \quad \text{where} \quad R(\theta) = \begin{pmatrix} \cos\theta & -\sin\theta \\ \sin\theta & \cos\theta \end{pmatrix}$$

and where $(\omega_1, \ldots, \omega_{n/2}) \in \mathbb{Z}^{n/2}$. In practice, we fix a maximal frequence $\omega_{\max} \in \mathbb{N}$. The corresponding pushforward Lie algebra is spanned by the matrix

$$B_{(\omega_1,\dots,\omega_{n/2})} = \begin{pmatrix} L(\omega_1) & & \\ & \ddots & \\ & & L(\omega_{n/2}) \end{pmatrix} \qquad \text{where} \qquad L(\omega) = \begin{pmatrix} 0 & -\omega \\ \omega & 0 \end{pmatrix}$$

In this context, the minimization problem reads

$$\min \left\| \operatorname{proj}[A] - \operatorname{proj}[OB_{(\omega_1, \dots, \omega_{n/2})}O^\top] \right\| \quad \text{s.t.} \quad \begin{cases} (\omega_1, \dots, \omega_{n/2}) \in \mathbb{Z}^{n/2}, \\ O \in \mathcal{O}(n). \end{cases}$$

This is equivalent to
$$\min \left\| A \pm OB_{(\omega_1, \dots, \omega_{n/2})}O^\top \right\| \quad \text{s.t.} \quad \begin{cases} (\omega_1, \dots, \omega_{n/2}) \in \mathbb{Z}^{n/2}, \\ O \in \mathcal{O}(n). \end{cases}$$

We recognize a two-sided orthogonal Procrustes problem with one transformation.

Step 3 - Case of SO(2)

Example: We consider a representation of SO(2) in \mathbb{R}^{10} with frequencies (2, 4, 5, 7, 8) and sample 600 points on one of its orbits, that we corrupt with a Gaussian additive noise of deviation $\sigma = 0.03$.

We perform the minimization over all representations of SO(2) in \mathbb{R}^{10} , with parameter $\omega_{\text{max}} = 10$.

	Representation	(2,4,5,7,8)	(2, 5, 6, 8, 9)	(3, 5, 7, 9, 10)	(3, 6, 7, 9, 10)	(3, 5, 6, 8, 9)	(2,4,5,6,7)
	Cost	0.028	0.032	0.037	0.037	0.038	0.044
Π	Representation	(3, 5, 6, 9, 10)	(2, 5, 7, 9, 10)	(2, 3, 4, 5, 6)	(2, 5, 6, 9, 10)	(2, 6, 7, 9, 10)	(3, 5, 6, 8, 10)
Γ	Cost	0.046	0.055	0.057	0.058	0.058	0.058

The correct representation is found.

The Hausdorff distance between the point cloud and the estimated orbit is $d_H(X \mid \widehat{\mathcal{O}}) \approx 0.231$.

Step 3 - Case of T^d

Let $G = T^d$ the torus of dim d. The output of LiePCA is a d-tuple (A_1, \ldots, A_d) of skew symmetric matrices. The representations of T^d in \mathbb{R}^n take the form

$$\phi_{(\omega_i^j)}(\theta_1,\ldots,\theta_d) = \sum_{j=1}^d \phi_{(\omega_1^j,\ldots,\omega_{n/2}^j)}(\theta_j)$$

where $(\omega_i^j)_{1 \le i \le n/2}^{1 \le j \le d}$ is a $n/2 \times d$ matrix with integer coefficients.

The push-forward Lie algebra is spanned by

$$B_{(\omega_1^1,\ldots,\omega_{n/2}^1)}, \quad B_{(\omega_1^2,\ldots,\omega_{n/2}^2)}, \quad \ldots, \quad B_{(\omega_1^d,\ldots,\omega_{n/2}^d)}.$$

In this context, the minimization problem reads

$$\min \left\| \operatorname{proj} \left[\langle A_i \rangle_{j=1}^d \right] - \operatorname{proj} \left[\langle OB_{(\omega_1^j, \dots, \omega_{n/2}^j)} O^\top \right] \rangle_{j=1}^d \right) \right\| \quad \text{s.t.} \quad \begin{cases} (\omega_i^j)_{1 \le i \le n/2}^{1 \le j \le d} \in \mathbb{Z}^{n/2 \times d}, \\ O \in \mathcal{O}(n). \end{cases}$$

This is linked to the simultaneous reduction of a tuple of skew-symmetric matrices.

Lemma: Denote by $(\rho_i)_{i=1}^d$ the coefficients of an optimal simultaneous reduction of the matrices $(A_i)_{i=1}^d$ in normal form. Then the problem is equivalent to

$$\min_{(\omega_i^j)} \sum_{k=1}^d f\left((\rho_i^k)_{i=1}^{n/2}, \ (\omega_i^k)_{i=1}^{n/2} \right) \quad \text{where} \quad f(x,y) = \left\| x/\|x\| - y/\|y\| \right\|^2$$

Step 3 - Case of T^d

21/16(2/2)

Example: Let X be a uniform 750-sample of an orbit of the representation $\phi_{\begin{pmatrix} 1 & 1 & 2 \\ 1 & 2 & 1 \end{pmatrix}}$ of the torus T² in \mathbb{R}^6 .

We apply the algorithm with $G = T^2$ restrict to representations with frequencies at most $\omega_{\text{max}} = 2$.

Representation	$\left(\begin{array}{cc} 0 & 1 & 1 \\ 2 & -2 & 1 \end{array}\right)$	$\left(\begin{array}{rrr}1&1&2\\-2&2&-1\end{array}\right)$	$\left(\begin{smallmatrix} 0 & 1 & 2 \\ 2 & -2 & -1 \end{smallmatrix}\right)$	$\left(\begin{smallmatrix} 0 & 1 & 1 \\ 1 & -2 & 0 \end{smallmatrix}\right)$	$\left(\begin{smallmatrix} 0 & 1 & 1 \\ 1 & -2 & -1 \end{smallmatrix}\right)$	$\left(\begin{array}{cc} 0 & 1 & 2 \\ 2 & -2 & 1 \end{array}\right)$
Cost	0.036	0.136	0.198	0.233	0.244	0.312
Representation	$\left(\begin{array}{cc} 0 & 1 & 2 \\ 1 & -2 & -2 \end{array}\right)$	$\left(\begin{smallmatrix} 0 & 1 & 2 \\ 1 & -2 & -1 \end{smallmatrix}\right)$	$\left(\begin{array}{rrr}1&2&2\\-2&-2&1\end{array}\right)$	$\left(\begin{array}{rrr}1&1&1\\-2&-1&2\end{array}\right)$	$\left(\begin{smallmatrix} 0 & 1 & 2 \\ 1 & -2 & 0 \end{smallmatrix}\right)$	$\left(\begin{array}{cc} 0 & 1 & 1 \\ 1 & -2 & 1 \end{array}\right)$
Cost	0.331	0.348	0.388	0.447	0.457	0.472

The algorithm's output is $\begin{pmatrix} 0 & 1 & 1 \\ 2 & -2 & 1 \end{pmatrix}$. It is equivalent to $\phi_{\begin{pmatrix} 1 & 1 & 2 \\ 1 & 2 & 1 \end{pmatrix}}$.

Moreover, the Hausdorff distance is $d_{\rm H}(X|\widehat{\mathcal{O}}) \approx 0.071$.

Testing several groups

When the underlying group is unknown, we can guess it from LiePCA or test several candidates.

Example: Let X be a 1500-sample of an orbit of the representation (1,5) of SU(2) in \mathbb{R}^6 .

We see a Lie algebra of dimension 3. One expects the torus T^3 , SO(3) or SU(2).

Representation of $SU(2)$	(1,5)	(1, 1, 1, 3)	(1, 1, 4)	(3,3)
Cost	$8.6 imes10^{-5}$	0.007	0.008	0.015

Representation of T^3	$\left(\begin{array}{rrr}1&0&0\\0&1&0\\0&0&1\end{array}\right)$
Cost	0.014

<u>Representation (1,5)</u>: we get the (non-symmetric) Hausdorff distance $d_{\rm H}(X|\widehat{\mathcal{O}}) \approx 0.062$. Representation $\begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$: we get the (non-symmetric) Hausdorff distance $d_{\rm H}(X|\widehat{\mathcal{O}}) \approx 0.751$.

Proof of robustness - Orthonormalization 23/16 (1/2)

Ideal covariance matrix: Suppose that \mathcal{O} is an orbit of the representation $\phi: G \to M_n(\mathbb{R})$, and $\mu_{\mathcal{O}}$ the uniform measure on it. With $x_0 \in \mathcal{O}$ an arbitrary point, the covariance matrix can be written

$$\Sigma[\mu_{\mathcal{O}}] = \int \left(\phi(g)x_0\right) \cdot \left(\phi(g)x_0\right)^{\top} \mathrm{d}\mu_G(g).$$

Now, let $\mathbb{R}^n = \bigoplus_{i=1}^m V_i$ be the decomposition of ϕ into irreps, and denote as $(\prod [V_i])_{i=1}^m$ the projection matrices on these subspaces. We can decompose

$$\Sigma[\mu_{\mathcal{O}}] = \sum_{i=1}^{m} C_i \quad \text{where} \quad C_i = \int \phi_i(g) \bigg(\Pi[V_i](x_0) \cdot \Pi[V_i](x_0)^\top \bigg) \phi_i(g)^\top \mathrm{d}\mu_G(g).$$

If ϕ is orthogonal, then by Schur's lemma, the C_i are homotheties:

$$\Sigma[\mu_{\mathcal{O}}] = \sum_{i=1}^{m} \sigma_i^2 \Pi[V_i] \quad \text{where} \quad \sigma_i^2 = \frac{\left\| \Pi[V_i](x_0) \right\|^2}{\dim(V_i)}.$$

This shows that, in general, important quantities are:

- The variance $\mathbb{V}[\|\mu_{\mathcal{O}}\|]$, a measure of *deviation from orthogonality* of \mathcal{O}
- The ratio $\sigma_{\max}^2/\sigma_{\min}^2$, a measure of homogeneity of \mathcal{O} .

Proof of robustness - Orthonormalization 23/16 (2/2)

Proposition: Let $\mathcal{O} \subset \mathbb{R}^n$ be the orbit of a representation, potentially non-orthogonal, $\mu_{\mathcal{O}}$ its uniform measure, $\overline{\Pi[\langle \mathcal{O} \rangle]}$ the projection on its span, and $\sigma_{\max}^2, \sigma_{\min}^2$ the top and bottom nonzero eigenvalues of $\Sigma[\mu_{\mathcal{O}}]$.

Besides, let ν be a measure, $\Sigma[\nu]$ its covariance matrix, $\epsilon > 0$ and $\Pi_{\Sigma[\nu]}^{>\epsilon}$ the projection on the subspace spanned by eigenvectors with eigenvalue at least ϵ .

If $W_2(\mu_{\mathcal{O}},\nu)$ is small enough, we have the following bound between the pushforward measures after Step 1:

$$\begin{split} & W_{2}\left(\sqrt{\Sigma[\mu_{\mathcal{O}}]^{+}}\Pi[\langle\mathcal{O}\rangle]\mu_{\mathcal{O}}, \ \sqrt{\Sigma[\nu]^{+}}\Pi_{\Sigma[\nu]}^{>\epsilon}\nu\right) \\ & \leq 8(n+1)^{3/2}\left(\frac{\sigma_{\max}^{3}}{\sigma_{\min}^{3}}\right)\left(\frac{W_{2}(\mu_{\mathcal{O}},\nu)}{\sigma_{\min}}\right)^{1/2}\left(\left(\frac{\mathbb{V}[\|\mu_{\mathcal{O}}\|]}{\sigma_{\min}^{2}}\right)^{1/2}+\frac{W_{2}(\mu_{\mathcal{O}},\nu)}{\sigma_{\min}}\right)^{1/2}. \end{split}$$

Proof: Consequence of Davis-Kahan theorem, together with

$$\left\|\Sigma[\mu_{\mathcal{O}}]^{-1/2} - \Sigma[\nu]^{-1/2}\right\|_{\text{op}} \le \frac{\sqrt{2}}{\sigma_{\min}^2} \cdot \left(2\mathbb{V}\left[\|\mu_{\mathcal{O}}\|\right]^{1/2} + W_2(\mu_{\mathcal{O}},\nu)\right)^{1/2} \cdot W_2(\mu_{\mathcal{O}},\nu)^{1/2}.$$

LiePCA operator: Say we observe $X = \{x_1, \ldots, x_N\} \subset \mathbb{R}^n$, assumed close to \mathcal{O} .

Define
$$\Lambda: \mathcal{M}_n(\mathbb{R}) \to \mathcal{M}_n(\mathbb{R})$$
 as $\Lambda(A) = \frac{1}{N} \sum_{1 \le i \le N} \widehat{\Pi} [\mathcal{N}_{x_i} X] \cdot A \cdot \Pi [\langle x_i \rangle]$

where • $\widehat{\Pi}[N_{x_i}X]$ are estimations of projection matrices onto the normal spaces $N_{x_i}\mathcal{O}$, • $\Pi[\langle x_i \rangle]$ the are projection matrices on the lines $\langle x_i \rangle$.

Explanation: On the one hand, $\mathfrak{sym}(\mathcal{O}) = \{A \in \mathcal{M}_n(\mathbb{R}) \mid \forall x \in \mathcal{O}, Ax \in \mathcal{T}_x\mathcal{O}\}$. Thus,

$$\mathfrak{sym}(\mathcal{O}) = \bigcap_{x \in \mathcal{O}} S_x \mathcal{O}$$
 where $S_x \mathcal{O} = \{A \in \mathcal{M}_n(\mathbb{R}) \mid Ax \in \mathcal{T}_x \mathcal{O}\}$

On the other hand, considering only X, one has

$$\bigcap_{i=1}^{N} S_{x_i} \mathcal{O} \approx \ker \left(\sum_{i=1}^{N} \Pi \left[(S_{x_i} \mathcal{O})^{\perp} \right] \right),$$

Last, the authors showed that $\Pi[(S_{x_i}\mathcal{O})^{\perp}](A) = \Pi[N_{x_i}\mathcal{O}] \cdot A \cdot \Pi[\langle x_i \rangle].$

24/16(2/4)

Ideal Lie-PCA: Suppose that \mathcal{O} is an orbit of the representation $\phi \colon G \to M_n(\mathbb{R})$, and $\mu_{\mathcal{O}}$ its uniform measure. We define

$$\Lambda_{\mathcal{O}}(A) = \int \Pi \left[\mathbf{N}_{x} \mathcal{O} \right] \cdot A \cdot \Pi \left[\langle x \rangle \right] \mathrm{d}\mu_{\mathcal{O}}(x).$$

<u>**Proposition:**</u> Its kernel is equal to $\mathfrak{sym}(\mathcal{O})$. Moreover, when $\mathcal{O} = S^{n-1}$, its nonzero eigenvalues are exactly δ_n and δ'_n where

$$\delta_n = \frac{2(n-1)}{n(n(n+1)-2)}$$
 and $\delta'_n = \frac{1}{n}$.

Proof: Show that $\Lambda_{\mathcal{O}}$ is equivariant with respect to the action of G by conjugation:

$$\phi(g)\Lambda(A)\phi(g)^{-1} = \Lambda\left(\phi(g)A\phi(g)^{-1}\right)$$

Then use Schur's lemma.

Empirical observation: More generally, the nonzero eigenvalues of $\Lambda_{\mathcal{O}}$ belong to $[1/n^2, 1/n]$ when \mathcal{O} is homogenous, i.e., $\sigma_{\max}^2/\sigma_{\min}^2 = 1$.

Stability: Comparing

$$\Lambda(A) = \sum_{1 \le i \le N} \widehat{\Pi} \big[\mathcal{N}_{x_i} X \big] \cdot A \cdot \Pi \big[\langle x_i \rangle \big] \quad \text{and} \quad \Lambda_{\mathcal{O}}(A) = \int \Pi \big[\mathcal{N}_x \mathcal{O} \big] \cdot A \cdot \Pi \big[\langle x \rangle \big] \mathrm{d}\mu_{\mathcal{O}}(x).$$

amounts to quantifying the quality of normal space estimation. We use local PCA:

$$\widehat{\Pi}\big[\mathbf{N}_{x_i}X\big] = I - \Pi_{x_i}^{l,r}[X],$$

where $\Pi_{x_i}^{l,r}[X]$ is the projection matrix on any l top eigenvectors of the *local covariance matrix* $\Sigma_{x_i}^r[X]$ centered at x_i and at scale r, itself defined as

$$\Sigma_{x_i}^r[X] = \frac{1}{|Y|} \sum_{y \in Y} (y - x_i) (y - x_i)^\top,$$

where $Y = \{y \in X \mid ||y - x_i|| \le r\}$, the set input points at distance at most r from x_i .

Measure-theoretic formulation: If μ is a measure on \mathbb{R}^n , we define its *local covariance matrix* centered at x at scale r as

$$\Sigma_x^r[\mu] = \int_{\mathcal{B}(x,r)} (y-x)(y-x)^\top \frac{d\mu(x)}{\mu(\mathcal{B}(x,r))}$$

24/16(3/4)

24/16(4/4)

Bias-variance tradeoff: Let $\mu_{\mathcal{M}}$ be measure on a submanifold $\mathcal{M} \subset \mathbb{R}^n$ of dimension $l, x \in \mathcal{M}, \nu$ a measure on \mathbb{R}^n and $y \in \operatorname{supp}(\nu)$. We decompose

$$\frac{\left\|\frac{1}{l+2}\Pi[\mathbf{T}_{x}\mathcal{M}] - \frac{1}{r^{2}}\Sigma_{y}^{r}[\nu]\right\|_{\mathbf{F}}}{\left\|\frac{1}{l+2}\Pi[\mathbf{T}_{x}\mathcal{M}] - \frac{1}{r^{2}}\Sigma_{x}^{r}[\mu_{\mathcal{M}}]\right\|_{\mathbf{F}}} + \underbrace{\left\|\frac{1}{r^{2}}\Sigma_{x}^{r}[\mu_{\mathcal{M}}] - \frac{1}{r^{2}}\Sigma_{y}^{r}[\mu_{\mathcal{M}}]\right\|_{\mathbf{F}}}_{\text{spatial stability}} + \underbrace{\left\|\frac{1}{r^{2}}\Sigma_{y}^{r}[\mu_{\mathcal{M}}] - \frac{1}{r^{2}}\Sigma_{y}^{r}[\mu_{\mathcal{M}}]\right\|_{\mathbf{F}}}_{\text{measure stability}}$$

Lemma: If the parameters are chosen correctly, this is

$$\lesssim r + ||x - y|| + \left(\frac{W_2(\mu, \nu)}{r^{l+1}}\right)^{\frac{1}{2}}.$$

Corollary: We deduce a bound between Lie-PCA operators:

$$\|\Lambda_{\mathcal{O}} - \Lambda\|_{\mathrm{op}} \le \sqrt{2}\rho \left(r + 4\left(\frac{W_2(\mu_{\mathcal{O}}, \mu_X)}{r^{l+1}}\right)^{1/2}\right).$$

Proof of robustness - rigidity of Lie subalgebras

25/16

In Step 3, we consider the bottom eigenvectors A_1, \ldots, A_d of Lie-PCA, and solve

$$\min \sum_{i=1}^d \|\Lambda(A_i)\|^2 \quad \text{s.t.} \quad \langle A_1, \dots, A_d \rangle \in \mathcal{G}^{\text{Lie}}(G, \mathfrak{gl}(n)).$$

with $\mathcal{G}(G, \mathfrak{so}(n))$ the subspace of $\mathfrak{so}(n)$ consisting of the Lie subalgebras pushforward of G by a representation.

The set $\mathcal{G}(G, \mathfrak{so}(n))$ has many connected components, one for each *orbit-equivalence* class of representations. We want to make sure that the minimizer belongs to the correct connected component.

The distance from $\langle A_i \rangle_{i=1}^d$ to \mathfrak{h} must be lower than the *reach* of $\mathcal{G}(G, \mathfrak{so}(n))$. In this context, it is called *rigidity*: $\Gamma(G, n) = \inf \|\Pi[\mathfrak{h}]\Pi[\mathfrak{s}^{\perp}]\|^2$ s.t. $\mathfrak{h} \in \mathcal{G}^{\operatorname{Lie}}(G, \mathfrak{gl}(n)), \mathfrak{s} \in \mathcal{G}^{\operatorname{Lie}}(H, \mathfrak{gl}(n)), s \neq \mathfrak{h}.$

<u>Lemma</u>: Consider the subset of $\mathcal{G}(G, \mathfrak{so}(n))$ with weights at most ω_{\max} . Then

 $\Gamma(G, n, \omega_{\max}) \ge 4/(n\omega_{\max}^2).$

Left: empirical estimation of the minimal non-symmetric Hausdorff distance $d_H(\widehat{\mathcal{O}}_x^1|\widehat{\mathcal{O}}_x^2)$ between two orbits of a same initial point x for two non-orbit equivalent representations ϕ_1, ϕ_2 of a compact Lie group G in \mathbb{R}^n . The minimal value is approximately 0.35.

Right: same for the symmetric Hausdorff distance $d_H(\widehat{\mathcal{O}}_x^1, \widehat{\mathcal{O}}_x^2)$. The minimal value is 0.42.

Running time and convergence

27/16

Running time (in seconds or minutes) and success rate (percentage) of full execution of LieDetect, as a function of the input group, and the dimension of the ambient Euclidean space. The input of the algorithm is a point cloud sampled from the uniform measure on an orbit chosen randomly.

For the Abelian groups SO(2), T^2 , and T^3 , the representations are considered up to a maximal frequency, 100 runs of the algorithm are performed, and the results are averaged. For SU(2), 10 runs have been performed.

Dimension	4	6	8	10
Running time	$0.04 \mathrm{s}$	0.05s	0.08s	0.14s
Success	100.0%	100.0%	100.0%	100.0%

Dimension	6	8	10
Running time	0.24s	0.63s	4.03s
Success	82.0%	100.0%	98.0%

(a) $SO($	(2)
-----------	-----

(b) T^2

Dimension	8	10
Running time	1.44s	5.98s
Success	100.0%	100.0%

(c) T^{3}

Dimension	4	5	7	8	9	10
Running time	0.6s	5.04s	$4 \min 21 s$	$13\min7s$	$16\min 9s$	$10\min53s$
Success	100.0%	100.0%	90.0%	100.0%	100.0%	100.0%

(d) SU(2)