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Pixel permutations 2/16

Rotations of m x m RGB image  Embedding in R™*™*3 Projection in eigenplanes

Eigenvalues of the point cloud’s covariance matrix:

311.2, 311.2, 221.3, 221.3, 82.3, 82.3, 79.4, 794,

In these eigenplanes, the orbit is close to
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Three-body problem 3/16

In 1975, Roger Broucke found several periodic orbits.

Let x1(t), x2(t), 3(t) be the three bodies, and define z(t) = (z1(t), z2(t), z3(t)) € RO,

Orbit A3

Trajectory of x1, 22, T3 Trajectory of z Reconstructed orbit of SO(2)
(found by integration)




Formulation of the problem 4/16

Input: A point cloud X ={x;...,xny} C R".
Output: A compact Lie group (G, a representation ¢ in R”, and an orbit O close to X.
Orbit of SO(2) in RS Orbit of 7% in R® Orbit of SO(3) in R?
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Input: S '
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Output:




Definitions 5/16 (1/5)

A Lie group is a smooth manifold endowed with a group operation, and such that (g, h) — gh™! is smooth.

e GL,(R) general linear group: the n x n invertible matrices.

e O(n) orthogonal group: the n x n orthogonal matrices (A" = A~1).

e SO(n) special orthogonal group: the n X n orthogonal matrices with determinant +1.
o U(n) unitary group: n X n (complex) unitary matrices (A* = A™1).

e SU(n) special unitary group: n x n (complex) unitary matrices with determinant +1.
AL d-torus: the product SO(2) x --- x SO(2).

A (real) representation of dimension n is a smooth homomorphism ¢: G — GL,(R).

e If G is a matrix group, the natural embedding G — GL,, (R) is a representation.

e For G = S0O(2) and w € Z, one has 6 — cgsw@ —sinwd :
sinwf  coswb



Definitions 5/16 (2/5)

A representation ¢: G — GL,(R) is irreducible (irrep) if no non-trivial subspace V' C R" is stabilized.

Fact: Every representation ¢ is equivalent to a sum of irreps. That is, one has a decomposition R"” = Vi ®- - -® Vi,
irreps ¢;: G — V; and a change of basis A € GL,(R) such that

APA™ =1 @ D ¢y

Irreps can be explicitely enumerated:

¢ SO(2)  the 0+ R(wh) for w € Z\ {0}, where R(6) (COS@ — o 9).

sin cosf@

o T the (6;)%, — R(X%_, wib;) for (w;)%, € Z\ {0}.
e SO(3) one irrep in R™ for n odd.

o SU(2) one irrep in R"™ for n odd or n =0 mod 4.



Definitions 5/16 (3/5)

The orbit of o € R™ under a representation ¢: G — GL,(R) is O = {¢(g)xo | g € G}.

Example: Orbits of SO(2) in R?*.
Let us write ¢ ~ ¢, ® -+ ® ¢, . The orbit is made of the points

(coswlﬁ — sin w16 \
sinwif coswif

COS woll — sin woyl
o(0)xy = sinwqf  cos wyf T

coswif —sin w0
K sin w0 coswﬁ)

O

®(1,0) ®(2,5) b(3,5) ®(2,3,11) ?(2,3,4,11)



Definitions 5/16 (4/5)

The orbit of o € R™ under a representation ¢: G — GL,(R) is O = {¢(g)xo | g € G}.

Example: Orbits of T2 in R?*.

Let us write

=0/ m\ D@ 0
) )

EONNINEY
One builds the integer matrix of weights (W}Q) Yk )
wl LY




Definitions 5/16 (5/5)

The orbit of o € R™ under a representation ¢: G — GL,(R) is O = {¢(g)xo | g € G}.

Example: Orbits of SO(3) and SU(2) in R".

SO(3) has a finite number of (equivalence classes) of representations in R™: one for each decomposition
n=w;+- -+ wk

where the w; are odd.

For SU(2), one can also use multiples of 4.

¢(5) in R5 ¢(3’4) in R7 gb(g) in RS



Orbit-equivalence of representations 6,16

Say we observe an orbit O of a representation ¢;: G — GL,(R), and we want to find ¢ .

Identifiability problem: another representation ¢, may generate O.

cosf) —sinf cos 260 —sin 26
1: 6 — (Siné’ 0089) P21 0 (sin29 00829)

The representations are said orbit-equivalent if there exists a A € GL,,(R) such that for all o € R™,
{A¢1(9)A™ w0 | g € G} = {$2(9)z0 | g € G} .

TV TV

orbit of xg under A¢p; A—1 orbit of zg under ¢

The orbit-equivalence classes of representations of:
e SO(2) in R?* are the (increasing and positive) primitive k-tuples of integers.

o T in R2* are the primitive d-dimensional lattices in Z*.

For SO(3) and SU(2), equivalence and orbit-equivalence coincide.



Derived representation 7/16 (1/2)

A Lie group G admits a Lie algebra, denoted g. It is a vector space endowed with a Lie bracket g x g — g.

For G C M,,(R), g is the tangent space of G at identity, and the bracket is the commutator [A, B] = AB — BA.

e GL,(R) gl(n) is the set of n x n matrices.

e SO(n) s0(n) is the set of n x n skew-symmetric matrices.

oI t™ is the set of 2n x 2n skew-symmetric matrices that are 2 x 2 block-diagonal.

One has an exponential map exp: g — G. Is it surjective when G is connected and compact.



Derived representation 7/16 (2/2)

Given a representation ¢: G — GL,(R), one builds the derived homomorphism d¢:

G . GL,(R)
exp/l\ /[\exp
d
g ’ > gl(n)

We call d¢(g) the pushforward Lie algebra. It is a subalgebra of gl(n).

Fact: Two representations ¢1, ¢o are orbit-equivalent iff there exists A € GL,,(R) such that

Ade1(g)A™" = doa(g).

Moduli space of Lie algebras: This is an invitation to work in

GHe(daltn)) o

where GY¥¢(d, gl(n)) is the Grassmannian of d-dimensional Lie subalgebras of gl(n), acted upon by GL, (R).



Symmetry algebra through LiePCA 8/16 (1/3)
Denote h = d¢(g). There exists a intermediate space between d¢(g) C gl(n).
G 5 $(G) C Sym(O) C GL,(R)
exp/l\ exp exp/[\ exp/[\
g ——— do(g) C sym(0) C gl(n)
Symmetry group: Symmetry algebra:
Sym(O) = {P € GL,(R) | PO = O} sym(O) = {P € gl(n) | exp(P) € Sym(O)}

Temporary hypothesis: We will suppose that d¢(g) = sym(O).

Good news: shm(QO) can be estimated from O.

[Cahill, Mixon, Parshall, Lie PCA: Density estimation for symmetric manifolds, 2023|



Symmetry algebra through LiePCA 8/16 (2/3)

LiePCA operator: Say we observe X = {z1,...,zny} C R", assumed close to O.

Define A: M, (R) — M, (R) as A(A) = % Z ﬁ[inX] AT ()]

where o II [inX } are estimations of projection matrices onto the normal spaces N, O,
o |I

[(x;)] the are projection matrices on the lines (z;).
Lemma: ker A =~ sym(O).

Eigenvalues of LiePCA operator

0 5 10 15
Index of eigenvalue

Define f)\ as the subspace of gl(n) spanned by the d bottom eigenvectors of A.




Symmetry algebra through LiePCA 8/16 (3/3)

What can go wrong: 6 is estimated as if it were a vector subspace.

e It may not be a Lie algebra (A, B € f)\ — AB - BA€ 6)
e [t may not come from a compact Lie group.

e We still do not know what is the representation.

exact f]\ inexact b

We wish to find the Lie algebra closest to E The problem reads

min {d(f)\, V)|V e gLie(dag[(n))} :



Closest Lie algebra 9/16 (1/6)

Remember that d¢(g) C shm(QO) and ker A =~ sym(O) (LiePCA operator).

Case do(g) = sym(O): We compute the span  of bottom eigenvectors of A, and solve

min {d(ﬁ, V)|V e gLie(dag[(n))} :

Case do(g) € sym(O): We consider instead

min {Z IA(ADN|? | (A1,...,Ag) =V € gLie(dag[(n))}

2

Tentative implementation: Let us embed GY¢(d, gl(n)) < M,,2(R), the n? x n? matrices, via V ~ proj[V].

2 2

(P is an? x n? matrix,
P? =P,
min tr(A?P) such that ¢ PT = P,
rank(P) = d,
X \V/’L,]E[l,d], P(Pei-Pej—Pej-Pei):Pei-Pej—Pej-PeZ-.



Closest Lie algebra 9/16 (2/6)

Fix G and let G(G, gl(n)) be the d-dimensional Lie subalgebras of gl(n) that are pushforward of g.

The set g(G, g[(n))/

GL,(R) is in correspondence with the orbit-equivalence classes of reps of G in R".
n

Let otb(G,n) denote a choice of representatives.

Lemma: The optimization problem is equivalent to

d
minz HA(Adiag(Bf)gzlA_l) H2 such that

1=1

(Bl,...,BP) € otb(G,n),
A € GL,(R),

Any representation ¢: G — GL,,(R), up to a change of basis, decomposes as ¢ = ¢1 B - - - & ¢,,.
By denoting B* = d¢;(g), the element d¢(g) of otb(G,n) is associated to (B?,..., BP).



Closest Lie algebra 9/16 (3/6)

Fix G and let G(G, gl(n)) be the d-dimensional Lie subalgebras of gl(n) that are pushforward of g.

The set g(G, g[(n))/

GL,(R) is in correspondence with the orbit-equivalence classes of reps of G in R".
n

Let otb(G,n) denote a choice of representatives.

Lemma: The optimization problem is equivalent to

d
minz HA(Adiag(Bf)gzlA_l) H2 such that

1=1

{(Bl, ..., BP) € otb(G, n),

A cGHEAR),
A € O(n)

Any representation ¢: G — GL,,(R), up to a change of basis, decomposes as ¢ = ¢1 B - - - & ¢,,.
By denoting B* = d¢;(g), the element d¢(g) of otb(G,n) is associated to (B?,..., BP).

Orthonormalization trick: After a pre-processing step, we can reduce the program to A € O(n).




SO(2)-orbit in R*

Rep

Score

(1,2)

(1,3)

(1,4)

(2,3)

(34)

+1:0.020
—1:0.001

+1:0.017
—1:1x107°

+1:0.014
—1:4x104

+1:0.020
—1:0.004

+1:0.022
—1:0.005

0.04 -

0.02 A

0.00

Closest Lie algebra

Generated orbit - du(X | Ox) = 1.164

Weights (1, 2) - Determinant +1 - Final cost 2.00e-02

9/16 (4/6)

Lie algebra

’_\




Closest Lie algebra 9/16 (5/6)

.. 7 . '
SU(2)-orbit in R Generated orbit - dy(X | Ox) = 1.739 Lie algebra

(]
Rep Score \.‘) \*) \“)
|
+1:0.008 IR
(3) HH.? " .‘i v ,;u, ?\ 3& +
\“.) \.j

(4) |+1:0.013

(5) |+1:0.003

(3,3) | +1:0.003

(34) +1:3x107°

(7) |41 :0.005

'-g[g-.... ,‘ I ... .. !
Representation (1, 1, 1, 1, 3) - Determinant +1 - Final cost 8.67e-03

0.02 }\
0.00




Closest Lie algebra 9/16 (6/6)

Reformulation of the optimization program:

min {d(ﬁ, V)|V e gLie(dag[(n))} :

reduces to:
e SO(2) two-sided orthogonal Procrustes problem — reduction of skew-symmetric matrix
A simultaneous reduction of d skew-symmetric matrices — optimization over O(n)

e SO(3), SU(2) no reduction found



Orthonormalization 10/16

Fact: If G is compact, for every representation G — GL,,(R), there exists M positive-definite such that
Vg € G, Mp(g)M 1 € O(n).

Given an orbit O = G - xg, consider the Haar measure pqg, and define the covariance matrix
T
S(0] = [ (6lg)e0) (6la)e0) dnclo)

M is found as the square root of the Moore-Penrose pseudo-inverse:

M[O] = /Z[O]F.

Given a sample X, we build 3[X] = + Zi\le r;z; and M[X] = /3[X]*.

Example: With M = %diag(l, 1/2,1,1),

2sint cost sin4t  cos4t

: t —(1/2)sint 4t —sin4dt
&: t|—>d1ag((cos (1/2) sin >7(COS S )), O = {(cost,2sint,cos4t,sin4t) | t € [0, 2m)}.

cost sin t) (COS 4t  — sin4t

_f1 : :
sint cost sindt  cosdt ) ), MO = {ﬁ(cost,smt,cos 4t,sin4t) | t € [0,27r)}.

MoM~—1:t— diag((



The algorithm 11/16 (1/4)

Input: A point cloud X = {x;...,xny} C R" and a candidate Lie group G.
Output: A representation ¢ of G in R™, and an orbit O close to X.

Step 1 (Orthonormalization): Reduce the dimension and orthonormalize the orbit.
Step 2 (LiePCA): Diagonalize the operator A: M, (R) — M, (R).

Step 3 (Closest Lie algebra): Estimate f]\ through an optimization over O(n).

Step 4 (Distance to orbit): Choose a = € X, generate O, = exp(f)\) - and verify that it is close to X.

In Step 4, we compute the (non-symmetric)
Hausdorff distance dg (X ](91,)




The algorithm 11/16 (2/4)

Input: A point cloud X = {x;...,xny} C R" and a candidate Lie group G.
Output: A representation ¢ of G in R™, and an orbit O close to X.

Step 1 (Orthonormalization): Reduce the dimension and orthonormalize the orbit.
Step 2 (LiePCA): Diagonalize the operator A: M, (R) — M, (R).
Step 3 (Closest Lie algebra): Estimate f)\ through an optimization over O(n).

Step 4 (Distance to orbit): Choose a = € X, generate O, = exp(ﬁ) - and verify that it is close to X.

Step 4’ (Distance to noisy orbit): Build the measure pz5 = % > wex Mo and verify that it is close to px.

In Step 4, we compute the (non-symmetric)
Hausdorff distance dg (X ](93;)

In Step 4’, we compute the Wasserstein dis-
tance Wy (,uX, ,u@).




The algorithm

Example: Embed SO(3) — R? and sample 3000 points on it.

LiePCA shows a kernel of dimension 6.

This is consistent with Isom(SO(3)) ~ SO(3) x SO(3) x {£1}

Eigenvalues of LiePCA operator

o 0L cevervterrrrrrere — 'W
§ povevtttrrrrterrettrrreed
N sssns
0 10 20 30 40 50 &0 70 80
Index of eigenvalue
We look for an action of SO(3) or SU(2). Step 3 yields
Representation (3,5) (3,3,3) | (4,5) | (8) (5) (7)
Cost | 2 X 107° | 4 x 10~° | 0.001 | 0.001 | 0.03 | 0.004
Representation (9) (3,3) (3,4) | (4,4) | (3) (4)
Cost 0.004 0.006 0.007 | 0.009 | 0.011 | 0.013

Representation (3,5): dy (X|(’3x) ~ 2.658. However, dy (@m|X) ~ (0.543.

Representation (3,3,3): dg (X]@x) ~ 0.061.

11/16 (3/4)



The algorithm 11/16 (4/4)

Example: Embed SO(3) — R? and sample 3000 points on it.

LiePCA shows a kernel of dimension 6.
This is consistent with Isom(SO(3)) ~ SO(3) x SO(3) x {£1}

Eigenvalues of LiePCA operator

o 0L cevervterrrrrrere — "-N'H'O"""
§ povevtttrrrrterrettrrreed
N sl
0 10 20 30 40 50 &0 70 80
Index of eigenvalue
We look for an action of SO(3) or SU(2). Step 3 yields
Representation (3,5) (3,3,3) | (4,5) | (8) (5) (7)
Cost | 2 X 107° | 4 x 10~° | 0.001 | 0.001 | 0.03 | 0.004
Representation (9) (3,3) (3,4) | (4,4) | (3) (4)
Cost 0.004 0.006 0.007 | 0.009 | 0.011 | 0.013

Representation (3,5): dy (X|(’3x) ~ 2.658. However, dy ((51.|X) ~ (0.543.

action SO(3) ~ SO(3) by conjugation (not transitive)

Representation (3,3,3): dg (X]@x) ~ 0.061.
action SO(3) ~ SO(3) by translation (transitive)




Input:

Model:

Step 1:

Step 2:

Step 3:

Step 4:

Goal:

Robustness

X ={z1...,2n} CR" and G compact.

X sampled close to an orbit O of a
representation ¢: G — R"

Orthonormahzatmn via

X +— /X HE[X]

Diagonalize the operator
At A 25N TIN,, X - A-TI[(z5)]

Solve arg min Zle IA(A)])?
with (4;)%, € V(G s0(n))

Output@ —{exp x\AEf)}

Show that @x is close to O

12/16 (1/5)



Input:

Model:

Step 1:

Step 2:

Step 3:

Step 4:

Goal:

Robustness 12/16 (2/5)

X ={z1...,2n} CR" and G compact.

X sampled close to an orbit O of a
representation ¢: G — R"

Orthonormahzatmn via

X +— /X HE[X]

Diagonalize the operator
At A 25N TIN,, X - A-TI[(z5)]

Solve arg min Zle IA(A)])?
with (4;)%, € V(G s0(n))

Output@ —{exp x\AEf)}

Show that @x is close to O

1 measure on R™. E.g., ux empirical measure on X

1o uniform measure on O

pos= /Bt H;fu]

Alu): A [D TN, X] - AT ()] dp

argminzz 1 [[Ap] (A%
with (4;)%, € VH¢(G, s0(n))

ng, =exp(h) -

X

Show that W (,u @m,,u@) is small



Robustness 12/16 (3/5)

Theorem: Under technical assumptions (sufficiently small Wy (,u X, ,u@)), for a certain choice of parameters,

the algorithm outputs a representation q? that is orbit-equivalent to ¢.

Let [ = dim O. The output measure ug satisfies

Wa (11, o) < constant - Wa (pux, o)

In addition, for all x € X, the output orbit @x satisfies

dg (@x, (9) < constant - d(z, Q) + constant - Wy (MX; u@)1/4(l+3).



Robustness 12/16 (4/5)

Theorem: Let G be a compact Lie group of dimension d, O an orbit of an almost-faithful representation
¢: G — R", potentially non-orthogonal, and [ its dimension. Let uo be the uniform measure on O, and pz5
that on the orthonormalized orbit. Let X C R™ be a finite point cloud and px its empirical measure.

Let 5, f)\, (5:6 and p5 be the output of the algorithm. Under technical assumptions, q/g is equivalent to ¢, and

o 1/2
w
HH[A IT|shym(O H!F<9d>\(r+4(rl+l> )

R 1/2 ~ N\ 1/2\ 1/2
du (05, 0) < V2d:9) +3\/dn(3) (r+4( - ) )
: A ritl

Umln

1 Wa(ux, o) o H2 o\
WQ(:“@?:“J@)S /2 O + 3 r+4 WESY

where

¢ p= 161(1 + 2)6! max(vol(©), vol(O)~1) / min(1, reach(O)),

2
max’ mln

3 b2 v[iwol] \ 2
w=4(n+ 1)3/2 (—Z‘?'ﬁ"‘) (w(v + w)) with w = WQ(O’_"LO.’“X) and v = ( . ) ;

min min

L o) the top and bottom nonzero eigenvalues of the covariance matrix X[uop],

e 1 is the radius of local PCA (estimation of tangent spaces),

e )\ the bottom nonzero eigenvalue of the ideal Lie-PCA operator Ap.



Robustness 12/16 (5/5)

Technical assumptions: Define the quantities

o — Wapo, px) - (M)m,

) 2
Omin

Omin

~

() ae) ()R

v = (4(2d + 1)\/5)_1 ‘A -T(G,n,wmax) (rigidity constant of Lie subalgebras)

Suppose that w is small enough, so as to satisfy

1\ /2 o2 1\ 30+ ~L+3 y 1+1
2 max ~ .
v ((#e3) o)/ GeanZe). asm{(G) T (mr) )

Choose two parameters € and r in the following nonempty sets:

= ((2U+w)war2nin7 lafnin], re [(6,0)2 SAGES (6,0)1] N [(4/V)2/(l+1) ot/ ’Y]-

2

Moreover, we suppose that
e the minimization problems are computed exactly,
e shm(QO) is spanned by matrices whose spectra come from primitive vectors of coordinates at most wpax,

e the candidate Lie group has Lie algebra ~ sym(O).



Orientation estimation 13/16 (1/3)

(1) Take a m x m X m image. (2) Generate several rotations to  (3) Project X in R™ via PCA.
get a point cloud X C R™*™mx™,

Problem: given x € X, estimate the unit vector F/(z) € R? that points toward the armadillo’s head.
We define train/test sets of 90%/10%.




Orientation estimation 13/16 (2/3)

Conventional solution: Train a SVM.

Orthogonal coordinates: Our algorithm detect a SO(3)-orbit in R® that is close to X: dg (X, O) ~ 0.1909.

SO(3) S GLn(R)
50(3) a¢ > gl(n)

The orbit is O = {¢(g) - x¢ | g € G}. Every x € X can be pulled back to so(3) via

Min.cgo(3) |z — ¢(exp(c)) - xo|-




Orientation estimation 13/16 (3/3)

Conventional solution: Train a SVM.

Orthogonal coordinates: Our algorithm detect a SO(3)-orbit in R® that is close to X: dg (X, O) ~ 0.1909.

SO(3) S GLn(R)
50(3) a¢ > gl(n)

The orbit is O = {¢(g) - x¢ | g € G}. Every x € X can be pulled back to s0(3) via

MiNceso(3) | — @lexp(c)) - -

Model MSE on test data
SVM in dimension 3 0.4003
SVM in dimension 4 0.2496
SVM in dimension 5 0.1295
SVM in dimension 6 0.0380
SVM in dimension 7 0.0148
SVM in dimension 8 0.0119
SVM in dimension 9 0.0114
SVM in dimension 10 0.0122
SVM on orthogonal coordinates 0.0066




Conformational space of cyclooctane CgHqg 14/16 (1/3)

3 B L3

A conformer of cyclooctane can be seen as a point in R"? (3 x 24 = 72).

A collection of conformers yield a point cloud X C R"2.

[Martin, Thompson, Coutsias & Watson, Topology of cyclo-octane energy landscape, 2010]

Idea: check whether X lies close to a linear orbit of a Lie group.



Conformational space of cyclooctane CgHqg 14/16 (2/3)

Unaligned confomers: We generate 10,000 cyclooctane confomers without aligning them.

Projected in dimension 3, we see

** a cylinder surrounded by a circle.

0.0

-02 X is projected onto R* and orthonormalized.
After discarding 15% of the outliers (gray),
two clusters appear. We take the red one.

Eigenvalues of LiePCA operator

0.25 1 LiePCA has two small eigenvalues,
0.20 - suggesting a symmetry group of dim 2.
¢ 0.15 A
s 0.10 ~
We find a T?-orbit in R* close X:
0.05 7 du (X, 0) ~0.2.
0.00 47 e
0 5 10 15

Index of eigenvalue



Conformational space of cyclooctane CgHqg 14/16 (3/3)

Aligned confomers: We now generate 10,000 aligned confomers (AlignMolConformers in RDKit).

We see three components:
| s @ surface and two clusters.

After discarding 10% of the outliers (gray),
the points are grouped into three classes.
We keep the red class.

Eigenvalues of LiePCA operator

0-237 LiePCA has one small eigenvalue,
0.20 1 suggesting a symmetry group of dim 1.
qj.: 0.15
§ 0.10 . .1
' We find a SO(2)-action that stabilizes X.
0.05 1 Average distance: dg (Ox\X) ~ 0.1.
D.GG_.I- ............ L I.-.-.-..-.-.-I.
0 5 10 15

Index of eigenvalue



Equivariant neural networks 15/16

Consider a neural network V=1 LN Vo LN | AREAI _>fp‘1 V, = W.

Denote F; = f1--- f; and F = Fp_;.
Say G acts linearly on V', via ¢: G — GL(V).

The network is equivariant if there exists representations ¢;: G — GL(V;) such that Vx € V', Vg € G,
Fi(o(g)x) = di(g) Fi().

Experiment: Consider steerable CNNNs for several rotation groups R,,. We pick an image, and generate 500
rotations. In each of the layers, we apply our algorithm to find a linear-orbit of SO(2).

0.10 Orbits of SO(2) found in steerable CNNs

—&— R;
Ra
0.08 1 —¢— Rg
8 —&8— Ris
= - R
£ 0.06 - =
z
£
(=]
B 0.04
-
4+ ]
I
0.02 -
0.00 r
1 2 3 4 5 6

Layer



https://arxiv.org/abs/2309.03086

https://github.com/HLovisiEnnes/LieDetect

Thanks!



Next goals 17/16

Detection of actions via the induced representation on space of vector fields

G a > Diff(M)
exp/l\ exp
d
g (M)

Statistical guarantees to test the linear-orbit hypothesis.



Additional experiments: Pixel permutations 18/16 (1/3)

Rotations of m x m RGB image  Embedding in R™*™*3 Projection in eigenplanes

Eigenvalues of the point cloud’s covariance matrix:

0.155, 0.155, 0.11, 0.11, 0.041, 0.041, 0.04, 0.04, 0.038, 0.038, 0.026, 0.026,

In these eigenplanes, the orbit is close to

/,ul cos w16 \ (COS w1 —sinw0 \ (,ul\
(11 sin w16 sinw @ cosw,f 0
Lo COS Wyl CcoS w9ofl — sin woyf [4o
0 — | posinwof | = sin wyf  coswsyl 0
[L}: COS Wy, 0 coswpf —sin w6 [L);
L4} Sin w0 \ sinwid  cosw,.l ) \ 0 )



Additional experiments: Pixel permutations 18/16 (2/3)

Translations of m x m RGB image Embedding in R™*mx3

LN

.

Covariance matrix eigenvalues: 0.228, 0.228, 0.142, 0.142, 0.108, 0.108, 0.022, 0.022,

In these eigenplanes, the orbit is close to

>\ K1
) a
) M2
) — linear action of 7% on | 0
)
)

i

)) \ 0




Additional experiments: Pixel permutations

Rotations of m xm xm greyscale object Embedding in R™m>*mxm

18/16 (3/3)

Covariance matrix eigenvalues: 0.246, 0.239, 0.234, 0.058, 0.057, 0.056, 0.055, 0.054 ...

In these eigenplanes, the orbit is close to

o 92 93— linear action of SO(3) on

(1)

42
0

)



Additional experiments: Three-body problem 19/16 (1/2)

In 1975, Roger Broucke found several periodic orbits.

Let x1(t), x2(t), 3(t) be the three bodies, and define z(t) = (z1(t), z2(t), z3(t)) € RO,

Orbit A3

Trajectory of x1, 22, T3 Trajectory of z Reconstructed orbit of SO(2)
(found by integration)




Additional experiments: Three-body problem 19/16 (2/2)

In 1975, Roger Broucke found several periodic orbits.

Let x1(t), x2(t), 3(t) be the three bodies, and define z(t) = (z1(t), z2(t), z3(t)) € RO,

Orbit R2

Trajectory of x1, 22, T3 Trajectory of z Reconstructed orbit of SO(2)
(found by integration)




Step 3 - Case of SO(2) 20/16 (1/2)

Let G = SO(2), whose dimension is d = 1. The output h of LiePCA is a skew symmetric n x n matrix A.
Suppose that n is even. The representations of SO(2) in R™ take the form
R(wle)

B . _ [cosf —sind
¢(w1,...,wn/2)<9) - i R ) where R(9) = (Sine cos 0 )
Wn /2

and where (w1, ...,w, /2) e 7Z™?. In practice, we fix a maximal frequence wpx € N.

The corresponding pushforward Lie algebra is spanned by the matrix
L(w1)

By, wnn) = where L(w) = (O —Ow>
L(wn/g)

In this context, the minimization problem reads

(Wi, .-y why2) € VALES

min Hproj[A] — pTOJ[OB(wl,---,wnﬂ)OT]H 5.t {O € O(n).

This is equivalent to
(Wi, Wy 2) € VAIRS

O € O(n).

We recognize a two-sided orthogonal Procrustes problem with one transformation.

minHA:EOB(WL__"WH/Q)OTH S.t. {



Step 3 - Case of SO(2) 20/16 (2/2)

Example: We consider a representation of SO(2) in R with frequencies (2,4,5,7,8) and sample 600 points
on one of its orbits, that we corrupt with a Gaussian additive noise of deviation ¢ = 0.03.

We perform the minimization over all representations of SO(2) in R?, with parameter wy,a, = 10.

Reprosentation] (2,4,5,7,8)  (2,5,6.8,9) (3,5,7,9,10) (3,6,7,9,10) (3,5,6,8,9) (2,4,5,6,7)
Cost 0.028 0.032 0.037 0.037 0.038 0.044

Representation | (3,5,6,9,10) (2,5,7,9,10) (2,3,4,5,6) (2,5,6,9,10) (2,6,7,9,10) (3,5,6,8,10)
Cost 0.046 0.055 0.057 0.058 0.058 0.058

The correct representation is found.

The Hausdorff distance between the point cloud and the estimated orbit is dyg (X | (5) ~ 0.231.

b 0.75
" 0.50
" 0.25
" 0.00
F—0.25
F—0.50
—0.75

0.75
0.50




Step 3 - Case of T 21/16 (1/2)

Let G = T% the torus of dim d. The output of LiePCA is a d-tuple (A, ..., Aq) of skew symmetric matrices.
The representations of T¢ in R™ take the form

Doty (015, 00) = 51 bt i (05)

)wi/g)
N1<j<d . : i s :
where (w; )1<Z.<n/2 is a n/2 x d matrix with integer coefficients.
The push-forward Lie algebra is spanned by
B(w%,...,w;/zﬁ B(w%,...,wim)a SRR B(wf,...,wip)'

In this context, the minimization problem reads

. ‘ (j)léjﬁd EZn/2Xd,
proj[(Ai){y] = proj[(OB .y o JOTI-)|| st {

Wili1<i<n/2

O € O(n).

min ‘
This is linked to the simultaneous reduction of a tuple of skew-symmetric matrices.

Lemma: Denote by (p;)¢_; the coefficients of an optimal simultaneous reduction of the matrices (4;)%, in
normal form. Then the problem is equivalent to

mmzf(m W WREL) where 7o) = [/ lel - w/lol

(@) =1



Step 3 - Case of T¢ 21/16 (2/2)

Example: Let X be a uniform 750-sample of an orbit of the representation qb( 112) of the torus T? in RS.
121

We apply the algorithm with G = T restrict to representations with frequencies at most wmax = 2.

Representation | (3 51) (51%) (35 34) (158 (T54) (357
Cost 0.036 0.136 0.198 0.233 0.244 0.312
Representation | (3 5, %) (05 34) (557 (L 4d) (15%3) (151
Cost 0.331 0.348 0.388 0.447 0.457 0.472

The algorithm’s output is ((2) 1 %) It is equivalent to ¢( 112).
121

Moreover, the Hausdorft distance is dy (X ]@) ~ 0.071.




Testing several groups 22/16

When the underlying group is unknown, we can guess it from LiePCA or test several candidates.

Example: Let X be a 1500-sample of an orbit of the representation (1,5) of SU(2) in R°.

Eigenvalues of the Lie-PCA operator

0.2 1

0.0 -

We see a Lie algebra of dimension 3. One expects the torus T, SO(3) or SU(2).

Representation of SU(2) (1,5) (1,1,1,3) | (1,1,4) | (3,3)
Cost | 8.6 x 10~° 0.007 0.008 | 0.015

Representation of T é g §
Cost | 0.014

Representation (1,5): we get the (non-symmetric) Hausdorff distance dg (X ]@) ~ 0.062.

OO

Representation (é g ): we get the (non-symmetric) Hausdorff distance dg (X |(5) ~ 0.751.




Proof of robustness - Orthonormalization 23/16 (1/2)

Ideal covariance matrix: Suppose that O is an orbit of the representation ¢: G — M, (R), and pe the
uniform measure on it. With ¢ € O an arbitrary point, the covariance matrix can be written

Slpol] = / (6(9)70) - (¢(9)x0) ' dpc(g).

Now, let R" = @21 V; be the decomposition of ¢ into irreps, and denote as (11 [VZ} )i | the projection matrices
on these subspaces. We can decompose

S[pol ZZ@ where  C; = / ¢i(9) (H[VJJ (o) - TI[V;] (wo)T)cbi(g)TduG(g)-

If ¢ is orthogonal, then by Schur’s lemma, the C; are homotheties:

n H‘/z i) ’
z[u@]:;afn[m] where o7 = | (Eirj((%))“ .

This shows that, in general, important quantities are:

e The variance V[||no||], a measure of deviation from orthogonality of O

2

e The ratio 02, /o2. | a measure of homogeneity of O.



Proof of robustness - Orthonormalization 23/16 (2/2)

Proposition: Let O C R™ be the orbit of a representation potentially non-orthogonal, i1 its uniform measure,

the top and bottom nonzero eigenvalues of X{ue].

max’ mln

I1[(O)] the projection on its span, and o7

Besides, let v be a measure, X|v| its covariance matrix, € > 0 and H>6 the projection on the subspace spanned
Z[v]

by eigenvectors with eigenvalue at least e.

If Wo(po,v) is small enough, we have the following bound between the pushforward measures after Step 1:

WQ( S[pol M II[(O) po, VEWV|TIS v >

3 1/2 \V4 1/2 1/2
< 8(n + 1)3/2((07_r§1ax) (WQCEM_O’V)) (( QQMOH}) 4 Wga(,u?, I/)) .

Proof: Consequence of Davis-Kahan theorem, together with

5 1/2
[Sluo) ™2 =272 < UL (QV[|’MO|H1/2+W2(MO,V)> - Wa(po,v)?.



Proot of robustness - LiePCA 24/16 (1/4)

LiePCA operator: Say we observe X = {z1,...,zny} C R", assumed close to O.

Define A: M,,(R) — M, (R) as A(A) = % Z ﬁ[inx} A H[(a:z)]

where o II [inX } are estimations of projection matrices onto the normal spaces N, O,
o |I

[(x;)] the are projection matrices on the lines (z;).

Explanation: On the one hand, sym(O) = {4 € M,,(R) | Vz € O, Az € T,0}. Thus,

sym(0) = (] 5,0 where 5,0 = {A € M,(R) | Az € T,0}.
xcO
On the other hand, considering only X, one has

5.0~ e (f:nusmioﬂ),

1=1

Last, the authors showed that IT[(S,,0)*|(4) =II|N,, 0] - A -II|{z;)].



Proot of robustness - LiePCA 24/16 (2/4)

Ideal Lie-PCA: Suppose that O is an orbit of the representation ¢: G — M, (R), and pe its uniform measure.
We define

Ao(A) = /H[Nx(?} A T[] duo ().

Proposition: Its kernel is equal to shym(QO). Moreover, when O = S™~ 1, its nonzero eigenvalues are exactly &,
and J/ where

2(n — 1) and O

1
= 1) —2) "o

Proof: Show that Ay is equivariant with respect to the action of G by conjugation:

H(9)A(A)p(g) " = A(¢<g>A¢<g>1)

Then use Schur’s lemma.

Empirical observation: More generally, the nonzero eigenvalues of Ap belong to [1/n? 1/n] when O is
homogenous, i.e., o2, [o2. =1.

min



Proot of robustness - LiePCA 24/16 (3/4)

Stability: Comparing

A4 = Y AN, X]-A-T[(z;)]  and  Ao(A) = / IN,O] - A I[(z)]duo(x).

1<i<N
amounts to quantifying the quality of normal space estimation. We use local PCA:
[N, X] =T - 47[X],

where II5"[X] is the projection matrix on any [ top eigenvectors of the local covariance matriz X% [X] centered
at x; and at scale r, itself defined as

=5 ST

yeyY

where Y = {y € X | |ly — z;]| < r}, the set input points at distance at most r from z;.

Measure-theoretic formulation: If i is a measure on R", we define its local covariance matriz centered at
x at scale r as

T . —r T d:u( )



Proot of robustness - LiePCA 24/16 (4/4)

Bias-variance tradeoff: Let ua4 be measure on a submanifold M C R™ of dimension [, x € M, v a measure
on R™ and y € supp(v). We decompose

1 1
—II|T, — =7 <
“l—i—Z [ M] 72 1 F
1 1 1 1 1 1
T[T, M] — =X —yr B 5y —yr oy
Hl—|—2 [ M} 2 :c[:u./\/l] F+‘ 2 a:[:u./\/l] r2 y[:u./\/l] F+' r2 y[:u./\/l] 2 y[V] -
consi;;ency Spatial‘srtability measure‘rstability

Lemma: If the parameters are chosen correctly, this is

1
WQ(ny) 2
STJFHCU—?JHJF(T :

Corollary: We deduce a bound between Lie-PCA operators:

1/2
Ao = Allop < ﬁp(r +4(W2(“@’“X>) )

AN




Proot of robustness - rigidity of Lie subalgebras 25,16

In Step 3, we consider the bottom eigenvectors A, ..., Ay of Lie-PCA, and solve

d
min Y [JA(A)]7 st (AL, Ag) € GHO(G, gl(n)).
=1

with G(G, s0(n)) the subspace of so(n) consisting of the Lie subalgebras pushforward of G by a representation.

The set G(G,s0(n)) has many connected components, one for each orbit-equivalence class of representations.
We want to make sure that the minimizer belongs to the correct connected component.

(Ai)d,

h_.-°

The distance from (A4;)¢_, to h must be lower than the reach of G(G,s0(n)). In this context, it is called rigidity:

[(G,n) = inf [[I[BO[s]* st bheGHe(G,gl(n)),s € GX°(H,gl(n)),s £ b.

Lemma: Consider the subset of G(G,s0(n)) with weights at most wyax. Then

(G, n, wnax) > 4/(nw?

max)'



Typical distance between orbits 26,16

Minimal symmetric Hausdorff distance between orbits

Minimal non-symmetric Hausdorff distance between orbits 12
1.2 .
—e— 50(2) —&= S0(2)
107 o 72 , 0] - 7
S 3 = - T
§o0s{ * T s 0.8
o —o— sU(2) . - 5U(2)
o
+ 0.6 ¥ 0.6 A e ——®
S e S y ——_
. _ 2 - — —— ®
2044 T ——y —e 2 0.4
m m
- I
0.2 1 0.2 -
0.0 ) ) L] L) L) L) 1 0.0 ) ) L) L) 1 L ]
4 5 6 7 8 9 10 - 5 6 7 8 9 10
Dimension Dimension

Left: empirical estimation of the minimal non-symmetric Hausdorff distance dg (O%|O2) between two orbits
of a same initial point x for two non-orbit equivalent representations ¢, ¢o of a compact Lie group G in R".
The minimal value is approximately 0.35.

Right: same for the symmetric Hausdorft distance dy ((5{};, (532:) The minimal value is 0.42.



Running time and convergence

27/16

Running time (in seconds or minutes) and success rate (percentage) of full execution of LieDetect, as a function
of the input group, and the dimension of the ambient Euclidean space. The input of the algorithm is a point
cloud sampled from the uniform measure on an orbit chosen randomly.

For the Abelian groups SO(2), T2, and T?, the representations are considered up to a maximal frequency, 100
runs of the algorithm are performed, and the results are averaged. For SU(2), 10 runs have been performed.

Dimension 4 6 8 10 Dimension 6 8 10
Running time | 0.04s 0.05s 0.08s 0.14s Running time | 0.24s 0.63s 4.03s
Success | 100.0% 100.0% 100.0% 100.0% Success | 82.0% 100.0% 98.0%
(a) SO(2) (b) T*
Dimension 8 10
Running time | 1.44s 5.98s
Success | 100.0% 100.0%
(c) T°
Dimension 4 5 7 8 9 10
Running time 0.6s 5.04s  4min 21s 13min 7s 16min 95 10min 53s
Success | 100.0% 100.0% 90.0% 100.0% 100.0% 100.0%
(d) SU(2)



