Introduction aux classes de Stiefel-Whitney

Raphaël TINARRAGE Datashape, Inria Paris-Saclay

Ces notes sont basées sur [Mil75].

1 Fibrés vectoriels : définitions

Fibrés vectoriels. Soit X un espace topologique. Un fibré vectoriel ξ de dimension d sur X consiste en la donnée d'un espace topologique $A = A(\xi)$, l'espace total, d'une application continue $\pi = \pi(\xi) : A \to X$, l'application projection, et pour tout $x \in X$, d'une structure d'espace vectoriel sur $\pi^{-1}(\{x\})$. De plus, ξ doit satisfaire la condition de trivialisation locale : pour tout $x \in X$, il existe un voisinage U de x et un homéomorphisme $h: U \times \mathbb{R}^d \to \pi^{-1}(U)$ tel quel pour tout $y \in U$, l'application $z \mapsto h(y, z)$ définisse un isomorphisme d'espaces vectoriels entre \mathbb{R}^d et $\pi^{-1}(\{y\})$.

Les fibres $\pi^{-1}(\{x\})$ seront notées $F_x(\xi)$.

Isomorphismes de fibrés vectoriels (avec même base). Un isomorphisme de fibrés vectoriels ξ, η sur X est un homéomorphisme $f: A(\xi) \to A(\eta)$ qui envoie chaque fibre $F_x(\xi)$ isomorphiquement sur $F_x(\eta)$. On obient un diagramme commutatif

$$A(\xi) \xrightarrow{f} A(\eta)$$

$$\pi(\xi) \xrightarrow{\chi} \pi(\eta)$$

Le fibré trivial de dimension d sur X, noté $\epsilon = \epsilon_X^d$, est défini par $A(\epsilon) = X \times \mathbb{R}^d$, avec comme projection π la projection sur la première coordonnée, et où chaque fibre est munie de la structure d'espace vectoriel usuelle de \mathbb{R}^d . Un fibré vectoriel ξ sur X est dit trivial si il est isomorphe à ϵ .

Sections. Une section d'un fibré vectoriel ξ est une application continue $s: X \to A(\xi)$ telle que $\pi \circ s = \mathrm{id}$. On a un diagramme commutatif

$$A(\xi)$$

$$s \cap \chi \pi$$

$$id \longrightarrow X$$

Un section s est jamais nulle si pour tout $x \in X$, s(x) n'est pas nulle dans l'espace vectoriel $F_x(\xi)$. Une famille de sections $s_1, ..., s_d$ est indépendante si pour tout $x \in X$, les vecteurs $s_1(x), ..., s_d(x)$ sont linéairement indépendants dans $F_x(\xi)$.

Théorème 1.1. Soit ξ un fibré vectoriel de dimension d, et $s_1, ..., s_d$ une famille de sections jamais nulles et indépendantes. Alors ξ est trivial.

Exemples.

- \bullet Le fibré vectoriel sur le cercle \mathbb{S}_1 donné par un ruban de Mobius n'est pas trivial.
- Les fibrés normaux des sphères $\mathbb{S}_n \subset \mathbb{R}^{n+1}$ sont triviaux.
- Les fibrés tangents des sphères sont triviaux uniquement pour n = 1, 3 et 7.

Somme de Whitney. Si ξ, η sont deux fibrés vectoriels sur X, on définit leur somme $\xi \oplus \eta$ par

$$A(\xi \oplus \eta) = \{(x, a, b), x \in X, a \in F_x(\xi), b \in F_x(\eta)\},\$$

et où l'application projection est donnée par la projection sur la première coordonnée.

Tirés en arrière. Si η est un fibré vectoriel sur Y et $g: X \to Y$ une application continue, le tiré en arrière $g^*\xi$ est le fibré vectoriel sur X défini par

$$A(g^*\xi) = \{(x, a), x \in X, a \in F_{q(x)}(\xi)\}\$$

et la projection étant la projection sur la première coordonnée, et les structures d'espaces vectoriels étant les structures produit.

Applications de fibrés (bundle maps). Une application de fibrés entre deux fibrés ξ, η d'espaces de base X et Y est une fonction continue $f: A(\xi) \to A(\eta)$ qui envoie chaque fibre $F_x(\xi)$ isomorphiquement sur une autre fibre $F_{x'}(\eta)$. Il existe alors une unique application \overline{f} qui fait commuter le diagramme suivant:

$$A(\xi) \xrightarrow{f} A(\eta)$$

$$\downarrow^{\pi(\xi)} \qquad \downarrow^{\pi(\eta)}$$

$$X \xrightarrow{\overline{f}} Y$$

Si une telle application f existe, alors ξ est isomorphe au tiré en arrière $\overline{f}^*\eta$ ([Mil75, Lemma 3.1]). On dit que l'application \overline{f} est recouverte par f.

2 Définition axiomatique des classes de Stiefel-Whitney

On commence traditionellement par définir les classes de Stiefel-Whitney par une liste d'axiomes, et on démontre leur existence et unicité dans un second temps.

Axiomes pour les classes de Stiefel-Whitney. A chaque fibré vectoriel ξ sur un espace paracompact X, on peut associer une suite de classes de cohomologie

$$w_i(\xi) \in H^i(X, \mathbb{Z}_2), \quad i \in \mathbb{N},$$

appelées les classes de Stiefel-Whitney de ξ . Ces classes satisfont :

- Axiome 1: $w_0 = 1 \in H^0(X, \mathbb{Z}_2)$, et si ξ est de dimension d, alors $w_i(\xi) = 0$ pour i > d.
- Axiome 2: si $f: \xi \to \eta$ est une application de fibrés, alors $w_i(\xi) = \overline{f}^* w_i(\eta)$.
- Axiome 3: si ξ, η sont des fibrés sur le même espace X, alors pour tout $k \in \mathbb{N}$, $w_k(\xi \oplus \eta) = \sum_{i=0}^k w_i(\xi) \smile w_{k-i}(\eta)$, où \smile représente le cup-produit.
- Axiome 4: si ξ est le fibré de Mobius sur le cercle, alors $w_1(\xi) \neq 0$.

En définissant la classe de Stiefel-Whitney totale $w(\xi) = w_0(\xi) + ... + w_d(\xi)$, le troisième axiome se réécrit $w(\xi \oplus \eta) = w(\xi) \smile w(\eta)$.

Conséquences directes.

Proposition 2.1. Deux fibrés isomorphes admettent les mêmes classes de Stiefel-Whitney.

Proposition 2.2. Si ξ est trivial, alors $w_i(\xi) = 0$ pour tout i > 0.

Proposition 2.3. Si \mathcal{M} est une sous-variété de \mathbb{R}^n , τ son fibré tangent et ν sont fibré normal, alors la classe de Stifel-Whitney totale $w(\tau)$ est l'inverse de $w(\nu)$ dans l'algèbre $H^*(\mathcal{M}, \mathbb{Z}_2)$.

Proposition 2.4. Si ξ admet k sections non-nulles et indépendantes, alors $w_d(\xi) = \dots = w_{d-k+1}(\xi) = 0$.

Exemples.

- Si ξ est le fibré de Mobius sur \mathbb{S}_1 , alors $H^*(\mathbb{S}_1) = \mathbb{Z}_2[a]/a^2$, et $w(\xi) = 1 + a$.
- Si τ est le fibré tangent du tore, alors $w(\tau) = 1$.
- Si τ est le fibré tangent de la sphère \mathbb{S}_2 , alors $w(\tau) = 1$.
- Si ξ est le fibré tangent de l'espace projectif \mathbb{P}_d , alors $H^*(\mathbb{P}_d) = \mathbb{Z}_2[a]/a^{d+1}$, et $w(\xi) = (1+a)^{d+1}$.

Conséquences moins directes.

Théorème 2.5. Une variété lisse \mathcal{M} est orientable si et seulement si son fibré tangent τ satisfait $w_1(\tau) = 0$.

Théorème 2.6. Si deux variétés lisses sont cobordantes, alors elles admettes les mêmes nombres de Stiefel-Whitney.

Exemples d'application. On peut par exemple utiliser les classes de Stiefel-Whitney pour étudier :

- l'immersibilité des variétés dans l'espace euclidien,
- la parallélisabilité des variétés lisses.

3 Retour sur les fibrés vectoriels

Grassmaniennes. Soit $0 < d \le n$. La grassmanienne $\mathcal{G}_d(\mathbb{R}^n)$, en tant qu'ensemble, consiste en les d-sous-espaces vectoriels de \mathbb{R}^n . Elle est munie d'une topologie en quotientant la variété de Stiefel associée.

On peut aussi définir la grassmanienne infinie $\mathcal{G}_d(\mathbb{R}^{\infty})$ comme étant l'ensemble des d-sous-espaces de \mathbb{R}^{∞} (l'espace des suites réelles presque partout nulles). Elle est topologisée comme la limite directe de la suite

$$\mathcal{G}_d(\mathbb{R}^d) \subset \mathcal{G}_d(\mathbb{R}^{d+1}) \subset \mathcal{G}_d(\mathbb{R}^{d+2}) \subset \cdots$$

Quand d = 1, $\mathcal{G}_1(\mathbb{R}^n)$ est notée $\mathbb{P}_n(\mathbb{R})$ et s'appelle l'espace projectif.

Fibrés universels. Il existe sur $\mathcal{G}_d(\mathbb{R}^n)$ un fibré vectoriel canonique de dimension d, noté γ_d^n . Il consiste en l'espace total

$$A(\gamma_d^n) = \{ (V, v), V \in \mathcal{G}_d(\mathbb{R}^n), v \in V \} \subset \mathcal{G}_d(\mathbb{R}^n) \times \mathbb{R}^n, \tag{1}$$

avec l'application projection sur la première coordonnée, et la structure vectorielle héritée de \mathbb{R}^n . Ce fibré est appelé universel, pour la raison suivante :

Lemme 3.1 ([Mil75, Lemma 5.3]). Soit ξ un fibré vectoriel de dimension d sur un espace compact X. Alors pour n assez large, il existe une application de fibrés $\xi \to \gamma_d^n$.

Si une telle application de fibrés est notée f, et si \overline{f} représente l'application qu'elle recouvre, alors on en déduit que $\xi \simeq \overline{f}^* \gamma_d^n$.

Avec la grassmanienne infinie, on obtient un résultat plus simple à utiliser

Lemme 3.2 ([Mil75, Lemma 5.6]). Soit ξ un fibré vectoriel de dimension d sur un espace paracompact X. Alors il existe une application de fibrés $\xi \to \gamma_d^{\infty}$.

Une telle application est appelée une application classifiante.

Une correspondance. Soient ξ, η des fibrés sur X, et soient f_{ξ}, f_{η} des applications classifiantes. Si f_{ξ} et f_{η} sont homotopes, on montre facilement que les fibrés sont isomorphes. La réciproque est vraie :

Théorème 3.3 ([Mil75, Corollary 5.10]). Soit X un espace paracompact. Il existe une correspondance entre les fibrés vectoriels de dimension d sur X (à isomorphisme près) et les applications continues $X \to \mathcal{G}_d(\mathbb{R}^\infty)$ (à homotopie près). Cette correspondance est donnée par $\xi \mapsto \overline{f}_{\xi}$, où f_{ξ} représente une application classifiante de ξ .

4 Construction des classes de Stiefel-Whitney

Un principe général. Le théorème précédent donne un cadre général pour définir des classes caractéristiques. Soit Λ un groupe, et $c \in H^i(\mathcal{G}_d(\mathbb{R}^\infty), \Lambda)$ une classe quelconque. A chaque fibré vectoriel ξ on peut associer la classe

$$c(\xi) = \overline{f}_{\xi}^*(c) \in H^i(X, \Lambda).$$

Cette classe est bien définie car f_{ξ} est définie à homotopie près. Un cas particulier de cette construction sont les classes de Stiefel-Whitney.

L'anneau de cohomologie $H^*(\mathcal{G}_d(\mathbb{R}^\infty), \mathbb{Z}_2)$.

Théorème 4.1 ([Mil75], Theorem 7.1). Il existe $w_1, ..., w_d \in H^*(\mathcal{G}_d(\mathbb{R}^\infty), \mathbb{Z}_2)$ de degrés $|w_1| = 1, ..., |w_d| = d$, telles que

$$H^*(\mathcal{G}_d(\mathbb{R}^\infty), \mathbb{Z}_2) \simeq \mathbb{Z}_2[w_1, ..., w_d].$$

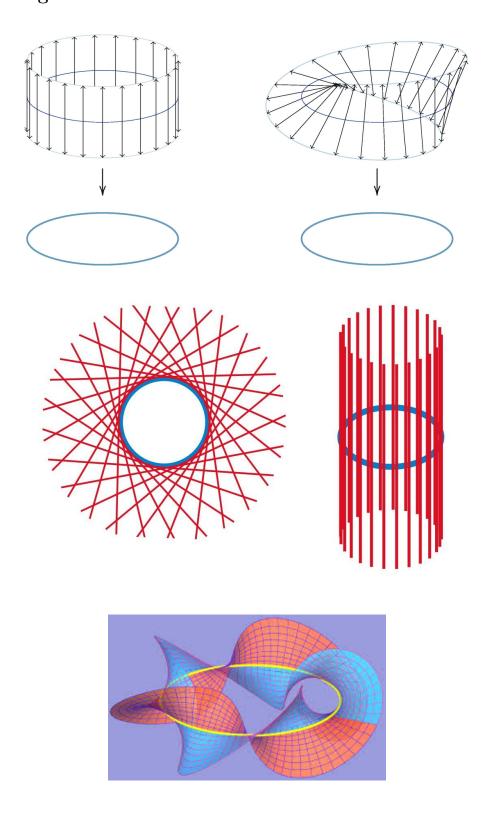
De plus, il n'existe pas de relation polynomiale entre les $w_1, ..., w_d$.

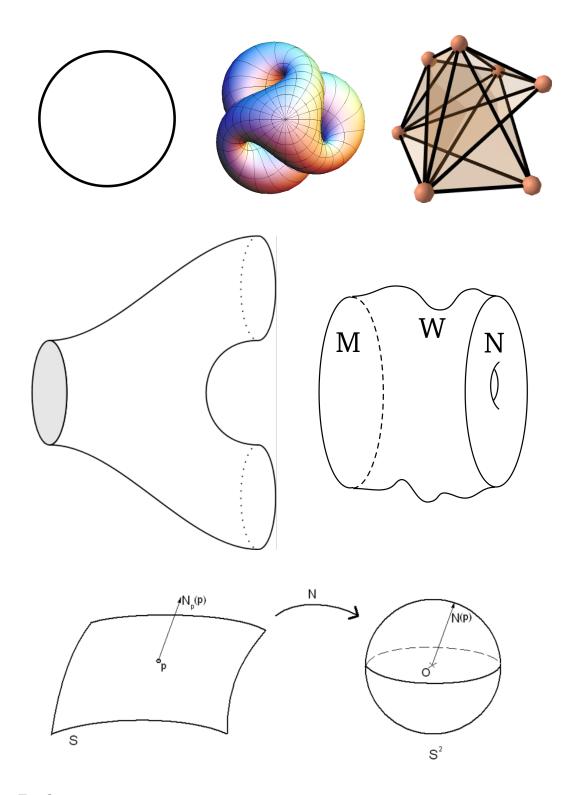
En particulier, la cohomologie de l'espace projectif infini est $H^*(\mathbb{P}_{\infty}(\mathbb{R}), \mathbb{Z}_2) = \mathbb{Z}_2[w_1]$.

Définition. Pour tout fibré vectoriel, définissons $w_i(\xi) = f_{\xi}^* w_i$, où f_{ξ} est une application classifiante pour $\xi \to \gamma_d^{\infty}$.

Théorème 4.2. Définies de cette façon, ces classes caractéristiques satisfont aux axiomes des classes de Stiefel-Whitney. De plus, elles sont uniques.

5 Images





References

 $[{\rm Mil}75]$ John W. Milnor. Characteristic Classes. 1975.