EMAp Summer Course

Topological Data Analysis with Persistent Homology

https://raphaeltinarrage.github.io/EMAp.htm|

Lesson 9: Decomposition of persistence modules

Introduction

Let $X \subset \mathbb{R}^{n}$ finite.
Pipeline of homology inference:

- select a thickening X^{t}
- compute its homology via $\operatorname{Crech}^{t}(X)$ or $\operatorname{Rips}^{t}(X)$

Introduction

Let $X \subset \mathbb{R}^{n}$ finite.
Pipeline of homology inference:

- select a thickening X^{t}
- compute its homology via $\operatorname{Crech}^{t}(X)$ or $\operatorname{Rips}^{t}(X)$

Introduction

Let $X \subset \mathbb{R}^{n}$ finite.
Pipeline of homology inference:

- select a thickening X^{t}
- compute its homology via $\operatorname{Crech}^{t}(X)$ or $\operatorname{Rips}^{t}(X)$

Introduction

Let $X \subset \mathbb{R}^{n}$ finite.
Pipeline of homology inference:

- select a thickening X^{t}
- compute its homology via Čech $^{t}(X)$ or $\operatorname{Rips}^{t}(X)$

Introduction

Let $X \subset \mathbb{R}^{n}$ finite.
Pipeline of homology inference:

- select a thickening X^{t}
- compute its homology via $\check{\operatorname{Cech}}^{t}(X)$ or $\operatorname{Rips}^{t}(X)$

Introduction

Let $X \subset \mathbb{R}^{n}$ finite.
Pipeline of homology inference:

- select a thickening X^{t}
- compute its homology via Čech $^{t}(X)$ or $\operatorname{Rips}^{t}(X)$

Introduction

Let $X \subset \mathbb{R}^{n}$ finite.
Pipeline of homology inference:

- select a thickening X^{t}

Introduction

Let $X \subset \mathbb{R}^{n}$ finite.
Pipeline of homology inference: - select a thickening X^{t}

Introduction
2/18 (9/12)
Let $X \subset \mathbb{R}^{n}$ finite.
Pipeline of homology inference select a thickening X^{t}
homology via Cech $^{t}(X)$ or $\operatorname{Rips}^{t}(X)$

Introduction
2/18 (10/12)
Let $X \subset \mathbb{R}^{n}$ finite.
Pipeline of homology inference oselect a thickening X^{t}

Introduction

Let $X \subset \mathbb{R}^{n}$ finite.
Pipeline of homology inferen eselathickening X^{t}

Introduction

Let $X \subset \mathbb{R}^{n}$ finite.
Pipeline of homology inference:

- select a thickening X^{t}
- compute its homology via $\operatorname{Čech}^{t}(X)$ or $\operatorname{Rips}^{t}(X)$

I - Functoriality of homology

II - Persistence modules

III - Decomposition

IV - Persistence algorithm

Homology is a functor

We have seen that homology transforms topological spaces into vector spaces

$$
\begin{aligned}
H_{i}: \text { Top } & \longrightarrow \text { Vect } \\
X & \longmapsto H_{i}(X)
\end{aligned}
$$

Actually, it also transforms continous maps into linear maps

$$
(f: X \rightarrow Y) \longmapsto\left(f_{*}: H_{i}(X) \rightarrow H_{i}(Y)\right)
$$

Homology is a functor

We have seen that homology transforms topological spaces into vector spaces

$$
\begin{aligned}
H_{i}: \text { Top } & \longrightarrow \text { Vect } \\
X & \longmapsto H_{i}(X)
\end{aligned}
$$

Actually, it also transforms continous maps into linear maps

$$
(f: X \rightarrow Y) \longmapsto\left(f_{*}: H_{i}(X) \rightarrow H_{i}(Y)\right)
$$

We will adopt a simplicial point of view.

$$
\begin{aligned}
H_{i}: \text { SimpComp } & \longrightarrow \text { Vect } \\
K & \longmapsto H_{i}(K) \\
(f: K \rightarrow L) & \longmapsto\left(f_{*}: H_{i}(K) \rightarrow H_{i}(L)\right)
\end{aligned}
$$

Homology is a functor

We have seen that homology transforms topological spaces into vector spaces

$$
\begin{aligned}
H_{i}: \text { Top } & \longrightarrow \text { Vect } \\
X & \longmapsto H_{i}(X)
\end{aligned}
$$

Actually, it also transforms continous maps into linear maps

$$
(f: X \rightarrow Y) \longmapsto\left(f_{*}: H_{i}(X) \rightarrow H_{i}(Y)\right)
$$

We will adopt a simplicial point of view.

$$
H_{i}: \text { SimpComp } \longrightarrow \text { Vect }
$$

$$
K \longmapsto H_{i}(K)
$$

$$
(f: K \rightarrow L) \mapsto\left(f_{*}: H_{i}(K) \rightarrow H_{i}(L)\right)
$$

what is a map between simplicial complexes?

Simplicial maps

Definition: Let K and L be two simplicial complexes, and V_{K}, V_{L} their set of vertices. A simplicial map between K and L is a map $f: V_{K} \rightarrow V_{L}$ such that

$$
\forall \sigma \in K, f(\sigma) \in L
$$

When there is no risk of confusion, we may denote a simplicial map $f: K \rightarrow L$ instead of $f: V_{K} \rightarrow V_{L}$.

Simplicial maps

Definition: Let K and L be two simplicial complexes, and V_{K}, V_{L} their set of vertices. A simplicial map between K and L is a map $f: V_{K} \rightarrow V_{L}$ such that

$$
\forall \sigma \in K, f(\sigma) \in L
$$

When there is no risk of confusion, we may denote a simplicial map $f: K \rightarrow L$ instead of $f: V_{K} \rightarrow V_{L}$.

Example: Let $K=\{[0],[1],[0,1]\}, L=\{[0],[1],[2],[0,1],[0,2],[1,2]\}$ and

$$
\begin{aligned}
f:\{0,1\} & \rightarrow\{0,1,2\} \\
0 & \mapsto 0 \\
1 & \mapsto 1
\end{aligned}
$$

It is simplicial since $f([0,1])=[0,1]$ is a simplex of L.

Simplicial maps

Definition: Let K and L be two simplicial complexes, and V_{K}, V_{L} their set of vertices. A simplicial map between K and L is a map $f: V_{K} \rightarrow V_{L}$ such that

$$
\forall \sigma \in K, f(\sigma) \in L
$$

When there is no risk of confusion, we may denote a simplicial map $f: K \rightarrow L$ instead of $f: V_{K} \rightarrow V_{L}$.

Example: Let $K=\{[0],[1],[2],[0,1],[0,2],[1,2]\}, L=\{[0],[1],[2],[0,1],[0,2]\}$ and

$$
\begin{aligned}
f:\{0,1\} & \rightarrow\{0,1,2\} \\
0 & \mapsto 0 \\
1 & \mapsto 1 \\
2 & \mapsto 2
\end{aligned}
$$

It is not simplicial since $f([1,2])=[1,2]$ is not a simplex of L.

Simplicial maps

Definition: Let K and L be two simplicial complexes, and V_{K}, V_{L} their set of vertices. A simplicial map between K and L is a map $f: V_{K} \rightarrow V_{L}$ such that

$$
\forall \sigma \in K, f(\sigma) \in L
$$

When there is no risk of confusion, we may denote a simplicial map $f: K \rightarrow L$ instead of $f: V_{K} \rightarrow V_{L}$.

Example: Let $X \subset \mathbb{R}^{n}$ and $s, t \geq 0$ such that $s \leq t$. Consider the Čech complexes Čech ${ }^{s}(X)$ and Čech $^{t}(X)$.
The inclusion map $i:$ Čech $^{s}(X) \rightarrow \operatorname{Čech}^{t}(X)$ is a simplicial map.

Indeed, the sequence of simplicial complexes $\left(\operatorname{Cech}^{t}(X)\right)_{t \geq 0}$ is non-decreasing.

Induced map

Let $f: K \rightarrow L$ be a simplicial map. Let $n \geq 0$, and consider the groups of chains of K and L :

$$
\begin{aligned}
C_{n}(K) & =\left\{\sum_{\sigma \in K_{(n)}} \epsilon_{\sigma} \cdot \sigma, \forall \sigma \in K_{(n)}, \epsilon_{\sigma} \in \mathbb{Z} / 2 \mathbb{Z}\right\} \\
C_{n}(L) & =\left\{\sum_{\sigma \in K_{(n)}} \epsilon_{\sigma} \cdot \sigma, \forall \sigma \in L_{(n)}, \epsilon_{\sigma} \in \mathbb{Z} / 2 \mathbb{Z}\right\}
\end{aligned}
$$

We define a linear map as follows:

$$
\begin{aligned}
& f_{n}: C_{n}(K) \longrightarrow C_{n}(L) \\
& \sigma \longmapsto f(\sigma) \text { if } \operatorname{dim}(f(\sigma))=n, \\
& 0 \quad \text { else. }
\end{aligned}
$$

Induced map

Let $f: K \rightarrow L$ be a simplicial map. Let $n \geq 0$, and consider the groups of chains of K and L :

$$
\begin{aligned}
C_{n}(K) & =\left\{\sum_{\sigma \in K_{(n)}} \epsilon_{\sigma} \cdot \sigma, \forall \sigma \in K_{(n)}, \epsilon_{\sigma} \in \mathbb{Z} / 2 \mathbb{Z}\right\} \\
C_{n}(L) & =\left\{\sum_{\sigma \in K_{(n)}} \epsilon_{\sigma} \cdot \sigma, \forall \sigma \in L_{(n)}, \epsilon_{\sigma} \in \mathbb{Z} / 2 \mathbb{Z}\right\}
\end{aligned}
$$

We define a linear map as follows:

Induced map

6/18 (3/10)

Lemma: For every $n \geq 0$, we have $\partial_{n} \circ f_{n}=f_{n-1} \circ \partial_{n}$.

Proof: Let $\sigma \in K_{(n)}$. We have the equalities

$$
\begin{aligned}
\partial_{n} \circ f_{n}(\sigma) & =\sum_{\substack{\mu \subset f(\sigma) \\
|\mu|=|\sigma|-1}} \mu \\
f_{n-1} \circ \partial_{n}(\sigma) & =\sum_{\substack{\tau \subset \sigma \\
|\tau|=|\sigma|-1}} f_{n}(\tau)
\end{aligned}
$$

We should distinguish three cases:

- $|f(\sigma)|=|\sigma|$ (i.e. f is injective on σ),
- $|f(\sigma)|<|\sigma|-1$,
- $|f(\sigma)|=|\sigma|-1$.

Induced map

Lemma: For every $n \geq 0$, we have $\partial_{n} \circ f_{n}=f_{n-1} \circ \partial_{n}$.
Proposition: For every $c \in Z_{n}(K)$, we have $f_{n}(c) \in Z_{n}(L)$.
For every $c \in B_{n}(K)$, we also have $f_{n}(c) \in B_{n}(L)$.
Proof: First, let $c \in Z_{n}(K)$. We have

$$
\partial_{n} \circ f_{n}(c)=f_{n-1} \circ \partial_{n}(c)=f_{n-1}(0)=0
$$

hence $f_{n}(c) \in Z_{n}(L)$.
Secondly, let $c \in B_{n}(K)$, and write $c=\partial_{n+1}\left(c^{\prime}\right)$ with $c^{\prime} \in C_{n+1}(K)$. We get

$$
f_{n}(c)=f_{n} \circ \partial_{n+1}\left(c^{\prime}\right)=\partial_{n+1} \circ f_{n+1}\left(c^{\prime}\right),
$$

hence $f_{n}(c) \in B_{n}(L)$.

Induced map

Lemma: For every $n \geq 0$, we have $\partial_{n} \circ f_{n}=f_{n-1} \circ \partial_{n}$.
Proposition: For every $c \in Z_{n}(K)$, we have $f_{n}(c) \in Z_{n}(L)$.
For every $c \in B_{n}(K)$, we also have $f_{n}(c) \in B_{n}(L)$.
We have $B_{n}(K) \subset Z_{n}(K), \quad B_{n}(L) \subset Z_{n}(L), \quad f\left(Z_{n}(K)\right) \subset f\left(Z_{n}(K)\right)$ and $f\left(B_{n}(K)\right) \subset f\left(B_{n}(K)\right)$.
Hence we can define a linear map between quotient vector spaces:

$$
\left(f_{n}\right)_{*}: Z_{n}(K) / B_{n}(K) \longrightarrow Z_{n}(L) / B_{n}(L) .
$$

By definition of the homology groups, we have defined a map

$$
\left(f_{n}\right)_{*}: H_{n}(K) \longrightarrow H_{n}(L)
$$

It is called the induced map in homology.

Induced map

6/18 (6/10)

Lemma: For every $n \geq 0$, we have $\partial_{n} \circ f_{n}=f_{n-1} \circ \partial_{n}$.
Proposition: For every $c \in Z_{n}(K)$, we have $f_{n}(c) \in Z_{n}(L)$.
For every $c \in B_{n}(K)$, we also have $f_{n}(c) \in B_{n}(L)$.

$\left(f_{n}\right)_{*}$ can be defined as

$$
c=\sum_{\sigma \in K_{(n)}} \epsilon_{\sigma} \cdot \sigma \longmapsto \sum_{\sigma \in K_{(n)}} \epsilon_{\sigma} \cdot f_{n}(\sigma)
$$

Induced map

Example: Consider the simplicial complexes $K=L=\{[0],[1],[2],[0,1],[0,2],[1,2]\}$.
The inclusion $i: K \rightarrow L$ induces the identity in H^{0} :

$$
\begin{aligned}
\left(i_{1}\right)_{*}: H_{0}(K) \simeq \mathbb{Z} / 2 \mathbb{Z} & \longrightarrow H_{0}(L) \simeq \mathbb{Z} / 2 \mathbb{Z} \\
1 & \longmapsto 1
\end{aligned}
$$

The inclusion $i: K \rightarrow L$ induces the identity in H^{1} :

$$
\begin{aligned}
\left(i_{1}\right)_{*}: H_{1}(K) \simeq \mathbb{Z} / 2 \mathbb{Z} & \longrightarrow H_{1}(L) \simeq \mathbb{Z} / 2 \mathbb{Z} \\
1 & \longmapsto 1
\end{aligned}
$$

$\left(f_{n}\right)_{*}$ can be defined as

$$
c=\sum_{\sigma \in K_{(n)}} \epsilon_{\sigma} \cdot \sigma \longmapsto \sum_{\sigma \in K_{(n)}} \epsilon_{\sigma} \cdot f_{n}(\sigma)
$$

Induced map

Example: Consider the simplicial complexes $K=\{[0],[1],[2],[0,1],[0,2],[1,2]\}$ and $L=\{[0],[1],[2],[0,1],[0,2],[1,2],[0,1,2]\}$.
The inclusion $i: K \rightarrow L$ induces the zero map in H^{1} :

$$
\begin{array}{rl}
\left(i_{1}\right)_{*}: H_{1}(K) \simeq \mathbb{Z} / 2 \mathbb{Z} & \longrightarrow H_{1}(L) \simeq\{0\} \\
1 & 0
\end{array}
$$

$\left(f_{n}\right)_{*}$ can be defined as

$$
c=\sum_{\sigma \in K_{(n)}} \epsilon_{\sigma} \cdot \sigma \longmapsto \sum_{\sigma \in K_{(n)}} \epsilon_{\sigma} \cdot f_{n}(\sigma)
$$

Induced map

Example: Consider the simplicial complexes $K=\{[0],[1],[2],[0,1],[0,2],[1,2]\}$ and $L=\{[0],[1],[2],[3],[0,1],[0,2],[1,2],[1,3],[2,3]\}$.
The homology group $H_{1}(L)$ is isomorphic to the vector space $(\mathbb{Z} / 2 \mathbb{Z})^{2}$ by identifying $[0,1]+[0,2]+[1,2] \mapsto(1,0)$ and $[1,2]+[2,3]+[1,3] \mapsto(0,1)$.
The inclusion $i: K \rightarrow L$ induces the following map between $1^{\text {st }}$ homology groups:

$$
\begin{aligned}
\left(i_{1}\right)_{*}: H_{1}(K) \simeq \mathbb{Z} / 2 \mathbb{Z} & \longrightarrow H_{1}(L) \simeq(\mathbb{Z} / 2 \mathbb{Z})^{2} \\
1 & \longmapsto(1,0)
\end{aligned}
$$

It can be represented as the matrix $\left(\begin{array}{ll}1 & 0 \\ 0 & 0\end{array}\right)$.

$\left(f_{n}\right)_{*}$ can be defined as

$$
c=\sum_{\sigma \in K_{(n)}} \epsilon_{\sigma} \cdot \sigma \longmapsto \sum_{\sigma \in K_{(n)}} \epsilon_{\sigma} \cdot f_{n}(\sigma)
$$

Induced map

Exercise: Let $K=\{[0],[1],[2],[3],[4],[5],[0,1],[1,2],[2,3],[3,4],[4,5],[5,0]\}$ and $L=\{[0],[1],[2],[0,1],[1,2],[2,0]\}$.

Consider the simplical map $f: i \mapsto i$ modulo 3 .
Show that the induced $\operatorname{map}\left(f_{1}\right)_{*}$ is zero.

$\left(f_{n}\right)_{*}$ can be defined as

$$
c=\sum_{\sigma \in K_{(n)}} \epsilon_{\sigma} \cdot \sigma \longmapsto \sum_{\sigma \in K_{(n)}} \epsilon_{\sigma} \cdot f_{n}(\sigma)
$$

Functor property

Proposition: Let K, L, M be three simplicial complexes, and consider two simplicial maps $f: K \rightarrow L$ and $g: L \rightarrow M$.

For any $n \geq 0$, the induced map $\left((g \circ f)_{n}\right)_{*}: H_{n}(K) \rightarrow H_{n}(M)$ and $\left(g_{n}\right)_{*} \circ\left(f_{n}\right)_{*}: H_{n}(K) \rightarrow H_{n}(M)$ are equal.

Functor property

Proposition: Let K, L, M be three simplicial complexes, and consider two simplicial $\operatorname{maps} f: K \rightarrow L$ and $g: L \rightarrow M$.

For any $n \geq 0$, the induced map $\left((g \circ f)_{n}\right)_{*}: H_{n}(K) \rightarrow H_{n}(M)$ and $\left(g_{n}\right)_{*} \circ\left(f_{n}\right)_{*}: H_{n}(K) \rightarrow H_{n}(M)$ are equal.

Proof: Let $\sigma \in K_{(n)}$. The image $(g \circ f)_{n}(\sigma)$ is

- $(g \circ f)(\sigma)$ if $g \circ f$ is injective on σ,
- 0 else.

If $g \circ f$ is injective on σ, then f is injective on σ and g is injective on $f(\sigma)$, hence $g_{n} \circ f_{n}(\sigma)=g \circ f(\sigma)$, and we deduce the result.

If $g \circ f$ is not injective on σ, then f is not injective on σ or g is not injective on $f(\sigma)$, hence $g_{n} \circ f_{n}(\sigma)=0$, and we deduce the result.

I - Functoriality of homology

II - Persistence modules

III - Decomposition

IV - Persistence algorithm

Tracking cycles over time

Let $X \subset \mathbb{R}^{n}$. The collection of its thickenings is an non-decreasing sequence of subsets

$$
\ldots \subset X^{t_{1}} \subset X^{t_{2}} \subset X^{t_{3}} \subset \ldots
$$

By considering the corresponding Čech complexes, we obtain an non-decreasing sequence of simplicial complexes

$$
\ldots \subset \check{\operatorname{Cech}}^{t_{1}}(X) \subset \check{\operatorname{Cech}}^{t_{2}}(X) \subset \check{\operatorname{Cech}}^{t_{3}}(X) \subset \ldots
$$

Let us denote i_{s}^{t} the inclusion map corresponding to $\operatorname{Cech}^{s}(X) \subset$ Čech $^{t}(X)$. We can write
$\cdots--------\operatorname{Cech}^{t_{1}}(X) \xrightarrow{i_{t_{1}}^{t_{2}}} \operatorname{Cech}^{t_{2}}(X) \xrightarrow{i_{t_{2}}^{t_{3}}} \operatorname{Cech}^{t_{3}}(X)$
Applying the $i^{\text {th }}$ homology functor yields a diagram of vector spaces

$$
\ldots---->H_{i}\left(\operatorname{Cech}^{t_{1}}(X)\right) \xrightarrow{\left(i_{t_{1}}^{t_{2}}\right)_{*}} H_{i}\left(\operatorname{Cech}^{t_{2}}(X)\right) \xrightarrow{\left(i_{t_{2}}^{t_{3}}\right)_{*}} H_{i}\left(\operatorname{Cech}^{t_{3}}(X)\right)-----
$$

where the maps $\left(i_{s}^{t}\right)_{*}$ are those induced in homology by the inclusions i_{s}^{t}.

Tracking cycles over time

$------->H_{i}\left(\operatorname{Cech}^{t_{1}}(X)\right) \xrightarrow{\left(i_{t_{1}}^{t_{2}}\right)_{*}} H_{i}\left(\operatorname{Cech}^{t_{2}}(X)\right) \xrightarrow{\left(i_{t_{2}}^{t_{3}}\right)_{*}} H_{i}\left(\operatorname{Cech}^{t_{3}}(X)\right)-----$
Let $i \geq 0, t_{0} \geq 0$ and consider a cycle $c \in H_{i}\left(\right.$ Čech $\left.^{t_{0}}(X)\right)$.
Its death time is: $\sup \left\{t \geq t_{0},\left(i_{t_{0}}^{t}\right)(c) \neq 0\right\}$,
its birth time is: $\inf \left\{t \geq t_{0},\left(i_{t}^{t_{0}}\right)^{-1}(\{c\}) \neq \emptyset\right\}$,
its persistence is the difference.

As a rule of thumb:

- cycles with large persistence correspond to important topological features of the dataset,
- cycles with short persistence corresponds to topological noise.

Tracking cycles over time

$$
\ldots----->H_{i}\left(\operatorname{Cech}^{t_{1}}(X)\right) \xrightarrow{\left(i_{t_{1}}^{t_{2}}\right)_{*}} H_{i}\left(\check{\operatorname{Cech}}^{t_{2}}(X)\right) \xrightarrow{\left(i_{t_{2}}^{t_{3}}\right)_{*}} H_{i}\left(\operatorname{Čch}^{t_{3}}(X)\right)-----
$$

Let $i \geq 0, t_{0} \geq 0$ and consider a cycle $c \in H_{i}\left(\right.$ Čech $\left.^{t_{0}}(X)\right)$.
Its death time is: $\sup \left\{t \geq t_{0},\left(i_{t_{0}}^{t}\right)(c) \neq 0\right\}$,
its birth time is: $\inf \left\{t \geq t_{0},\left(i_{t}^{t_{0}}\right)^{-1}(\{c\}) \neq \emptyset\right\}$,
its persistence is the difference.

Tracking cycles over time

$$
\cdots \cdots-\cdots H_{i}\left(\operatorname{Cech}^{t_{1}}(X)\right) \xrightarrow{\left(i_{t_{1}}^{t_{2}}\right)_{*}} H_{i}\left(\operatorname{Čech}^{t_{2}}(X)\right) \xrightarrow{\left(i_{t_{2}}^{t_{3}}\right)_{*}} H_{i}\left(\operatorname{Cech}^{t_{3}}(X)\right)-\cdots--
$$

Let $i \geq 0, t_{0} \geq 0$ and consider a cycle $c \in H_{i}\left(\right.$ Čech $\left.^{t_{0}}(X)\right)$.
Its death time is: $\sup \left\{t \geq t_{0},\left(i_{t_{0}}^{t}\right)(c) \neq 0\right\}$,
its birth time is: $\inf \left\{t \geq t_{0},\left(i_{t}^{t_{0}}\right)^{-1}(\{c\}) \neq \emptyset\right\}$,
its persistence is the difference.

Persistence modules (finalmente!)

Definition: A persistence module \mathbb{V} over \mathbb{R}^{+}with coefficients in $\mathbb{Z} / 2 \mathbb{Z}$ is a pair (\mathbb{V}, v) where $\mathbb{V}=\left(V^{t}\right)_{t \in \mathbb{R}^{+}}$is a family of $\mathbb{Z} / 2 \mathbb{Z}$-vector spaces, and $v=\left(v_{s}^{t}: V^{s} \rightarrow V^{t}\right)_{s \leq t \in \mathbb{R}^{+}}$ a family of linear maps such that:

- for every $t \in \mathbb{R}^{+}, v_{t}^{t}: V^{t} \rightarrow V^{t}$ is the identity map,
- for every $r, s, t \in \mathbb{R}^{+}$such that $r \leq s \leq t$, we have $v_{s}^{t} \circ v_{r}^{s}=v_{r}^{t}$.

When the context is clear, we may denote \mathbb{V} instead of (\mathbb{V}, v).

Persistence modules (finalmente!)

$10 / 18(2 / 2)$
Definition: A persistence module \mathbb{V} over \mathbb{R}^{+}with coefficients in $\mathbb{Z} / 2 \mathbb{Z}$ is a pair (\mathbb{V}, v) where $\mathbb{V}=\left(V^{t}\right)_{t \in \mathbb{R}^{+}}$is a family of $\mathbb{Z} / 2 \mathbb{Z}$-vector spaces, and $v=\left(v_{s}^{t}: V^{s} \rightarrow V^{t}\right)_{s \leq t \in \mathbb{R}^{+}}$ a family of linear maps such that:

- for every $t \in \mathbb{R}^{+}, v_{t}^{t}: V^{t} \rightarrow V^{t}$ is the identity map,
- for every $r, s, t \in \mathbb{R}^{+}$such that $r \leq s \leq t$, we have $v_{s}^{t} \circ v_{r}^{s}=v_{r}^{t}$.

When the context is clear, we may denote \mathbb{V} instead of (\mathbb{V}, v).
In practice, one builds persistence modules from filtrations.
A family of subsets $\mathbb{X}=\left(X^{t}\right)_{t \in \mathbb{R}^{+}}$of E is a filtration if it is non-decreasing for the inclusion, i.e. for any $s, t \in \mathbb{R}^{+}$, if $s \leq t$ then $X^{s} \subseteq X^{t}$.

In this course, we will consider filtrations of simplicial complexes, that is, non-decreasing families of simplicial complexes $\mathbb{S}=\left(S^{t}\right)_{t \in \mathbb{R}^{+}}$.

By applying the $i^{\text {th }}$ homology functor to a filtration, we obtain a persistence module $\mathbb{V}[\mathbb{S}]=\left(H_{i}\left(S^{t}\right)\right)_{t \in \mathbb{R}^{+}}$, with maps $\left(\left(i_{s}^{t}\right)_{*}: H_{i}\left(S^{s}\right) \rightarrow H_{i}\left(S^{t}\right)\right)_{s \leq t}$ induced by the inclusions.

I - Functoriality of homology

II - Persistence modules

III - Decomposition

IV - Persistence algorithm

Isomorphisms of persistence modules

Definition: An isomorphism between two persistence modules \mathbb{V} and \mathbb{W} is a family of isomorphisms of vector spaces $\phi=\left(\phi_{t}: \mathbb{V}^{t} \rightarrow \mathbb{W}^{t}\right)_{t \in \mathbb{R}^{+}}$such that the following diagram commutes for every $s \leq t \in \mathbb{R}^{+}$:

Decomposability

Definition: Let (\mathbb{V}, v) and (\mathbb{W}, w) be two persistence modules.
Their sum is the persistence module $\mathbb{V} \oplus \mathbb{W}$ defined with the vector spaces $(V \oplus W)^{t}=V^{t} \oplus W^{t}$ and the linear maps

$$
(v \oplus w)_{s}^{t}:(x, y) \in(V \oplus W)^{s} \longmapsto\left(v_{s}^{t}(x), w_{s}^{t}(y)\right) \in(V \oplus W)^{t} .
$$

A persistence module \mathbb{U} is indecomposable if for every pair of persistence modules \mathbb{V} and \mathbb{W} such that \mathbb{U} is isomorphic to the sum $\mathbb{V} \oplus \mathbb{W}$, then one of the summands has to be a trivial persistence module, that is, equal to zero for every $t \in \mathbb{R}^{+}$.
Otherwise, \mathbb{U} is said decomposable.

Interval modules

Definition: Let $I \subset \mathbb{R}^{+}$be an interval: $[a, b],(a, b],[a, b)$ or (a, b), with $a, b \in \mathbb{R}^{+}$such that $a \leq b$, and potentially $a=-\infty$ or $b=+\infty$.

The interval module associated to I is the persistence module $\mathbb{B}[I]$ with vector spaces $\mathbb{B}^{t}[I]$ and linear maps $v_{s}^{t}: \mathbb{B}^{s}[I] \rightarrow \mathbb{B}^{t}[I]$ defined as

$$
\mathbb{B}^{t}[I]=\left\{\begin{array}{ll}
\mathbb{Z} / 2 \mathbb{Z} & \text { if } t \in I, \\
0 & \text { otherwise, }
\end{array} \quad \text { and } \quad v_{s}^{t}= \begin{cases}\text { id } & \text { if } s, t \in I \\
0 & \text { otherwise }\end{cases}\right.
$$

Interval modules

Definition: Let $I \subset \mathbb{R}^{+}$be an interval: $[a, b],(a, b],[a, b)$ or (a, b), with $a, b \in \mathbb{R}^{+}$such that $a \leq b$, and potentially $a=-\infty$ or $b=+\infty$.

The interval module associated to I is the persistence module $\mathbb{B}[I]$ with vector spaces $\mathbb{B}^{t}[I]$ and linear maps $v_{s}^{t}: \mathbb{B}^{s}[I] \rightarrow \mathbb{B}^{t}[I]$ defined as

$$
\mathbb{B}^{t}[I]=\left\{\begin{array}{ll}
\mathbb{Z} / 2 \mathbb{Z} & \text { if } t \in I, \\
0 & \text { otherwise, }
\end{array} \quad \text { and } \quad v_{s}^{t}= \begin{cases}\text { id } & \text { if } s, t \in I \\
0 & \text { otherwise }\end{cases}\right.
$$

Lemma: Interval modules are indecomposable.

Interval modules

Definition: Let $I \subset \mathbb{R}^{+}$be an interval: $[a, b],(a, b]$, $[a, b)$ or (a, b), with $a, b \in \mathbb{R}^{+}$such that $a \leq b$, and potentially $a=-\infty$ or $b=+\infty$.

The interval module associated to I is the persistence module $\mathbb{B}[I]$ with vector spaces $\mathbb{B}^{t}[I]$ and linear maps $v_{s}^{t}: \mathbb{B}^{s}[I] \rightarrow \mathbb{B}^{t}[I]$ defined as

$$
\mathbb{B}^{t}[I]=\left\{\begin{array}{ll}
\mathbb{Z} / 2 \mathbb{Z} & \text { if } t \in I, \\
0 & \text { otherwise, }
\end{array} \quad \text { and } \quad v_{s}^{t}= \begin{cases}\text { id } & \text { if } s, t \in I, \\
0 & \text { otherwise }\end{cases}\right.
$$

We can sum interval modules:

Interval modules

Definition: Let $I \subset \mathbb{R}^{+}$be an interval: $[a, b],(a, b],[a, b)$ or (a, b), with $a, b \in \mathbb{R}^{+}$such that $a \leq b$, and potentially $a=-\infty$ or $b=+\infty$.

The interval module associated to I is the persistence module $\mathbb{B}[I]$ with vector spaces $\mathbb{B}^{t}[I]$ and linear maps $v_{s}^{t}: \mathbb{B}^{s}[I] \rightarrow \mathbb{B}^{t}[I]$ defined as

$$
\mathbb{B}^{t}[I]=\left\{\begin{array}{ll}
\mathbb{Z} / 2 \mathbb{Z} & \text { if } t \in I, \\
0 & \text { otherwise, }
\end{array} \quad \text { and } \quad v_{s}^{t}= \begin{cases}\text { id } & \text { if } s, t \in I, \\
0 & \text { otherwise }\end{cases}\right.
$$

Barcodes

A persistence module \mathbb{V} decomposes into interval module if there exists a multiset \mathcal{I} of intervals of T such that

$$
\mathbb{V} \simeq \bigoplus_{I \in \mathcal{I}} \mathbb{B}[I]
$$

Multiset means that \mathcal{I} may contain several copies of the same interval I.
Theorem (consequence of Krull-Remak-Schmidt-Azumaya): If a persistence module decomposes into interval modules, then the multiset \mathcal{I} of intervals is unique.

In this case, \mathcal{I} is called the persistence barcode of \mathbb{V}. It is written Barcode (\mathbb{V}).

Barcodes

A persistence module \mathbb{V} decomposes into interval module if there exists a multiset \mathcal{I} of intervals of T such that

$$
\mathbb{V} \simeq \bigoplus_{I \in \mathcal{I}} \mathbb{B}[I]
$$

Multiset means that \mathcal{I} may contain several copies of the same interval I.
Theorem (consequence of Krull-Remak-Schmidt-Azumaya): If a persistence module decomposes into interval modules, then the multiset \mathcal{I} of intervals is unique.

In this case, \mathcal{I} is called the persistence barcode of \mathbb{V}. It is written Barcode (\mathbb{V}).
For every $[a, b],(a, b],[a, b)$ or (a, b) in Barcode (\mathbb{V}), consider the point (a, b) of \mathbb{R}^{2}. The collection of all such points is the persistence diagram of \mathbb{V}.

Barcodes

A persistence module \mathbb{V} decomposes into interval module if there exists a multiset \mathcal{I} of intervals of T such that

$$
\mathbb{V} \simeq \bigoplus_{I \in \mathcal{I}} \mathbb{B}[I]
$$

Multiset means that \mathcal{I} may contain several copies of the same interval I.
Theorem (consequence of Krull-Remak-Schmidt-Azumaya): If a persistence module decomposes into interval modules, then the multiset \mathcal{I} of intervals is unique.

In this case, \mathcal{I} is called the persistence barcode of \mathbb{V}. It is written Barcode (\mathbb{V}).
For every $[a, b],(a, b],[a, b)$ or (a, b) in Barcode (\mathbb{V}), consider the point (a, b) of \mathbb{R}^{2}. The collection of all such points is the persistence diagram of \mathbb{V}.

Barcodes

A persistence module \mathbb{V} is said pointwise finite dimensional if $\operatorname{dim} V^{t}<+\infty$ for all t.
Theorem (Crawley-Boevey, 2015): Every pointwise finite-dimensional persistence module decomposes into interval modules.

Barcodes

A persistence module \mathbb{V} is said pointwise finite dimensional if $\operatorname{dim} V^{t}<+\infty$ for all t.
Theorem (Crawley-Boevey, 2015): Every pointwise finite-dimensional persistence module decomposes into interval modules.

Proof (Zomorodian, Carlsson, 2005): Simpler case: the persistence module is finite-dimensional and has finitely many terms.
We can write our persistence module as

$$
V^{1} \xrightarrow{v_{1}^{2}} V^{2} \xrightarrow{v_{2}^{3}} V^{3} \xrightarrow{v_{3}^{4}} V^{4}------>\ldots------>V^{n}
$$

Consider the vector space $\mathcal{V}=\bigotimes_{1 \leq i \leq n} V^{i}=V^{1} \times \cdots \times V^{n}$.
Let $\mathbb{Z} / 2 \mathbb{Z}[x]$ denote the space of polynomials with coefficients in $\mathbb{Z} / 2 \mathbb{Z}$. We give \mathcal{V} an action of $\mathbb{Z} / 2 \mathbb{Z}[x]$ via

$$
x \cdot\left(a^{1}, a^{2}, \ldots, a^{n}\right)=\left(0, v_{1}^{2}\left(a^{1}\right), v_{2}^{3}\left(a^{2}\right), \ldots, v_{n-1}^{n}\left(a^{n-1}\right)\right) .
$$

Hence \mathcal{V} can be seen as a finitely generated module over the principal ideal domain $\mathbb{Z} / 2 \mathbb{Z}[x]$. By classification, \mathcal{V} is isomorphic to a sum

$$
\mathcal{V} \simeq \bigoplus_{i \in I} \mathbb{Z} / 2 \mathbb{Z}[x] / x^{i} \cdot \mathbb{Z} / 2 \mathbb{Z}[x]
$$

We identify the components $\mathbb{Z} / 2 \mathbb{Z}[x] / x^{i} \cdot \mathbb{Z} / 2 \mathbb{Z}[x]$ with bars of the barcode of length i.

Barcodes

Barcodes

On a barcode we can read homology at each step, and see how it evolves.

I - Functoriality of homology

II - Persistence modules

III - Decomposition

IV - Persistence algorithm

Algorithm

The Čech or the Rips filtration define an increasing sequence of simplices

$$
\ldots \subset \check{\operatorname{Cech}}^{t_{1}}(X) \subset \check{\operatorname{Cech}}^{t_{2}}(X) \subset \check{\operatorname{Cech}}^{t_{3}}(X) \subset \ldots
$$

We can turn it consistently into an ordering of the simplices, by inserting the simplices by order of apparition in the filtration.

$$
\sigma^{1}<\sigma^{2}<\ldots<\sigma^{n}
$$

Denote $t(\sigma)$ the time of apparition of the simplex σ in the filtration. The total order on the simplices satisfies

$$
t\left(\sigma^{i}\right)<t\left(\sigma^{j}\right) \text { for all } i<j
$$

In practice several simplices may appear at the same time. If this occurs, choose an order of the simplices.
\longrightarrow Consider the boundary matrix, and compute a Gauss reduction.

Algorithm

Algorithm

	$\begin{array}{llllllllll}\sigma^{1} & \sigma^{2} & \sigma^{3} & \sigma^{4} & \sigma^{5} & \sigma^{6} & \sigma^{7} & \sigma^{8} & \sigma^{9} & \sigma^{10}\end{array}$	For any $j \in \llbracket 1, n \rrbracket$,
	$\left(\begin{array}{llllllllll}0 & 0 & 0 & 0 & 1 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 1 & 0 & 0 & 1 & 0\end{array}\right)$	$\delta(j)=\max \left\{i \in \llbracket 1, n \rrbracket, \Delta_{i, j} \neq 0\right\},$
σ^{3}	$\begin{array}{lllllllllll}0 & 0 & 0 & 0 & 0 & 1 & 1 & 0 & 0 & 0\end{array}$	
σ^{4}	$\begin{array}{llllllllll}0 & 0 & 0 & 0 & 0 & 0 & 1 & 1 & 1 & 0\end{array}$	and $\Delta_{i, j}=0$ for all j, then $\delta(j)$ is undefined.
σ^{5}	$\begin{array}{llllllllll}0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1\end{array}$	
σ^{6}	$\begin{array}{llllllllll}0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0\end{array}$,
σ^{7}	$\begin{array}{llllllllll}0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0\end{array}$	
σ^{8}	$\begin{array}{llllllllll}0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1\end{array}$	$\begin{array}{lllllllllll}\sigma^{1} & \sigma^{2} & \sigma^{3} & \sigma^{4} & \sigma^{5} & \sigma^{6} & \sigma^{7} & \delta^{\times} \times 8^{\circ} \times \sigma^{10}\end{array}$
σ^{9}	$\left(\begin{array}{llllllllll}0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1\end{array}\right.$	$\sigma^{1}\left(\begin{array}{llllllllll}0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0\end{array}\right)$
	$\left(\begin{array}{llllllllll}0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0\end{array}\right)$	$\sigma^{2}\left(\begin{array}{llllllllll}0 & 0 & 0 & 0 & 1 & 1 & 0 & 0 & 0 & 0\end{array}\right)$
		$\sigma^{4} \quad 0 \begin{array}{llllllllll} \\ 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0\end{array}$
		$\sigma^{5} \quad 0 \begin{array}{llllllllll} \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1\end{array}$
	\square	$\sigma^{6} \quad 0 \begin{array}{llllllllll} \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0\end{array}$
		$\sigma^{8} \quad 00 \begin{array}{llllllllll} & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 \\ 0\end{array}$
		$\sigma^{9}\left(\begin{array}{llllllllll}0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1\end{array}\right.$
		$\sigma^{10}\left(\begin{array}{llllllllll}0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0\end{array}\right)$

Algorithm

Now, for all j such that $\delta(j)$ is defined, consider the pair of simplices

$$
\left(\sigma^{\delta(j)}, \sigma^{j}\right)
$$

Also, for all i such that $\forall j, \delta(j) \neq i$, we set: $\left(\sigma^{i},+\infty\right)$.
The pairs of simplices (σ, τ) are called persistence pairs.

$$
\begin{aligned}
& \begin{array}{|c}
\substack{\sigma^{1} \\
\sigma^{2} \\
\sigma^{3} \\
\sigma^{3} \\
\sigma^{4} \\
\sigma^{5} \\
\sigma^{6} \\
\sigma^{70} \\
\sigma^{7} \\
\sigma^{9}}
\end{array}\left(\begin{array}{llllllllll}
0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 1 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0
\end{array}\right)
\end{aligned}
$$

Algorithm

Now, for all j such that $\delta(j)$ is defined, consider the pair of simplices

$$
\left(\sigma^{\delta(j)}, \sigma^{j}\right)
$$

Also, for all i such that $\forall j, \delta(j) \neq i$, we set: $\left(\sigma^{i},+\infty\right)$.
The pairs of simplices (σ, τ) are called persistence pairs.

Algorithm

Now, for all j such that $\delta(j)$ is defined, consider the pair of simplices

$$
\left(\sigma^{\delta(j)}, \sigma^{j}\right)
$$

Also, for all i such that $\forall j, \delta(j) \neq i$, we set: $\left(\sigma^{i},+\infty\right)$.
The pairs of simplices (σ, τ) are called persistence pairs.

Algorithm

Now, for all j such that $\delta(j)$ is defined, consider the pair of simplices

$$
\left(\sigma^{\delta(j)}, \sigma^{j}\right)
$$

Also, for all i such that $\forall j, \delta(j) \neq i$, we set: $\left(\sigma^{i},+\infty\right)$.
The pairs of simplices (σ, τ) are called persistence pairs.

Algorithm

Now, for all j such that $\delta(j)$ is defined, consider the pair of simplices

$$
\left(\sigma^{\delta(j)}, \sigma^{j}\right)
$$

Also, for all i such that $\forall j, \delta(j) \neq i$, we set: $\left(\sigma^{i},+\infty\right)$.
The pairs of simplices (σ, τ) are called persistence pairs.

Algorithm

Now, for all j such that $\delta(j)$ is defined, consider the pair of simplices

$$
\left(\sigma^{\delta(j)}, \sigma^{j}\right)
$$

Also, for all i such that $\forall j, \delta(j) \neq i$, we set: $\left(\sigma^{i},+\infty\right)$.
The pairs of simplices (σ, τ) are called persistence pairs.

Algorithm

Now, for all j such that $\delta(j)$ is defined, consider the pair of simplices

$$
\left(\sigma^{\delta(j)}, \sigma^{j}\right)
$$

Also, for all i such that $\forall j, \delta(j) \neq i$, we set: $\left(\sigma^{i},+\infty\right)$.
The pairs of simplices (σ, τ) are called persistence pairs.

Algorithm

Now, for all j such that $\delta(j)$ is defined, consider the pair of simplices

$$
\left(\sigma^{\delta(j)}, \sigma^{j}\right)
$$

Also, for all i such that $\forall j, \delta(j) \neq i$, we set: $\left(\sigma^{i},+\infty\right)$.
The pairs of simplices (σ, τ) are called persistence pairs.

Algorithm

Proposition: The barcodes of the filtration consists in the intervals $\mathcal{I}=\{(t(\sigma), t(\tau))$ for all persistence pair (σ, τ) such that $t(\sigma) \neq t(\tau)\}$.

Algorithm

Proposition: The barcodes of the filtration consists in the intervals

$$
\mathcal{I}=\{(t(\sigma), t(\tau)) \text { for all persistence pair }(\sigma, \tau) \text { such that } t(\sigma) \neq t(\tau)\}
$$

Proof: We shall show that the algorithm allows to define, for all $i, j \geq 0$, a basis \mathcal{B}_{i}^{j} of $H_{i}\left(K^{j}\right)$, such that one passes from \mathcal{B}_{i}^{j} to \mathcal{B}_{i}^{j+1} by adding or removing a cycle.

As a consequence, we obtain an isomorphism between the persistence module and a sum of interval modules given by \mathcal{I}.

We build the basis as follows: for every $j \geq 0$, consider the simplex σ^{j} and its dimension $i=\operatorname{dim}\left(\sigma^{j}\right)$.
If σ^{j} is positive, then we add the corresponding cycle to the basis \mathcal{B}_{i}^{j-1}.
If it is negative, then there exists a simplex σ^{k}, with $k<j$, such that $\delta(k)=j$. We remove the cycle corresponding to σ^{k} to the basis \mathcal{B}_{i-1}^{j-1}.

Conclusion

We used induced maps in homology to track the cycles throughout filtrations.
We gathered all this information into a persisten ce module.
We have seen that the barcode of a persistence module summarizes the persistence of all the cycles.

We used the incremental algorithm to compute the barcode.

Homework: Exercise 52
Facultative: Exercises 48, 49, 51

Conclusion

We used induced maps in homology to track the cycles throughout filtrations.
We gathered all this information into a persisten ce module.
We have seen that the barcode of a persistence module summarizes the persistence of all the cycles.

We used the incremental algorithm to compute the barcode.

Homework: Exercise 52
Facultative: Exercises 48, 49, 51

Merci !

