EMAp Summer Course

Topological Data Analysis with Persistent Homology

https://raphaeltinarrage.github.io/EMAp.html

Lesson 9: Decomposition of persistence modules

Last update: February 8, 2021

2/18 (1/12)

Let $X \subset \mathbb{R}^n$ finite.

- select a thickening X^t
- compute its homology via $\check{\operatorname{Cech}}^t(X)$ or $\operatorname{Rips}^t(X)$

2/18 (2/12)

Let $X \subset \mathbb{R}^n$ finite.

- select a thickening X^t
 - compute its homology via $\check{\operatorname{Cech}}^t(X)$ or $\operatorname{Rips}^t(X)$

2/18 (3/12)

Let $X \subset \mathbb{R}^n$ finite.

- select a thickening X^t
 - compute its homology via $\check{\operatorname{Cech}}^t(X)$ or $\operatorname{Rips}^t(X)$

2/18 (4/12)

Let $X \subset \mathbb{R}^n$ finite.

- select a thickening X^t
 - compute its homology via $\check{\operatorname{Cech}}^t(X)$ or $\operatorname{Rips}^t(X)$

2/18 (5/12)

Let $X \subset \mathbb{R}^n$ finite.

Pipeline of homology inference: • select a thickening X^t

• compute its homology via $\check{\operatorname{Cech}}^t(X)$ or $\operatorname{Rips}^t(X)$

2/18 (6/12)

Let $X \subset \mathbb{R}^n$ finite. Pipeline of homology inference: • select a thickening X^t • compute its homology via $\operatorname{\check{C}ech}^t(X)$ or $\operatorname{Rips}^t(X)$

2/18 (7/12)

Let $X \subset \mathbb{R}^n$ finite. Pipeline of homology inference: • select a thickening X^t o compute its homology via $\operatorname{\check{Cech}}^t(X)$ or $\operatorname{Rips}^t(X)$

2/18 (8/12)

Let $X \subset \mathbb{R}^n$ finite. Pipeline of homology inference: • select a thickening X^t its homology via $\operatorname{\check{Cech}}^t(X)$ or $\operatorname{Rips}^t(X)$

2/18 (9/12)

Let $X \subset \mathbb{R}^n$ finite.

Pipeline of homology inference: \bullet select a thickening X^t

compute its homology via $\operatorname{\check{C}ech}^t(X)$ or $\operatorname{Rips}^t(X)$

2/18 (10/12)

Let $X \subset \mathbb{R}^n$ finite.

Pipeline of homology inference: $x = x^{t}$ select a thickening X^{t}

 $\check{\operatorname{Cech}}^t(X)$ or $\operatorname{Rips}^t(X)$

2/18 (11/12)

Let $X \subset \mathbb{R}^n$ finite.

Pipeline of homology inference: $x \in select a thickening X^t$

cology via $\operatorname{\check{C}ech}^t(X)$ or $\operatorname{Rips}^t(X)$

2/18 (12/12)

Let $X \subset \mathbb{R}^n$ finite.

Pipeline of homology inference:

- select a thickening X^t
- compute its homology via $\check{\operatorname{Cech}}^t(X)$ or $\operatorname{Rips}^t(X)$

How to handle topological noise?

I - Functoriality of homology

II - Persistence modules

III - Decomposition

IV - Persistence algorithm

Homology is a functor

4/18 (1/3)

We have seen that homology transforms topological spaces into vector spaces

 $H_i \colon \text{Top} \longrightarrow \text{Vect}$ $X \longmapsto H_i(X)$

Actually, it also transforms continous maps into linear maps

 $(f: X \to Y) \longmapsto (f_*: H_i(X) \to H_i(Y))$

Homology is a functor

4/18 (2/3)

We have seen that homology transforms topological spaces into vector spaces

$$H_i \colon \operatorname{Top} \longrightarrow \operatorname{Vect}$$

 $X \longmapsto H_i(X)$

Actually, it also transforms *continous maps* into *linear maps*

$$(f: X \to Y) \longmapsto (f_*: H_i(X) \to H_i(Y))$$

We will adopt a simplicial point of view.

$$H_i: \operatorname{SimpComp} \longrightarrow \operatorname{Vect} K \longmapsto H_i(K)$$
$$(f: K \to L) \longmapsto (f_*: H_i(K) \to H_i(L))$$

Homology is a functor

4/18 (3/3)

We have seen that homology transforms topological spaces into vector spaces

$$H_i \colon \text{Top} \longrightarrow \text{Vect}$$
$$X \longmapsto H_i(X)$$

Actually, it also transforms *continous maps* into *linear maps*

$$(f: X \to Y) \longmapsto (f_*: H_i(X) \to H_i(Y))$$

We will adopt a simplicial point of view.

$$H_i: \operatorname{SimpComp} \longrightarrow \operatorname{Vect} K \longmapsto H_i(K)$$

$$(f: K \to L) \mapsto (f_*: H_i(K) \to H_i(L))$$
what is a map between simplicial complexes?

Definition: Let K and L be two simplicial complexes, and V_K, V_L their set of vertices. A simplicial map between K and L is a map $f: V_K \to V_L$ such that

$$\forall \sigma \in K, f(\sigma) \in L.$$

When there is no risk of confusion, we may denote a simplicial map $f: K \to L$ instead of $f: V_K \to V_L$.

Definition: Let K and L be two simplicial complexes, and V_K, V_L their set of vertices. A simplicial map between K and L is a map $f: V_K \to V_L$ such that

$$\forall \sigma \in K, f(\sigma) \in L.$$

When there is no risk of confusion, we may denote a simplicial map $f: K \to L$ instead of $f: V_K \to V_L$.

Example: Let $K = \{[0], [1], [0, 1]\}, L = \{[0], [1], [2], [0, 1], [0, 2], [1, 2]\}$ and $f: \{0, 1\} \rightarrow \{0, 1, 2\}$ $0 \mapsto 0$ $1 \mapsto 1$ 1

Definition: Let K and L be two simplicial complexes, and V_K, V_L their set of vertices. A simplicial map between K and L is a map $f: V_K \to V_L$ such that

$$\forall \sigma \in K, f(\sigma) \in L.$$

When there is no risk of confusion, we may denote a simplicial map $f: K \to L$ instead of $f: V_K \to V_L$.

Example: Let $K = \{[0], [1], [2], [0, 1], [0, 2], [1, 2]\}$, $L = \{[0], [1], [2], [0, 1], [0, 2]\}$ and

It is not simplicial since f([1,2]) = [1,2] is not a simplex of L.

Definition: Let K and L be two simplicial complexes, and V_K, V_L their set of vertices. A simplicial map between K and L is a map $f: V_K \to V_L$ such that

$$\forall \sigma \in K, f(\sigma) \in L.$$

When there is no risk of confusion, we may denote a simplicial map $f: K \to L$ instead of $f: V_K \to V_L$.

Example: Let $X \subset \mathbb{R}^n$ and $s, t \ge 0$ such that $s \le t$. Consider the Čech complexes $\operatorname{\check{Cech}}^s(X)$ and $\operatorname{\check{Cech}}^t(X)$.

The inclusion map $i: \operatorname{\check{Cech}}^{s}(X) \to \operatorname{\check{Cech}}^{t}(X)$ is a simplicial map.

6/18 (1/10)

Let $f: K \to L$ be a simplicial map. Let $n \ge 0$, and consider the groups of chains of K and L:

$$C_n(K) = \left\{ \sum_{\sigma \in K_{(n)}} \epsilon_{\sigma} \cdot \sigma, \ \forall \sigma \in K_{(n)}, \ \epsilon_{\sigma} \in \mathbb{Z}/2\mathbb{Z} \right\}$$
$$C_n(L) = \left\{ \sum_{\sigma \in K_{(n)}} \epsilon_{\sigma} \cdot \sigma, \ \forall \sigma \in L_{(n)}, \ \epsilon_{\sigma} \in \mathbb{Z}/2\mathbb{Z} \right\}$$

We define a linear map as follows:

$$f_n \colon C_n(K) \longrightarrow C_n(L)$$

$$\sigma \longmapsto f(\sigma) \text{ if } \dim(f(\sigma)) = n,$$

$$0 \text{ else.}$$

6/18 (2/10)

Let $f: K \to L$ be a simplicial map. Let $n \ge 0$, and consider the groups of chains of K and L:

$$C_n(K) = \left\{ \sum_{\sigma \in K_{(n)}} \epsilon_{\sigma} \cdot \sigma, \ \forall \sigma \in K_{(n)}, \ \epsilon_{\sigma} \in \mathbb{Z}/2\mathbb{Z} \right\}$$
$$C_n(L) = \left\{ \sum_{\sigma \in K_{(n)}} \epsilon_{\sigma} \cdot \sigma, \ \forall \sigma \in L_{(n)}, \ \epsilon_{\sigma} \in \mathbb{Z}/2\mathbb{Z} \right\}$$

We define a linear map as follows:

$$f_n \colon C_n(K) \longrightarrow C_n(L)$$

$$\sigma \longmapsto f(\sigma) \text{ if } \dim(f(\sigma)) = n,$$

$$0 \text{ else.}$$

$$\xrightarrow{\partial_{3}} C_{2}(K) \xrightarrow{\partial_{3}} C_{2}(K) \xrightarrow{\partial_{2}} C_{1}(K) \xrightarrow{\partial_{1}} C_{0}(K) \xrightarrow{\partial_{0}} \{0\}$$

$$\downarrow f_{3} \qquad \qquad \downarrow f_{2} \qquad \qquad \downarrow f_{1} \qquad \qquad \downarrow f_{0} \qquad \qquad \downarrow f_{-1}$$

$$\xrightarrow{\partial_{0}} C_{3}(L) \xrightarrow{\partial_{3}} C_{2}(L) \xrightarrow{\partial_{2}} C_{1}(L) \xrightarrow{\partial_{1}} C_{0}(L) \xrightarrow{\partial_{0}} \{0\}$$

6/18 (3/10)

Lemma: For every $n \ge 0$, we have $\partial_n \circ f_n = f_{n-1} \circ \partial_n$.

Proof: Let $\sigma \in K_{(n)}$. We have the equalities

$$\partial_n \circ f_n(\sigma) = \sum_{\substack{\mu \subset f(\sigma) \\ |\mu| = |\sigma| - 1}} \mu$$
$$f_{n-1} \circ \partial_n(\sigma) = \sum_{\substack{\tau \subset \sigma \\ |\tau| = |\sigma| - 1}} f_n(\tau)$$

We should distinguish three cases:

- $|f(\sigma)| = |\sigma|$ (i.e. f is injective on σ),
- $|f(\sigma)| < |\sigma| 1$,
- $|f(\sigma)| = |\sigma| 1.$

6/18 (4/10)

Lemma: For every $n \ge 0$, we have $\partial_n \circ f_n = f_{n-1} \circ \partial_n$.

Proposition: For every $c \in Z_n(K)$, we have $f_n(c) \in Z_n(L)$. For every $c \in B_n(K)$, we also have $f_n(c) \in B_n(L)$.

Proof: First, let $c \in Z_n(K)$. We have

$$\partial_n \circ f_n(c) = f_{n-1} \circ \partial_n(c) = f_{n-1}(0) = 0,$$

hence $f_n(c) \in Z_n(L)$.

Secondly, let $c \in B_n(K)$, and write $c = \partial_{n+1}(c')$ with $c' \in C_{n+1}(K)$. We get

$$f_n(c) = f_n \circ \partial_{n+1}(c') = \partial_{n+1} \circ f_{n+1}(c'),$$

hence $f_n(c) \in B_n(L)$.

6/18 (5/10)

Lemma: For every $n \ge 0$, we have $\partial_n \circ f_n = f_{n-1} \circ \partial_n$.

Proposition: For every $c \in Z_n(K)$, we have $f_n(c) \in Z_n(L)$. For every $c \in B_n(K)$, we also have $f_n(c) \in B_n(L)$.

We have $B_n(K) \subset Z_n(K)$, $B_n(L) \subset Z_n(L)$, $f(Z_n(K)) \subset f(Z_n(K))$ and $f(B_n(K)) \subset f(B_n(K))$. Hence we can define a linear map between quotient vector spaces:

$$(f_n)_*: Z_n(K)/B_n(K) \longrightarrow Z_n(L)/B_n(L).$$

By definition of the homology groups, we have defined a map

$$(f_n)_* \colon H_n(K) \longrightarrow H_n(L).$$

It is called the *induced map in homology*.

6/18 (6/10)

Lemma: For every $n \ge 0$, we have $\partial_n \circ f_n = f_{n-1} \circ \partial_n$.

Proposition: For every $c \in Z_n(K)$, we have $f_n(c) \in Z_n(L)$. For every $c \in B_n(K)$, we also have $f_n(c) \in B_n(L)$.

$$\cdots \qquad H_3(K) \qquad H_2(K) \qquad H_1(K) \qquad H_0(K) \\ \downarrow^{(f_3)*} \qquad \downarrow^{(f_2)*} \qquad \downarrow^{(f_1)*} \qquad \downarrow^{(f_0)*} \\ \cdots \qquad H_3(L) \qquad H_2(L) \qquad H_1(L) \qquad H_0(L)$$

$$c = \sum_{\sigma \in K_{(n)}} \epsilon_{\sigma} \cdot \sigma \longmapsto \sum_{\sigma \in K_{(n)}} \epsilon_{\sigma} \cdot f_n(\sigma)$$

6/18 (7/10)

Example: Consider the simplicial complexes $K = L = \{[0], [1], [2], [0, 1], [0, 2], [1, 2]\}$. The inclusion $i: K \to L$ induces the identity in H^0 :

$$(i_1)_* \colon H_0(K) \simeq \mathbb{Z}/2\mathbb{Z} \longrightarrow H_0(L) \simeq \mathbb{Z}/2\mathbb{Z}$$

 $1 \longmapsto 1$

The inclusion $i: K \to L$ induces the identity in H^1 :

$$(i_1)_* \colon H_1(K) \simeq \mathbb{Z}/2\mathbb{Z} \longrightarrow H_1(L) \simeq \mathbb{Z}/2\mathbb{Z}$$

 $1 \longmapsto 1$

$$c = \sum_{\sigma \in K_{(n)}} \epsilon_{\sigma} \cdot \sigma \longmapsto \sum_{\sigma \in K_{(n)}} \epsilon_{\sigma} \cdot f_n(\sigma)$$

6/18 (8/10)

Example: Consider the simplicial complexes $K = \{[0], [1], [2], [0, 1], [0, 2], [1, 2]\}$ and $L = \{[0], [1], [2], [0, 1], [0, 2], [1, 2], [0, 1, 2]\}.$

The inclusion $i: K \to L$ induces the zero map in H^1 :

$$c = \sum_{\sigma \in K_{(n)}} \epsilon_{\sigma} \cdot \sigma \longmapsto \sum_{\sigma \in K_{(n)}} \epsilon_{\sigma} \cdot f_n(\sigma)$$

6/18 (9/10)

Example: Consider the simplicial complexes $K = \{[0], [1], [2], [0, 1], [0, 2], [1, 2]\}$ and $L = \{[0], [1], [2], [3], [0, 1], [0, 2], [1, 2], [1, 3], [2, 3]\}.$

The homology group $H_1(L)$ is isomorphic to the vector space $(\mathbb{Z}/2\mathbb{Z})^2$ by identifying $[0,1] + [0,2] + [1,2] \mapsto (1,0)$ and $[1,2] + [2,3] + [1,3] \mapsto (0,1)$.

The inclusion $i: K \to L$ induces the following map between 1^{st} homology groups:

$$(i_1)_* \colon H_1(K) \simeq \mathbb{Z}/2\mathbb{Z} \longrightarrow H_1(L) \simeq (\mathbb{Z}/2\mathbb{Z})^2$$

 $1 \longmapsto (1,0)$

It can be represented as the matrix $\begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}$.

$$c = \sum_{\sigma \in K_{(n)}} \epsilon_{\sigma} \cdot \sigma \longmapsto \sum_{\sigma \in K_{(n)}} \epsilon_{\sigma} \cdot f_n(\sigma)$$

6/18 (10/10)

Exercise: Let $K = \{[0], [1], [2], [3], [4], [5], [0, 1], [1, 2], [2, 3], [3, 4], [4, 5], [5, 0]\}$ and $L = \{[0], [1], [2], [0, 1], [1, 2], [2, 0]\}.$

Consider the simplical map $f: i \mapsto i \mod 3$.

Show that the induced map $(f_1)_*$ is zero.

$$c = \sum_{\sigma \in K_{(n)}} \epsilon_{\sigma} \cdot \sigma \longmapsto \sum_{\sigma \in K_{(n)}} \epsilon_{\sigma} \cdot f_n(\sigma)$$

Functor property

7/18 (1/2)

Proposition: Let K, L, M be three simplicial complexes, and consider two simplicial maps $f: K \to L$ and $g: L \to M$.

For any $n \ge 0$, the induced map $((g \circ f)_n)_* \colon H_n(K) \to H_n(M)$ and $(g_n)_* \circ (f_n)_* \colon H_n(K) \to H_n(M)$ are equal.

Functor property

7/18 (2/2)

Proposition: Let K, L, M be three simplicial complexes, and consider two simplicial maps $f: K \to L$ and $g: L \to M$.

For any $n \ge 0$, the induced map $((g \circ f)_n)_* \colon H_n(K) \to H_n(M)$ and $(g_n)_* \circ (f_n)_* \colon H_n(K) \to H_n(M)$ are equal.

Proof: Let $\sigma \in K_{(n)}$. The image $(g \circ f)_n(\sigma)$ is

•
$$(g \circ f)(\sigma)$$
 if $g \circ f$ is injective on σ ,

• 0 else.

If $g \circ f$ is injective on σ , then f is injective on σ and g is injective on $f(\sigma)$, hence $g_n \circ f_n(\sigma) = g \circ f(\sigma)$, and we deduce the result.

If $g \circ f$ is not injective on σ , then f is not injective on σ or g is not injective on $f(\sigma)$, hence $g_n \circ f_n(\sigma) = 0$, and we deduce the result.

I - Functoriality of homology

II - Persistence modules

III - Decomposition

IV - Persistence algorithm

9/18 (1/4)

Let $X \subset \mathbb{R}^n$. The collection of its thickenings is an non-decreasing sequence of subsets

 $\ldots \ \subset \ X^{t_1} \ \subset \ X^{t_2} \ \subset \ X^{t_3} \subset \ldots$

By considering the corresponding Čech complexes, we obtain an non-decreasing sequence of simplicial complexes

$$\ldots \subset \operatorname{\check{C}ech}^{t_1}(X) \subset \operatorname{\check{C}ech}^{t_2}(X) \subset \operatorname{\check{C}ech}^{t_3}(X) \subset \ldots$$

Let us denote i_s^t the inclusion map corresponding to $\operatorname{\check{Cech}}^s(X) \subset \operatorname{\check{Cech}}^t(X)$. We can write

$$\cdots \rightarrow \check{\operatorname{Cech}}^{t_1}(X) \xrightarrow{i_{t_1}^{t_2}} \check{\operatorname{Cech}}^{t_2}(X) \xrightarrow{i_{t_2}^{t_3}} \check{\operatorname{Cech}}^{t_3}(X) \cdots \cdots$$

Applying the i^{th} homology functor yields a diagram of vector spaces

$$\xrightarrow{\quad (i_{t_1}^{t_2})_*} H_i(\check{\operatorname{Cech}}^{t_1}(X)) \xrightarrow{\quad (i_{t_1}^{t_2})_*} H_i(\check{\operatorname{Cech}}^{t_2}(X)) \xrightarrow{\quad (i_{t_2}^{t_3})_*} H_i(\check{\operatorname{Cech}}^{t_3}(X)) \xrightarrow{\quad (i_{t_3}^{t_3})_*} H_i($$

9/18 (2/4)

$$\longrightarrow H_i(\check{\operatorname{Cech}}^{t_1}(X)) \xrightarrow{(i_{t_1}^{t_2})_*} H_i(\check{\operatorname{Cech}}^{t_2}(X)) \xrightarrow{(i_{t_2}^{t_3})_*} H_i(\check{\operatorname{Cech}}^{t_3}(X)) \xrightarrow{(i_{t_1}^{t_3})_*} H_i(\check{\operatorname{Cech}}^{t$$

Let $i \ge 0$, $t_0 \ge 0$ and consider a cycle $c \in H_i(\operatorname{\check{Cech}}^{t_0}(X))$. Its death time is: $\sup \{t \ge t_0, (i_{t_0}^t) (c) \ne 0\}$, its birth time is: $\inf \{t \ge t_0, (i_t^{t_0})^{-1} (\{c\}) \ne \emptyset\}$, its persistence is the difference.

As a rule of thumb:

• cycles with large persistence correspond to important topological features of the dataset,

• cycles with short persistence corresponds to topological noise.

9/18 (3/4)

$$\longrightarrow H_i(\check{\operatorname{Cech}}^{t_1}(X)) \xrightarrow{(i_{t_1}^{t_2})_*} H_i(\check{\operatorname{Cech}}^{t_2}(X)) \xrightarrow{(i_{t_2}^{t_3})_*} H_i(\check{\operatorname{Cech}}^{t_3}(X)) \xrightarrow{(i_{t_1}^{t_3})_*} H_i(\check{\operatorname{Cech}}^{t$$

Let $i \ge 0$, $t_0 \ge 0$ and consider a cycle $c \in H_i(\operatorname{\check{Cech}}^{t_0}(X))$. Its death time is: $\sup \{t \ge t_0, (i_{t_0}^t) (c) \ne 0\}$, its birth time is: $\inf \{t \ge t_0, (i_t^{t_0})^{-1} (\{c\}) \ne \emptyset\}$, its persistence is the difference.

9/18 (4/4)

$$\longrightarrow H_i(\check{\operatorname{Cech}}^{t_1}(X)) \xrightarrow{(i_{t_1}^{t_2})_*} H_i(\check{\operatorname{Cech}}^{t_2}(X)) \xrightarrow{(i_{t_2}^{t_3})_*} H_i(\check{\operatorname{Cech}}^{t_3}(X)) \xrightarrow{(i_{t_1}^{t_3})_*} H_i(\check{\operatorname{Cech}}^{t$$

Let $i \ge 0$, $t_0 \ge 0$ and consider a cycle $c \in H_i(\operatorname{\check{Cech}}^{t_0}(X))$. Its death time is: $\sup \{t \ge t_0, (i_{t_0}^t) (c) \ne 0\}$, its birth time is: $\inf \{t \ge t_0, (i_t^{t_0})^{-1} (\{c\}) \ne \emptyset\}$, its persistence is the difference.

Persistence modules (finalmente!) 10/18 (1/2)

Definition: A persistence module \mathbb{V} over \mathbb{R}^+ with coefficients in $\mathbb{Z}/2\mathbb{Z}$ is a pair (\mathbb{V}, v) where $\mathbb{V} = (V^t)_{t \in \mathbb{R}^+}$ is a family of $\mathbb{Z}/2\mathbb{Z}$ -vector spaces, and $v = (v_s^t \colon V^s \to V^t)_{s \leq t \in \mathbb{R}^+}$ a family of linear maps such that:

- for every $t \in \mathbb{R}^+$, $v_t^t \colon V^t \to V^t$ is the identity map,
- for every $r, s, t \in \mathbb{R}^+$ such that $r \leq s \leq t$, we have $v_s^t \circ v_r^s = v_r^t$.

When the context is clear, we may denote \mathbb{V} instead of (\mathbb{V}, v) .

Persistence modules (finalmente!) 10/18 (2/2)

Definition: A persistence module \mathbb{V} over \mathbb{R}^+ with coefficients in $\mathbb{Z}/2\mathbb{Z}$ is a pair (\mathbb{V}, v) where $\mathbb{V} = (V^t)_{t \in \mathbb{R}^+}$ is a family of $\mathbb{Z}/2\mathbb{Z}$ -vector spaces, and $v = (v_s^t \colon V^s \to V^t)_{s \leq t \in \mathbb{R}^+}$ a family of linear maps such that:

- for every $t \in \mathbb{R}^+$, $v_t^t \colon V^t \to V^t$ is the identity map,
- for every $r, s, t \in \mathbb{R}^+$ such that $r \leq s \leq t$, we have $v_s^t \circ v_r^s = v_r^t$.

When the context is clear, we may denote \mathbb{V} instead of (\mathbb{V}, v) .

In practice, one builds persistence modules from filtrations.

A family of subsets $\mathbb{X} = (X^t)_{t \in \mathbb{R}^+}$ of E is a *filtration* if it is non-decreasing for the inclusion, i.e. for any $s, t \in \mathbb{R}^+$, if $s \leq t$ then $X^s \subseteq X^t$.

In this course, we will consider filtrations of simplicial complexes, that is, non-decreasing families of simplicial complexes $\mathbb{S} = (S^t)_{t \in \mathbb{R}^+}$.

By applying the i^{th} homology functor to a filtration, we obtain a persistence module $\mathbb{V}[\mathbb{S}] = (H_i(S^t))_{t \in \mathbb{R}^+}$, with maps $((i_s^t)_* \colon H_i(S^s) \to H_i(S^t))_{s \leq t}$ induced by the inclusions.

$$\xrightarrow{i_{t_1}^{t_2}} S^{t_2} \xrightarrow{i_{t_2}^{t_3}} S^{t_3} \xrightarrow{i_{t_3}^{t_4}} S^{t_4} \xrightarrow{i_{t_3}^{t_4}} S^{t_4} \xrightarrow{i_{t_4}^{t_4}} S^{t_4} \xrightarrow{i_{t_4}^{t_4}} S^{t_4} \xrightarrow{i_{t_4}^{t_4}} H_i(S^{t_1}) \xrightarrow{(i_{t_1}^{t_2})_*} H_i(S^{t_2}) \xrightarrow{(i_{t_2}^{t_3})_*} H_i(S^{t_3}) \xrightarrow{(i_{t_3}^{t_4})_*} H_i(S^{t_4}) \xrightarrow{I_1(S^{t_4})} \cdots \xrightarrow{I_1(S^{t_4})_*} H_i(S^{t_4}) \xrightarrow{I_1(S$$

I - Functoriality of homology

II - Persistence modules

III - Decomposition

IV - Persistence algorithm

Isomorphisms of persistence modules

12/18

Definition: An *isomorphism* between two persistence modules \mathbb{V} and \mathbb{W} is a family of isomorphisms of vector spaces $\phi = (\phi_t \colon \mathbb{V}^t \to \mathbb{W}^t)_{t \in \mathbb{R}^+}$ such that the following diagram commutes for every $s \leq t \in \mathbb{R}^+$:

Decomposability

Definition: Let (\mathbb{V}, v) and (\mathbb{W}, w) be two persistence modules.

Their sum is the persistence module $\mathbb{V} \oplus \mathbb{W}$ defined with the vector spaces $(V \oplus W)^t = V^t \oplus W^t$ and the linear maps

$$(v \oplus w)_s^t \colon (x, y) \in (V \oplus W)^s \longmapsto (v_s^t(x), w_s^t(y)) \in (V \oplus W)^t.$$

A persistence module \mathbb{U} is *indecomposable* if for every pair of persistence modules \mathbb{V} and \mathbb{W} such that \mathbb{U} is isomorphic to the sum $\mathbb{V} \oplus \mathbb{W}$, then one of the summands has to be a trivial persistence module, that is, equal to zero for every $t \in \mathbb{R}^+$. Otherwise, \mathbb{U} is said *decomposable*.

14/18 (1/4)

Definition: Let $I \subset \mathbb{R}^+$ be an interval: [a, b], (a, b], [a, b) or (a, b), with $a, b \in \mathbb{R}^+$ such that $a \leq b$, and potentially $a = -\infty$ or $b = +\infty$.

The *interval module* associated to I is the persistence module $\mathbb{B}[I]$ with vector spaces $\mathbb{B}^t[I]$ and linear maps $v_s^t \colon \mathbb{B}^s[I] \to \mathbb{B}^t[I]$ defined as

$$\mathbb{B}^t[I] = \begin{cases} \mathbb{Z}/2\mathbb{Z} & \text{if } t \in I, \\ 0 & \text{otherwise,} \end{cases} \quad \text{and} \quad v_s^t = \begin{cases} \text{id} & \text{if } s, t \in I, \\ 0 & \text{otherwise.} \end{cases}$$

14/18 (2/4)

Definition: Let $I \subset \mathbb{R}^+$ be an interval: [a, b], (a, b], [a, b) or (a, b), with $a, b \in \mathbb{R}^+$ such that $a \leq b$, and potentially $a = -\infty$ or $b = +\infty$.

The *interval module* associated to I is the persistence module $\mathbb{B}[I]$ with vector spaces $\mathbb{B}^t[I]$ and linear maps $v_s^t \colon \mathbb{B}^s[I] \to \mathbb{B}^t[I]$ defined as

$$\mathbb{B}^{t}[I] = \begin{cases} \mathbb{Z}/2\mathbb{Z} & \text{if } t \in I, \\ 0 & \text{otherwise,} \end{cases} \quad \text{and} \quad v_{s}^{t} = \begin{cases} \text{id} & \text{if } s, t \in I, \\ 0 & \text{otherwise.} \end{cases}$$

Lemma: Interval modules are indecomposable.

14/18 (3/4)

Definition: Let $I \subset \mathbb{R}^+$ be an interval: [a, b], (a, b], [a, b) or (a, b), with $a, b \in \mathbb{R}^+$ such that $a \leq b$, and potentially $a = -\infty$ or $b = +\infty$.

The *interval module* associated to I is the persistence module $\mathbb{B}[I]$ with vector spaces $\mathbb{B}^t[I]$ and linear maps $v_s^t \colon \mathbb{B}^s[I] \to \mathbb{B}^t[I]$ defined as

$$\mathbb{B}^t[I] = \begin{cases} \mathbb{Z}/2\mathbb{Z} & \text{if } t \in I, \\ 0 & \text{otherwise,} \end{cases} \quad \text{and} \quad v_s^t = \begin{cases} \text{id} & \text{if } s, t \in I, \\ 0 & \text{otherwise.} \end{cases}$$

We can sum interval modules:

14/18 (4/4)

Definition: Let $I \subset \mathbb{R}^+$ be an interval: [a, b], (a, b], [a, b) or (a, b), with $a, b \in \mathbb{R}^+$ such that $a \leq b$, and potentially $a = -\infty$ or $b = +\infty$.

The *interval module* associated to I is the persistence module $\mathbb{B}[I]$ with vector spaces $\mathbb{B}^t[I]$ and linear maps $v_s^t \colon \mathbb{B}^s[I] \to \mathbb{B}^t[I]$ defined as

$$\mathbb{B}^t[I] = \begin{cases} \mathbb{Z}/2\mathbb{Z} & \text{if } t \in I, \\ 0 & \text{otherwise,} \end{cases} \quad \text{and} \quad v_s^t = \begin{cases} \text{id} & \text{if } s, t \in I, \\ 0 & \text{otherwise.} \end{cases}$$

15/18 (1/7)

A persistence module \mathbb{V} decomposes into interval module if there exists a multiset \mathcal{I} of intervals of T such that

Multiset means that \mathcal{I} may contain several copies of the same interval I.

Theorem (consequence of Krull–Remak–Schmidt–Azumaya): If a persistence module decomposes into interval modules, then the multiset \mathcal{I} of intervals is unique.

In this case, \mathcal{I} is called the *persistence barcode* of \mathbb{V} . It is written $Barcode(\mathbb{V})$.

15/18 (2/7)

A persistence module \mathbb{V} decomposes into interval module if there exists a multiset \mathcal{I} of intervals of T such that

Multiset means that \mathcal{I} may contain several copies of the same interval I.

Theorem (consequence of Krull–Remak–Schmidt–Azumaya): If a persistence module decomposes into interval modules, then the multiset \mathcal{I} of intervals is unique.

In this case, \mathcal{I} is called the *persistence barcode* of \mathbb{V} . It is written $Barcode(\mathbb{V})$.

For every [a, b], (a, b], [a, b) or (a, b) in Barcode (\mathbb{V}), consider the point (a, b) of \mathbb{R}^2 . The collection of all such points is the *persistence diagram* of \mathbb{V} .

15/18 (3/7)

A persistence module \mathbb{V} decomposes into interval module if there exists a multiset \mathcal{I} of intervals of T such that

Multiset means that \mathcal{I} may contain several copies of the same interval I.

Theorem (consequence of Krull–Remak–Schmidt–Azumaya): If a persistence module decomposes into interval modules, then the multiset \mathcal{I} of intervals is unique.

In this case, \mathcal{I} is called the *persistence barcode* of \mathbb{V} . It is written $Barcode(\mathbb{V})$.

For every [a, b], (a, b], [a, b) or (a, b) in Barcode (\mathbb{V}), consider the point (a, b) of \mathbb{R}^2 . The collection of all such points is the *persistence diagram* of \mathbb{V} .

15/18 (4/7)

A persistence module \mathbb{V} is said *pointwise finite dimensional* if dim $V^t < +\infty$ for all t.

Theorem (Crawley-Boevey, 2015): Every pointwise finite-dimensional persistence module decomposes into interval modules.

15/18 (5/7)

A persistence module \mathbb{V} is said *pointwise finite dimensional* if dim $V^t < +\infty$ for all t.

Theorem (Crawley-Boevey, 2015): Every pointwise finite-dimensional persistence module decomposes into interval modules.

Proof (Zomorodian, Carlsson, 2005): Simpler case: the persistence module is finite-dimensional *and* has finitely many terms.

We can write our persistence module as

$$V^1 \xrightarrow{v_1^2} V^2 \xrightarrow{v_2^3} V^3 \xrightarrow{v_3^4} V^4 \xrightarrow{\cdots} V^4 \xrightarrow{\cdots} V^n$$

Consider the vector space $\mathcal{V} = \bigotimes_{1 \leq i \leq n} V^i = V^1 \times \cdots \times V^n$.

Let $\mathbb{Z}/2\mathbb{Z}[x]$ denote the space of polynomials with coefficients in $\mathbb{Z}/2\mathbb{Z}$. We give \mathcal{V} an action of $\mathbb{Z}/2\mathbb{Z}[x]$ via

$$x \cdot (a^1, a^2, ..., a^n) = (0, v_1^2(a^1), v_2^3(a^2), ..., v_{n-1}^n(a^{n-1})).$$

Hence \mathcal{V} can be seen as a finitely generated module over the principal ideal domain $\mathbb{Z}/2\mathbb{Z}[x]$. By classification, \mathcal{V} is isomorphic to a sum

$$\mathcal{V} \simeq \bigoplus_{i \in I} \mathbb{Z}/2\mathbb{Z}[x]/x^i \cdot \mathbb{Z}/2\mathbb{Z}[x].$$

We identify the components $\mathbb{Z}/2\mathbb{Z}[x]/x^i \cdot \mathbb{Z}/2\mathbb{Z}[x]$ with bars of the barcode of length *i*.

15/18 (7/7)

On a barcode we can read homology **at each step**, and see how it **evolves**.

I - Functoriality of homology

II - Persistence modules

III - Decomposition

IV - Persistence algorithm

17/18 (1/13)

The Čech or the Rips filtration define an increasing sequence of simplices

$$\ldots \subset \operatorname{\check{C}ech}^{t_1}(X) \subset \operatorname{\check{C}ech}^{t_2}(X) \subset \operatorname{\check{C}ech}^{t_3}(X) \subset \ldots$$

We can turn it consistently into an ordering of the simplices, by inserting the simplices by order of apparition in the filtration.

 $\sigma^1 < \sigma^2 < \ldots < \sigma^n$

Denote $t(\sigma)$ the time of apparition of the simplex σ in the filtration. The total order on the simplices satisfies

 $t(\sigma^i) < t(\sigma^j)$ for all i < j.

In practice several simplices may appear at the same time. If this occurs, choose an order of the simplices.

Consider the boundary matrix, and compute a Gauss reduction.

For any
$$j \in \llbracket 1, n
rbracket$$
,

$$\delta(j) = \max\{i \in \llbracket 1, n \rrbracket, \Delta_{i,j} \neq 0\},\$$

17/18 (3/13)

and $\Delta_{i,j} = 0$ for all j, then $\delta(j)$ is *undefined*.

 $\left(\sigma^{\delta(j)},\sigma^{j}\right).$

Now, for all j such that $\delta(j)$ is defined, consider the pair of simplices

Also, for all *i* such that $\forall j, \delta(j) \neq i$, we set: $(\sigma^i, +\infty)$. The pairs of simplices (σ, τ) are called *persistence pairs*.

 $\left(\sigma^{\delta(j)},\sigma^{j}\right).$

Now, for all j such that $\delta(j)$ is defined, consider the pair of simplices

Also, for all *i* such that $\forall j, \delta(j) \neq i$, we set: $(\sigma^i, +\infty)$. The pairs of simplices (σ, τ) are called *persistence pairs*.

 $\left(\sigma^{\delta(j)},\sigma^{j}\right).$

17/18 (6/13)

Now, for all j such that $\delta(j)$ is defined, consider the pair of simplices

Also, for all *i* such that $\forall j, \delta(j) \neq i$, we set: $(\sigma^i, +\infty)$. The pairs of simplices (σ, τ) are called *persistence pairs*.

17/18 (7/13)

Now, for all j such that $\delta(j)$ is defined, consider the pair of simplices

 $\left(\sigma^{\delta(j)},\sigma^{j}\right).$

Also, for all i such that $\forall j, \delta(j) \neq i$, we set: $(\sigma^i, +\infty)$.

17/18 (8/13)

Now, for all j such that $\delta(j)$ is defined, consider the pair of simplices

 $\left(\sigma^{\delta(j)},\sigma^{j}\right).$

Also, for all i such that $\forall j, \delta(j) \neq i$, we set: $(\sigma^i, +\infty)$.

17/18 (9/13)

Now, for all j such that $\delta(j)$ is defined, consider the pair of simplices

 $\left(\sigma^{\delta(j)},\sigma^{j}\right).$

Also, for all i such that $\forall j, \delta(j) \neq i$, we set: $(\sigma^i, +\infty)$.

 $\left(\sigma^{\delta(j)},\sigma^{j}\right).$

17/18 (10/13)

Now, for all j such that $\delta(j)$ is defined, consider the pair of simplices

Also, for all i such that $\forall j, \delta(j) \neq i$, we set: $(\sigma^i, +\infty)$.

 $\left(\sigma^{\delta(j)},\sigma^{j}\right).$

17/18 (11/13)

Now, for all j such that $\delta(j)$ is defined, consider the pair of simplices

Also, for all i such that $\forall j, \delta(j) \neq i$, we set: $(\sigma^i, +\infty)$.

17/18 (12/13)

Proposition: The barcodes of the filtration consists in the intervals

 $\mathcal{I} = \{ (t(\sigma), t(\tau)) \text{ for all persistence pair } (\sigma, \tau) \text{ such that } t(\sigma) \neq t(\tau) \}.$

Proposition: The barcodes of the filtration consists in the intervals

 $\mathcal{I} = \left\{ (t(\sigma), t(\tau)) \text{ for all persistence pair } (\sigma, \tau) \text{ such that } t(\sigma) \neq t(\tau) \right\}.$

Proof: We shall show that the algorithm allows to define, for all $i, j \ge 0$, a basis \mathcal{B}_i^j of $H_i(K^j)$, such that one passes from \mathcal{B}_i^j to \mathcal{B}_i^{j+1} by adding or removing a cycle.

As a consequence, we obtain an isomorphism between the persistence module and a sum of interval modules given by \mathcal{I} .

We build the basis as follows: for every $j \ge 0$, consider the simplex σ^j and its dimension $i = \dim(\sigma^j)$.

If σ^j is positive, then we add the corresponding cycle to the basis \mathcal{B}_i^{j-1} .

If it is negative, then there exists a simplex σ^k , with k < j, such that $\delta(k) = j$. We remove the cycle corresponding to σ^k to the basis \mathcal{B}_{i-1}^{j-1} .

Conclusion

We used induced maps in homology to track the cycles throughout filtrations.

We gathered all this information into a persisten ce module.

We have seen that the barcode of a persistence module summarizes the persistence of all the cycles.

We used the incremental algorithm to compute the barcode.

Homework: Exercise 52 Facultative: Exercises 48, 49, 51

Conclusion

We used induced maps in homology to track the cycles throughout filtrations.

We gathered all this information into a persisten ce module.

We have seen that the barcode of a persistence module summarizes the persistence of all the cycles.

We used the incremental algorithm to compute the barcode.

Homework: Exercise 52 Facultative: Exercises 48, 49, 51