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Introduction 2/18 (1/12)

Let X C R" finite.
e select a thickening X*

e compute its homology via Cecht(X) or Rips’(X)
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Introduction 2/18 (2/12)

Let X C R" finite.
e select a thickening X*

e compute its homology via Cecht(X) or Rips’(X)
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Introduction 2/18 (3/12)

Let X C R" finite.
e select a thickening X*

e compute its homology via Cecht(X) or Rips’(X)
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Introduction 2/18 (4/12)

Let X C R"” finite.
Pipeline of homology inference: o select a thickening X*

. computej_ts_homology via Cech’ (X) or Rips’(X)
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Introduction 2/18 (5/12)

Let X C R” finite.
Pipeline of homology inference: o select a thickening X*
e compute its homology via Cech’ (X) or Rips’(X)
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Introduction 2/18 (6/12)

Let X C R" finite.
Pipeline of homology inference: o select a thickening X*

ecC mology via Cech’(X) or Rips'(X)




Introduction 2/18 (7/12)

Let X C R"™ finite.

Pipeline of homology inference:

via Cecht(X) or Rips’(X)



Introduction 2/18 (8/12)

Let X C R"™ finite.

Pipeline of homology inference:

ia Cecht(X ) or Rips’(X)



Introduction 2/18 (9/12)

Let X C R"™ finite.

Pipeline of homologyaififer

ech’ (X) or Rips'(X)



Introduction 2/18 (10/12)

Let X C R" finite.
Pipeline of homologyinfe




Introduction 2/18 (11/12)

Let X C R" finite.
Pipeline of homology.4




Introduction 2/18 (12/12)

Let X C R" finite.
e select a thickening X*

e compute its homology via Cecht(X) or Rips’(X)
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How to handle topological noise?




I - Functoriality of homology



Homology is a functor 4/18 (1/3)

We have seen that homology transforms topological spaces into vector spaces

H,: Top — Vect

Actually, it also transforms continous maps into linear maps

(f: X =Y) — (fu: Hi(X) = H;(Y))



Homology is a functor 1/18 (2/3)

We have seen that homology transforms topological spaces into vector spaces
H,: Top — Vect

Actually, it also transforms continous maps into linear maps

(f: X =Y) — (fu: Hi(X) = H;(Y))

We will adopt a simplicial point of view.
H;: SimpComp — Vect
K +— H;(K)
(f: K = L) — (f«: Hi(K) — H;(L))



Homology is a functor 4/18 (3/3)

We have seen that homology transforms topological spaces into vector spaces

H,: Top — Vect

Actually, it also transforms continous maps into linear maps

(f: X =Y) — (fu: Hi(X) = H;(Y))

We will adopt a simplicial point of view.

H;: SimpComp — Vect
K +— H;(K)

(f.: Hy(K) — Hy(L))

4

what is a map between simplicial complexes?



Simplicial maps 5/18 (1/4)

Definition: Let K and L be two simplicial complexes, and Vi, V|, their set of vertices.
A simplicial map between K and L is a map f: Vx — V7, such that

Vo e K, f(o) € L.

When there is no risk of confusion, we may denote a simplicial map f: K — L instead
of f: VK — VL.



Simplicial maps 5/18 (2/4)

Definition: Let K and L be two simplicial complexes, and Vi, V|, their set of vertices.
A simplicial map between K and L is a map f: Vx — V7, such that

Vo e K, f(o) € L.

When there is no risk of confusion, we may denote a simplicial map f: K — L instead
of f: VK — VL.

Example: Let K = {[0], [1],[0,1]}, L = {[0],[1],[2], [0, 1],[0,2],[1, 2]} and

f:{0,1} —{0,1,2}
0—0
1—1

O ________________ >

It is simplicial since f([0,1]) = [0,1] is a simplex of L.



Simplicial maps 5/18 (3/4)

Definition: Let K and L be two simplicial complexes, and Vi, V|, their set of vertices.
A simplicial map between K and L is a map f: Vx — V7, such that

Vo e K, f(o) € L.

When there is no risk of confusion, we may denote a simplicial map f: K — L instead
of f: VK — VL.

Example: Let K = {[0],[1],[2],[0,1],[0,2],[1,2]}, L = {[0], 1], [2],[0, 1], [0, 2]} and

f:40,1} —{0,1,2}
0—0

Jp—— - e o
—_—— - -
-

e o = = === - -

0

- — -
- e - _—————

It is not simplicial since f([1,2]) = [1,2] is not a simplex of L.



Simplicial maps 5/18 (4/4)

Definition: Let K and L be two simplicial complexes, and Vi, V|, their set of vertices.
A simplicial map between K and L is a map f: Vx — V7, such that

Vo € K, f(o) € L.
When there is no risk of confusion, we may denote a simplicial map f: K — L instead

Off: VK — VL.

Example: Let X C R™ and s,t > 0 such that s <t. Consider the Cech complexes
Cech”(X) and Cecht(X).

The inclusion map i: Cech” (X) — Cecht(X) is a simplicial map.

Indeed, the sequence of simplicial complexes (Cecht(X)) IS non-decreasing.
t>0



Induced map 6/18 (1/10)

Let f: K — L be a simplicial map. Let n > 0, and consider the groups of chains of K
and L:

(

Cr(K) = Z € -0, Vo € Ky, €, € Z/2Z
\O'GK(n)
)

Cu(L) =13 Y €0, Yo € Ly, € €Z/2Z
TEK (n)

We define a linear map as follows:
fn: Ch(K) —C, (L)
o— f(o) if dim(f(0))=n,

0 else.



Induced map 6/18 (2/10)

Let f: K — L be a simplicial map. Let n > 0, and consider the groups of chains of K

and L:

r
Z €s -0, Vo € K, € EZ/QZ}

\O'EK(n)

)
Z €s 0, Yo € L(y), € EZ/QZ}

TEK (n)

We define a linear map as follows:

fn: C

n(K) —C, (L)
o— f(o) if dim(f(0)) =n,
0 else.
CQ(K) G2 > Cl<K) 9 > O()(K> % > {O}
J/fQ J/fl J/fo J/fl
Cay(L) %2 C1(L) n Co(L) o, {0}



Induced map 6/18 (3/10)

———————— » C3(K) % Cy(K) %2 C1(K) n_, Co(K) P, {0}
J/fs J/fz J/fl J/fo J/fl
________  Cy(L) — 2 Gy(1) —2— (D) — 2 Cy(L) —2— {0}
For every n > 0, we have 0, 0 f,, = f,_1 0 0,.
Proof: Let o € K(,). We have the equalities
O © fn<0) — Z M
nCf(o)
u|=lo|—1
frn—100,(0) = Z fn(T)
TCO
[T|=]o]—1

We should distinguish three cases:
o |f(0)| =|o| (i.e. f is injective on o),
o [flo)| <lo| -1,
o [flo)|=lo] - 1.



Induced map 6/18 (4/10)

-------- » C(K) —2— Cy(K) —2— Oy(K) —2— Co(K) —2— {0}
J/fs J/fz J/fl J/fo J/fl
-------- » Os(L) — 22— Cy(L) —2— Cy(L) —2— Cy(L) —2— {0}

For every n > 0, we have 0, 0 f,, = f,_1 0 0,.

Proposition: For every ¢ € Z,,(K), we have f,(c) € Z,(L).
For every ¢ € B, (K), we also have f,(c) € B,(L).

Proof: First, let ¢c € Z,,(K). We have
an O fn(c) — fn—l O an(c) — fn—l(o) — 07

hence f,.(c) € Z,(L).
Secondly, let ¢ € B,,(K), and write ¢ = 0,,41(c) with ¢/ € Cp,11(K). We get

fn<c) = fn o n+1(cl> = On410 fn+1(c,)7

hence f,,(c) € B,,(L).



Induced map 6/18 (5/10)

81 80

________ v Cy(K) » Oy (K) > C1(K) » Co(K) > {0}
J/fs J/fz J/fl J/fo J/fl
________ » Cs(L) —2 Oo(D) — 2 Ci(1) — 2 Co(L) —2— {0}

For every n > 0, we have 0, 0 f,, = f,_1 0 0,.

Proposition: For every ¢ € Z,,(K), we have f,(c) € Z,(L).
For every ¢ € B, (K), we also have f,(c) € B, (L).

We have B, (K) C Z,(K), B,(L) C Z,(L), f(Z,(K)) C f(Z,(K))
and f(B,(K)) C f(Bn(K)).

Hence we can define a linear map between quotient vector spaces:
(fn)x: Zn(K)/Bp(K) — Zyn(L)/Bn(L).
By definition of the homology groups, we have defined a map

(fr)s: Hy(K) — Hy(L).

It is called the induced map in homology.



Induced map 6/18 (6/10)

02 01 9o

———————— » Cs(K) > Co(K) > C1(K) > Co(K) > {0}
J/fs J/fz J/fl J/fo J/fl
———————— » C3(L) %, Cs(L) N C1(L) n_, Co(L) LN {0}
For every n > 0, we have 0, 0 f,, = f,_1 0 0,.
Proposition: For every ¢ € Z,,(K), we have f,(c) € Z,(L).
For every ¢ € B, (K), we also have f,(c) € B,(L).
H3(K) Hy(K) H,(K) Ho(K)
J/(fza)* J/(fz)* (f1)* J/(fo)*
H3(L) Hy (L) Hy (L) Ho(L)



Induced map

6/18 (7/10)

Example: Consider the simplicial complexes K = L = {|0], [1],[2], [0, 1], |0, 2], [1, 2] }.

The inclusion i: K — L induces the identity in H°:

l1—1

The inclusion i: K — L induces the identity in H!:

(41)s: Hi(K) ~7Z/27 — H(L) >~ 7Z./27
1—1

(fn)« can be defined as

c = Z €y O — Z €o * fn(0)

0EK (n) oEK (n)



Induced map 6/18 (8/10)

Example: Consider the simplicial complexes K = {|0], [1], [2], |0, 1], |0, 2], [1,2]} and
L ={[0], [1], [2],10,1],[0,2], (1,2}, 0,1, 2]}.

The inclusion i: K — L induces the zero map in H!:

(i1)s: H1(K) ~7Z/27 — H1(L) ~ {0}
I—0

(fn)« can be defined as

c = Z €y O — Z €o * fn(0)

0EK (n) oEK (n)



Induced map 6/18 (9/10)

Example: Consider the simplicial complexes K = {|0], [1], [2], |0, 1], |0, 2], [1,2]} and
L = (0], (1], [2], (3], [0, 1], [0, 2}, [1, 2], [1, 3], [2, 3]}

The homology group H;(L) is isomorphic to the vector space (Z/27)? by identifying
0,1] +1[0,2] +[1,2] — (1,0) and [1,2] + [2,3] + [1,3] — (0,1).

The inclusion i: K — L induces the following map between 15t homology groups:

(i1)s: H1(K) ~Z/27Z — H(L) ~ (Z/27)*
1+— (1,0)

It can be represented as the matrix (é 8)

1 3

0
(fn)« can be defined as

c = Z €y O — Z €o * fn(0)

0EK (n) oEK (n)



Induced map 6/18 (10/10)

Exercise: Let K = {|0], [1], 2], [3], [4], |5], [0, 1], [1, 2], [2, 3], |3, 4], [4, 5], |5, 0]} and
L = {0}, [1], [2],10,1], [1, 2], [2, 0] }.

Consider the simplical map f: ¢ — ¢ modulo 3.

Show that the induced map (f1). is zero.
3 1
1
0 4 0 2

(fn)« can be defined as

c = Z €y O — Z €o * fn(0)

0EK (n) oEK (n)



Functor property 7/18 (1/2)
Proposition: Let K, L, M be three simplicial complexes, and consider two simplicial
maps f: K — L and g: L — M.

For any n > 0, the induced map ((go f)n)«: Hp(K) — H, (M) and
(gn)x o (fn)s: Hp(K) — H, (M) are equal.

gof (gof)«
/\ /—\
K 7 L —— M, H,(K) — Hy(L) —— Hn(M).



Functor property 7/18 (2/2)

Proposition: Let K, L, M be three simplicial complexes, and consider two simplicial
maps f: K — L and g: L — M.

For any n > 0, the induced map ((go f)n)«: Hp(K) — H, (M) and
(gn)x o (fn)s: Hp(K) — H, (M) are equal.

gof (gof)«
/\ A
K —— L —— M, H,(K) — H,(L) —5— Hn(M).

Proof: Let 0 € K(,). The image (go f),(0) is
e (go f)(o)if go f is injective on o,
o 0 else.

If g o f is injective on o, then f is injective on ¢ and g is injective on f(o), hence
gn © fn(0) =go f(o), and we deduce the result.

If g o f is not injective on o, then f is not injective on ¢ or g is not injective on f(o),
hence g, o f,,(0) = 0, and we deduce the result.



II - Persistence modules



racking cycles over time 0/18 (1/4)

Let X C R™. The collection of its thickenings is an non-decreasing sequence of subsets

c X Xt2 c XBc...

By considering the corresponding Cech complexes, we obtain an non-decreasing
sequence of simplicial complexes

C Cechtl(X) c Cech” (X) C Cech™ (X)C...

Let us denote 4! the inclusion map corresponding to Cech” (X) C Cecht(X). We can
write

.to -t3

M Bech™®(X) — 7

Applying the it homology functor yields a diagram of vector spaces

________ > Hi((]echtl(X)) (). > Hi(Cecth(X)) (r2). > Hi((v]echtg(X)) S

where the maps (i%), are those induced in homology by the inclusions .



racking cycles over time 0/18 (2/4)

.t3
(zt2

.t2)
1
( t1 /)«

-------- » H;(Cech™ (X)) s H;(Cech™(X)) ., H;(Cech™ (X)) —-----

Let ¢ > 0, to > 0 and consider a cycle ¢ € Hi(CeChtO (X)).
Its death time is: sup {¢ > to, (i% ) (c) # 0},

its birth time is: inf {t > 1o, (i) " ({c}) # (Z)} ,

its persistence is the difference.

As a rule of thumb:
e cycles with large persistence correspond to important topological features of the
dataset,

e cycles with short persistence corresponds to topological noise.



racking cycles over time 0/18 (3/4)

). > Hi(Cecth(X)) (i), > Hi(Cecht3(X)) ——————

Let ¢ > 0, to > 0 and consider a cycle ¢ € H@-(CechtO (X)).
Its death time is: sup {¢ > to, (i} ) (c) # 0},

its birth time is: inf {t > 1o, (i) " ({c}) # (2)} ,

its persistence is the difference.




racking cycles over time 0/18 (4/4)

). > H@-(Cecth(X)) (i), > Hi((]echt3(X)) ——————

Let ¢ > 0, to > 0 and consider a cycle ¢ € H@-(CechtO (X)).
Its death time is: sup {¢ > to, (i} ) (c) # 0},

its birth time is: inf {t > 1o, (i) " ({c}) # (2)} ,

its persistence is the difference.




Persistence modules (finalmente!) 14,15 (19

A persistence module V over R™ with coefficients in 7./2Z is a pair (V,v)
where V = (V');cg+ is a family of Z/2Z-vector spaces, and v = (vi: V¥ — V) o icp+
a family of linear maps such that:

o for every t € R", vf: V! — V' is the identity map,

t
re

o for every r,s,t € R" such that r < s < t, we have ’Ug oV, =1

When the context is clear, we may denote V instead of (V,v).



Persistence modules (finalmente!) 14,15 2/

A persistence module V over R™ with coefficients in Z./27 is a pair (V,v)
where V = (V');cg+ is a family of Z/2Z-vector spaces, and v = (vi: V¥ — V) o icp+
a family of linear maps such that:

o for every t € R", vf: V! — V' is the identity map,
o for every 7, s,t € R such that r < s <, we have vl o v® = vl

When the context is clear, we may denote V instead of (V,v).
In practice, one builds persistence modules from filtrations.

A family of subsets X = (X*),cp+ of E is a filtration if it is non-decreasing for the
inclusion, i.e. for any s,t € R, if s <t then X* C X",

In this course, we will consider filtrations of simplicial complexes, that is, non-decreasing
families of simplicial complexes S = (5%);cr+.

By applying the " homology functor to a filtration, we obtain a persistence module
VIS] = (H;(5%)),cp+. with maps ((3%).: H;(S*) — H;(S")),~, induced by the
inclusions. -




I - Functoriality of homology

IT - Persistence modules

I11 - Decomposition

IV - Persistence algorithm



Isomorphisms of persistence modules 12/18

Definition: An isomorphism between two persistence modules V and W is a family of
isomorphisms of vector spaces ¢ = (¢;: V! — W*),cp+ such that the following diagram
commutes for every s <t c Rt:

t
US
Vs \ Vt

\L¢s \L¢t
wt

W s W



Decomposability 13/18

Definition: Let (V,v) and (W, w) be two persistence modules.

Their sum is the persistence module V& W defined with the vector spaces
(Ve W) =V"® W' and the linear maps

(e w): (z,y) € (VeW)" — (v,(z), we(y) € (Ve W)

A persistence module U is indecomposable if for every pair of persistence modules V
and W such that U is isomorphic to the sum V @& W, then one of the summands has to
be a trivial persistence module, that is, equal to zero for every t € RT.

Otherwise, U is said decomposable.



Interval modules 14/18 (1/4)

Definition: Let I C R™ be an interval: [a,b], (a,], [a,b) or (a,b), with a,b € RT such
that a < b, and potentially a = —oc0 or b = +00.

The interval module associated to [ is the persistence module B[] with vector spaces
B![I] and linear maps v’ : B3[I] — B![I] defined as

7)27 iftel id ifstel
t _ ’ t ’ )
B 7] _{ 0 otherwise, and Us _{ 0 otherwise.
[ | R—I—
@ @ @ @ >
0 7./27. 7,/27. 0
~— v ~— v ~_ v




Interval modules 14/18 (2/4)

Definition: Let I C R™ be an interval: [a,b], (a,], [a,b) or (a,b), with a,b € RT such
that a < b, and potentially a = —oc0 or b = +00.

The interval module associated to [ is the persistence module B[] with vector spaces
B![I] and linear maps v’ : B3[I] — B![I] defined as

7)27 iftel id ifstel
t _ ’ t ’ )
B 7] _{ 0 otherwise, and Us _{ 0 otherwise.
[ | R—I—
@ @ @ @ >
0 7./27. 7,/27. 0
~— v ~— v ~_ v
0 id 0

Lemma: Interval modules are indecomposable.



Interval modules 14/18 (3/4)

Definition: Let I C R™ be an interval: [a,b], (a,], [a,b) or (a,b), with a,b € RT such
that a < b, and potentially a = —oc0 or b = +00.

The interval module associated to [ is the persistence module B[] with vector spaces
B![I] and linear maps v’ : B3[I] — B![I] defined as

7)27 iftel id ifstel
t _ ’ t ’ )
B 7] _{ 0 otherwise, and Us _{ 0 otherwise.

We can sum interval modules:

Rt
| ] -
| ]
Rt
- L ® >
l ]
| ]
7./ 27, (Z)27.)?
S~ v



Interval modules 14/18 (4/4)

Definition: Let I C R™ be an interval: [a,b], (a,], [a,b) or (a,b), with a,b € RT such
that a < b, and potentially a = —oc0 or b = +00.
The interval module associated to [ is the persistence module B[] with vector spaces

B[] and linear maps v%: B5[I] — B'[I] defined as

7)27 iftel id ifstel
t _ ’ t ’ )
B 7] _{ 0 otherwise, and Us _{ 0 otherwise.




Barcodes 15/18 (1/7)

A persistence module V decomposes into interval module if there exists a multiset Z of
intervals of 1" such that

V ~ @B[I].

Multiset means that Z may contain several copies of the same interval 1.

Theorem (consequence of Krull-Remak-Schmidt—Azumaya): If a persistence module
decomposes into interval modules, then the multiset 7 of intervals is unique.

In this case, Z is called the persistence barcode of V. It is written Barcode (V).




Barcodes 15/18 (2/7)

A persistence module V decomposes into interval module if there exists a multiset Z of

intervals of T" such that
V ~ @B[I].

Multiset means that Z may contain several copies of the same interval 1.

Theorem (consequence of Krull-Remak-Schmidt—Azumaya): If a persistence module
decomposes into interval modules, then the multiset 7 of intervals is unique.

In this case, Z is called the persistence barcode of V. It is written Barcode (V).

For every [a,b], (a,b], [a,b) or (a,b) in Barcode (V), consider the point (a,b) of R?.
The collection of all such points is the persistence diagram of V.

\ )




Barcodes 15/18 (3/7)

A persistence module V decomposes into interval module if there exists a multiset Z of
intervals of 1" such that

V ~ @B[I].

Multiset means that Z may contain several copies of the same interval 1.

Theorem (consequence of Krull-Remak-Schmidt—Azumaya): If a persistence module
decomposes into interval modules, then the multiset 7 of intervals is unique.

In this case, Z is called the persistence barcode of V. It is written Barcode (V).

For every [a,b], (a,b], [a,b) or (a,b) in Barcode (V), consider the point (a,b) of R?.
The collection of all such points is the persistence diagram of V.

A
[

! . = :

——— L.

\ )

Barcode (V) Diagram (V)



Barcodes 15/18 (4/7)

A persistence module V is said pointwise finite dimensional if dim V! < +oo for all ¢.

Every pointwise finite-dimensional persistence
module decomposes into interval modules.



Barcodes 15/18 (5/7)

A persistence module V is said pointwise finite dimensional if dim V! < +oo for all ¢.

Every pointwise finite-dimensional persistence
module decomposes into interval modules.

Proof (Zomorodian, Carlsson, 2005): Simpler case: the persistence module is
finite-dimensional and has finitely many terms.
We can write our persistence module as

4

U3

2 3
yr—2L y2__ 2 3 y VA U y Y
Consider the vector space V = Q) ;< Vi=Vix...xV",

Let Z/27Z|x| denote the space of polynomials with coefficients in Z/27Z. We give V an
action of Z/27|x| via

r-(a',a*,...,a™) = (0,vi(a'),vs(a?),...,0"_,(a"1)).

Hence V) can be seen as a finitely generated module over the principal ideal domain
Z./2Z|x]. By classification, V is isomorphic to a sum

V ~ P z/22[x)/x - Z/2Z[x].

el

We identify the components Z/2Z[z|/x" - Z./27Z|x] with bars of the barcode of length .



Barcodes 15/18 (6/7)




Barcodes 15/18 (7/7)

On a barcode we can read homology at each step, and see how it evolves.




IV - Persistence algorithm



Algorithm 17/18 (1/13)

The Cech or the Rips filtration define an increasing sequence of simplices
C Cechtl(X) c Cech” (X) C Cech” (X)C...

We can turn it consistently into an ordering of the simplices, by inserting the simplices
by order of apparition in the filtration.

ol <o’ < ... <o

Denote t(o) the time of apparition of the simplex ¢ in the filtration. The total order on
the simplices satisfies

t(o') < t(o?) for all i < j.

In practice several simplices may appear at the same time. If this occurs, choose an
order of the simplices.

> (Consider the boundary matrix, and compute a Gauss reduction.



17/18 (2/13)

Algorithm

0.1 0.2 0.3 0.4 0.5 0.6 O.? 0.8 0.9 0.10
0O 00 01 0 0 1 00\

0O 0 0 0 1

0%
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o X

\
o X
6

g X
6

1 00 0 0 O

0_10

0 0 0 O \
I 00 0 O
0 0 0 0 0 1

[

1 0 0 O

0O 0 0 0 0 0 1 0 0 O
0O 0 0 0 0 0 0 0 0

1

o0 0 0 0 0 0 0 0 O

0 00000000 0
00000000 O
00000000 O
\0 000 0O0O0O0 D0 0

1
1

1 0 0 1 0

(

1 0 0 O

0O 0 0 0 0 1

1 0

1

0O 0 0 0 0 0 1

O 0 0 0 0 0 0 0 0 1
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Algorithm

Now, for all j such that §(j) is defined, consider the pair of simplices

(05(,,-),00 _
Also, for all i such that Vj,6(j) # 4, we set: (o, +00).

The pairs of simplices (o, 7) are called persistence pairs.
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Now, for all j such that §(j) is defined, consider the pair of simplices
(05(,,-),00 _
Also, for all i such that Vj,6(j) # 4, we set: (o, +00).

The pairs of simplices (o, 7) are call ersistence pairs.
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Now, for all j such that §(j) is defined, consider the pair of simplices
(060),0j)_
Also, for all i such that Vj,6(j) # 4, we set: (o, +00).

The pairs of simplices (o, 7) are call ersistence pairs.
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Algorithm 17/18 (12/13)
Proposition: The barcodes of the filtration consists in the intervals

Z ={(t(c),t(r)) for all persistence pair (o,7) such that t(c) # ¢(7)}.
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Proposition: The barcodes of the filtration consists in the intervals

Z ={(t(c),t(r)) for all persistence pair (o,7) such that t(c) # ¢(7)}.

Proof: We shall show that the algorithm allows to define, for all 7,5 > 0, a basis Bf of
H;(K7), such that one passes from B/ to B/ by adding or removing a cycle.

As a consequence, we obtain an isomorphism between the persistence module and a
sum of interval modules given by 7.

We build the basis as follows: for every j > 0, consider the simplex ¢’ and its dimension
i = dim(o7?).

If o7 is positive, then we add the corresponding cycle to the basis Bg_l.

If it is negative, then there exists a simplex o”, with k < j, such that §(k) = j. We
remove the cycle corresponding to o” to the basis Bg__ll.



Conclusion

We used induced maps in homology to track the cycles throughout filtrations.
We gathered all this information into a persisten ce module.

We have seen that the barcode of a persistence module summarizes the persistence
of all the cycles.

We used the incremental algorithm to compute the barcode.

Homework: Exercise 52
Facultative: Exercises 48, 49, 51
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Merci !



