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Pipeline of homology inference:

Let X ⊂ Rn finite.

select a thickening Xt

compute its homology via Čech
t
(X) or Ripst(X)
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Pipeline of homology inference:

Let X ⊂ Rn finite.

select a thickening Xt

compute its homology via Čech
t
(X) or Ripst(X)

How to handle topological noise?
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4/18 (1/3)Homology is a functor

We have seen that homology transforms topological spaces into vector spaces

Hi : Top −→ Vect

X 7−→ Hi(X)

Actually, it also transforms continous maps into linear maps(
f : X → Y

)
7−→

(
f∗ : Hi(X)→ Hi(Y )

)
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4/18 (3/3)Homology is a functor

We have seen that homology transforms topological spaces into vector spaces

Hi : Top −→ Vect

X 7−→ Hi(X)

Actually, it also transforms continous maps into linear maps(
f : X → Y

)
7−→

(
f∗ : Hi(X)→ Hi(Y )

)

We will adopt a simplicial point of view.

Hi : SimpComp −→ Vect

K 7−→ Hi(K)(
f : K → L

)
7−→

(
f∗ : Hi(K)→ Hi(L)

)

what is a map between simplicial complexes?
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Definition: Let K and L be two simplicial complexes, and VK , VL their set of vertices.
A simplicial map between K and L is a map f : VK → VL such that

∀σ ∈ K, f(σ) ∈ L.

When there is no risk of confusion, we may denote a simplicial map f : K → L instead
of f : VK → VL.
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5/18 (3/4)Simplicial maps

Definition: Let K and L be two simplicial complexes, and VK , VL their set of vertices.
A simplicial map between K and L is a map f : VK → VL such that

∀σ ∈ K, f(σ) ∈ L.

When there is no risk of confusion, we may denote a simplicial map f : K → L instead
of f : VK → VL.

Example: Let K = {[0], [1], [2], [0, 1], [0, 2], [1, 2]}, L = {[0], [1], [2], [0, 1], [0, 2]} and

f : {0, 1} → {0, 1, 2}
0 7→ 0

1 7→ 1

2 7→ 2

0

1 1

0

2

It is not simplicial since f([1, 2]) = [1, 2] is not a simplex of L.

2



5/18 (4/4)Simplicial maps

Definition: Let K and L be two simplicial complexes, and VK , VL their set of vertices.
A simplicial map between K and L is a map f : VK → VL such that

∀σ ∈ K, f(σ) ∈ L.

When there is no risk of confusion, we may denote a simplicial map f : K → L instead
of f : VK → VL.

Example: Let X ⊂ Rn and s, t ≥ 0 such that s ≤ t. Consider the Čech complexes

Čech
s
(X) and Čech

t
(X).

The inclusion map i : Čech
s
(X)→ Čech

t
(X) is a simplicial map.

Indeed, the sequence of simplicial complexes
(

Čech
t
(X)

)
t≥0

is non-decreasing.



6/18 (1/10)Induced map

Let f : K → L be a simplicial map. Let n ≥ 0, and consider the groups of chains of K
and L:

Cn(K) =

 ∑
σ∈K(n)

εσ · σ, ∀σ ∈ K(n), εσ ∈ Z/2Z


Cn(L) =

 ∑
σ∈K(n)

εσ · σ, ∀σ ∈ L(n), εσ ∈ Z/2Z


We define a linear map as follows:

fn : Cn(K) −→Cn(L)

σ 7−→ f(σ) if dim(f(σ)) = n,

0 else.
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We define a linear map as follows:
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0 else.

C3(K) C2(K) C1(K) C0(K) {0}

C3(L) C2(L) C1(L) C0(L) {0}

∂3

f3

∂2

f2

∂1

f1

∂0

f0 f−1

∂3 ∂2 ∂1 ∂0
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C3(K) C2(K) C1(K) C0(K) {0}

C3(L) C2(L) C1(L) C0(L) {0}

∂3

f3

∂2

f2

∂1

f1

∂0

f0 f−1

∂3 ∂2 ∂1 ∂0

Lemma: For every n ≥ 0, we have ∂n ◦ fn = fn−1 ◦ ∂n.

Proof: Let σ ∈ K(n). We have the equalities

∂n ◦ fn(σ) =
∑

µ⊂f(σ)
|µ|=|σ|−1

µ

fn−1 ◦ ∂n(σ) =
∑
τ⊂σ

|τ |=|σ|−1

fn(τ)

We should distinguish three cases:
• |f(σ)| = |σ| (i.e. f is injective on σ),
• |f(σ)| < |σ| − 1,
• |f(σ)| = |σ| − 1.
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C3(K) C2(K) C1(K) C0(K) {0}

C3(L) C2(L) C1(L) C0(L) {0}

∂3

f3

∂2

f2

∂1

f1

∂0

f0 f−1

∂3 ∂2 ∂1 ∂0

Lemma: For every n ≥ 0, we have ∂n ◦ fn = fn−1 ◦ ∂n.

Proposition: For every c ∈ Zn(K), we have fn(c) ∈ Zn(L).
For every c ∈ Bn(K), we also have fn(c) ∈ Bn(L).

Proof: First, let c ∈ Zn(K). We have

∂n ◦ fn(c) = fn−1 ◦ ∂n(c) = fn−1(0) = 0,

hence fn(c) ∈ Zn(L).

Secondly, let c ∈ Bn(K), and write c = ∂n+1(c′) with c′ ∈ Cn+1(K). We get

fn(c) = fn ◦ ∂n+1(c′) = ∂n+1 ◦ fn+1(c′),

hence fn(c) ∈ Bn(L).
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C3(K) C2(K) C1(K) C0(K) {0}

C3(L) C2(L) C1(L) C0(L) {0}

∂3

f3

∂2

f2

∂1

f1

∂0

f0 f−1

∂3 ∂2 ∂1 ∂0

Lemma: For every n ≥ 0, we have ∂n ◦ fn = fn−1 ◦ ∂n.

Proposition: For every c ∈ Zn(K), we have fn(c) ∈ Zn(L).
For every c ∈ Bn(K), we also have fn(c) ∈ Bn(L).

We have Bn(K) ⊂ Zn(K), Bn(L) ⊂ Zn(L), f(Zn(K)) ⊂ f(Zn(K))
and f(Bn(K)) ⊂ f(Bn(K)).
Hence we can define a linear map between quotient vector spaces:

(fn)∗ : Zn(K)/Bn(K) −→ Zn(L)/Bn(L).

By definition of the homology groups, we have defined a map

(fn)∗ : Hn(K) −→ Hn(L).

It is called the induced map in homology.
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C3(K) C2(K) C1(K) C0(K) {0}

C3(L) C2(L) C1(L) C0(L) {0}

∂3

f3

∂2

f2

∂1

f1

∂0

f0 f−1

∂3 ∂2 ∂1 ∂0

Lemma: For every n ≥ 0, we have ∂n ◦ fn = fn−1 ◦ ∂n.

Proposition: For every c ∈ Zn(K), we have fn(c) ∈ Zn(L).
For every c ∈ Bn(K), we also have fn(c) ∈ Bn(L).

· · · H3(K) H2(K) H1(K) H0(K)

· · · H3(L) H2(L) H1(L) H0(L)

(f3)∗ (f2)∗ (f1)∗ (f0)∗

(fn)∗ can be defined as

c =
∑

σ∈K(n)

εσ · σ 7−→
∑

σ∈K(n)

εσ · fn(σ)
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(fn)∗ can be defined as

c =
∑

σ∈K(n)

εσ · σ 7−→
∑

σ∈K(n)

εσ · fn(σ)

Example: Consider the simplicial complexes K = L = {[0], [1], [2], [0, 1], [0, 2], [1, 2]}.

The inclusion i : K → L induces the identity in H0:

(i1)∗ : H0(K) ' Z/2Z −→ H0(L) ' Z/2Z
1 7−→ 1

The inclusion i : K → L induces the identity in H1:

(i1)∗ : H1(K) ' Z/2Z −→ H1(L) ' Z/2Z
1 7−→ 1

0

1 1

0

22
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(fn)∗ can be defined as

c =
∑

σ∈K(n)

εσ · σ 7−→
∑

σ∈K(n)

εσ · fn(σ)

Example: Consider the simplicial complexes K = {[0], [1], [2], [0, 1], [0, 2], [1, 2]} and
L = {[0], [1], [2], [0, 1], [0, 2], [1, 2], [0, 1, 2]}.

The inclusion i : K → L induces the zero map in H1:

(i1)∗ : H1(K) ' Z/2Z −→ H1(L) ' {0}
1 7−→ 0

0

1 1

0

22



6/18 (9/10)Induced map

(fn)∗ can be defined as

c =
∑

σ∈K(n)

εσ · σ 7−→
∑

σ∈K(n)

εσ · fn(σ)

Example: Consider the simplicial complexes K = {[0], [1], [2], [0, 1], [0, 2], [1, 2]} and
L = {[0], [1], [2], [3], [0, 1], [0, 2], [1, 2], [1, 3], [2, 3]}.

The homology group H1(L) is isomorphic to the vector space (Z/2Z)2 by identifying
[0, 1] + [0, 2] + [1, 2] 7→ (1, 0) and [1, 2] + [2, 3] + [1, 3] 7→ (0, 1).

The inclusion i : K → L induces the following map between 1st homology groups:

(i1)∗ : H1(K) ' Z/2Z −→ H1(L) ' (Z/2Z)2

1 7−→ (1, 0)

It can be represented as the matrix

(
1 0
0 0

)
.

0

1 1

0 22

3



6/18 (10/10)Induced map

(fn)∗ can be defined as

c =
∑

σ∈K(n)

εσ · σ 7−→
∑

σ∈K(n)

εσ · fn(σ)

Exercise: Let K = {[0], [1], [2], [3], [4], [5], [0, 1], [1, 2], [2, 3], [3, 4], [4, 5], [5, 0]} and
L = {[0], [1], [2], [0, 1], [1, 2], [2, 0]}.

Consider the simplical map f : i 7→ i modulo 3.

Show that the induced map (f1)∗ is zero.

0

1

2

0

1

2

3

4

5



7/18 (1/2)Functor property

Proposition: Let K,L,M be three simplicial complexes, and consider two simplicial
maps f : K → L and g : L→M .

For any n ≥ 0, the induced map ((g ◦ f)n)∗ : Hn(K)→ Hn(M) and
(gn)∗ ◦ (fn)∗ : Hn(K)→ Hn(M) are equal.

K L M,

g◦f

f g Hn(K) Hn(L) Hn(M).

(g◦f)∗

f∗ g∗



7/18 (2/2)Functor property

Proposition: Let K,L,M be three simplicial complexes, and consider two simplicial
maps f : K → L and g : L→M .

For any n ≥ 0, the induced map ((g ◦ f)n)∗ : Hn(K)→ Hn(M) and
(gn)∗ ◦ (fn)∗ : Hn(K)→ Hn(M) are equal.

K L M,

g◦f

f g Hn(K) Hn(L) Hn(M).

(g◦f)∗

f∗ g∗

Proof: Let σ ∈ K(n). The image (g ◦ f)n(σ) is
• (g ◦ f)(σ) if g ◦ f is injective on σ,
• 0 else.

If g ◦ f is injective on σ, then f is injective on σ and g is injective on f(σ), hence
gn ◦ fn(σ) = g ◦ f(σ), and we deduce the result.

If g ◦ f is not injective on σ, then f is not injective on σ or g is not injective on f(σ),
hence gn ◦ fn(σ) = 0, and we deduce the result.
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9/18 (1/4)Tracking cycles over time

Let X ⊂ Rn. The collection of its thickenings is an non-decreasing sequence of subsets

. . . ⊂ Xt1 ⊂ Xt2 ⊂ Xt3 ⊂ . . .

By considering the corresponding Čech complexes, we obtain an non-decreasing
sequence of simplicial complexes

. . . ⊂ Čech
t1

(X) ⊂ Čech
t2

(X) ⊂ Čech
t3

(X) ⊂ . . .

Let us denote its the inclusion map corresponding to Čech
s
(X) ⊂ Čech

t
(X). We can

write

Čech
t1

(X) Čech
t2

(X) Čech
t3

(X)
i
t2
t1

i
t3
t2

Applying the ith homology functor yields a diagram of vector spaces

Hi(Čech
t1

(X)) Hi(Čech
t2

(X)) Hi(Čech
t3

(X))
(it2t1)∗ (it3t2)∗

where the maps (its)∗ are those induced in homology by the inclusions its.
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Hi(Čech
t1

(X)) Hi(Čech
t2

(X)) Hi(Čech
t3

(X))
(it2t1)∗ (it3t2)∗

Let i ≥ 0, t0 ≥ 0 and consider a cycle c ∈ Hi(Čech
t0

(X)).

Its death time is: sup
{
t ≥ t0,

(
itt0
)

(c) 6= 0
}
,

its birth time is: inf
{
t ≥ t0,

(
it0t
)−1

({c}) 6= ∅
}
,

its persistence is the difference.

As a rule of thumb:
cycles with large persistence correspond to important topological features of the

dataset,

cycles with short persistence corresponds to topological noise.
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Hi(Čech
t1

(X)) Hi(Čech
t2

(X)) Hi(Čech
t3

(X))
(it2t1)∗ (it3t2)∗

Let i ≥ 0, t0 ≥ 0 and consider a cycle c ∈ Hi(Čech
t0

(X)).

Its death time is: sup
{
t ≥ t0,

(
itt0
)

(c) 6= 0
}
,

its birth time is: inf
{
t ≥ t0,

(
it0t
)−1

({c}) 6= ∅
}
,

its persistence is the difference.

0



9/18 (4/4)Tracking cycles over time

Hi(Čech
t1

(X)) Hi(Čech
t2

(X)) Hi(Čech
t3

(X))
(it2t1)∗ (it3t2)∗

Let i ≥ 0, t0 ≥ 0 and consider a cycle c ∈ Hi(Čech
t0

(X)).

Its death time is: sup
{
t ≥ t0,

(
itt0
)

(c) 6= 0
}
,

its birth time is: inf
{
t ≥ t0,

(
it0t
)−1

({c}) 6= ∅
}
,

its persistence is the difference.

6= 0



10/18 (1/2)Persistence modules (finalmente!)

Definition: A persistence module V over R+ with coefficients in Z/2Z is a pair (V, v)
where V = (V t)t∈R+ is a family of Z/2Z-vector spaces, and v = (vts : V s → V t)s≤t∈R+

a family of linear maps such that:

• for every t ∈ R+, vtt : V t → V t is the identity map,

• for every r, s, t ∈ R+ such that r ≤ s ≤ t, we have vts ◦ vsr = vtr.

When the context is clear, we may denote V instead of (V, v).



10/18 (2/2)Persistence modules (finalmente!)

Definition: A persistence module V over R+ with coefficients in Z/2Z is a pair (V, v)
where V = (V t)t∈R+ is a family of Z/2Z-vector spaces, and v = (vts : V s → V t)s≤t∈R+

a family of linear maps such that:

• for every t ∈ R+, vtt : V t → V t is the identity map,

• for every r, s, t ∈ R+ such that r ≤ s ≤ t, we have vts ◦ vsr = vtr.

When the context is clear, we may denote V instead of (V, v).

In practice, one builds persistence modules from filtrations.

A family of subsets X = (Xt)t∈R+ of E is a filtration if it is non-decreasing for the
inclusion, i.e. for any s, t ∈ R+, if s ≤ t then Xs ⊆ Xt.

In this course, we will consider filtrations of simplicial complexes, that is, non-decreasing
families of simplicial complexes S = (St)t∈R+ .

By applying the ith homology functor to a filtration, we obtain a persistence module
V[S] = (Hi(S

t))t∈R+ , with maps ((its)∗ : Hi(S
s)→ Hi(S

t))s≤t induced by the
inclusions.

St1 St2 St3 St4

Hi(S
t1) Hi(S

t2) Hi(S
t3) Hi(S

t4)

i
t2
t1

i
t3
t2

i
t4
t3

(it2t1)∗ (it3t2)∗ (it4t3)∗
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12/18Isomorphisms of persistence modules

Definition: An isomorphism between two persistence modules V and W is a family of
isomorphisms of vector spaces φ = (φt : Vt →Wt)t∈R+ such that the following diagram
commutes for every s ≤ t ∈ R+:

V s V t

W s W t

φs

vts

φt

wt
s



13/18Decomposability

Definition: Let (V, v) and (W, w) be two persistence modules.

Their sum is the persistence module V⊕W defined with the vector spaces
(V ⊕W )t = V t ⊕W t and the linear maps

(v ⊕ w)ts : (x, y) ∈ (V ⊕W )s 7−→ (vts(x), wts(y)) ∈ (V ⊕W )t.

A persistence module U is indecomposable if for every pair of persistence modules V
and W such that U is isomorphic to the sum V⊕W, then one of the summands has to
be a trivial persistence module, that is, equal to zero for every t ∈ R+.
Otherwise, U is said decomposable.



14/18 (1/4)Interval modules

Definition: Let I ⊂ R+ be an interval: [a, b], (a, b], [a, b) or (a, b), with a, b ∈ R+ such
that a ≤ b, and potentially a = −∞ or b = +∞.

The interval module associated to I is the persistence module B[I] with vector spaces
Bt[I] and linear maps vts : Bs[I]→ Bt[I] defined as

Bt[I] =

{
Z/2Z if t ∈ I,
0 otherwise,

and vts =

{
id if s, t ∈ I,
0 otherwise.

R+

0 0Z/2Z Z/2Z

0 0id



14/18 (2/4)Interval modules

Definition: Let I ⊂ R+ be an interval: [a, b], (a, b], [a, b) or (a, b), with a, b ∈ R+ such
that a ≤ b, and potentially a = −∞ or b = +∞.

The interval module associated to I is the persistence module B[I] with vector spaces
Bt[I] and linear maps vts : Bs[I]→ Bt[I] defined as

Bt[I] =

{
Z/2Z if t ∈ I,
0 otherwise,

and vts =

{
id if s, t ∈ I,
0 otherwise.

R+

0 0Z/2Z Z/2Z

0 0id

Lemma: Interval modules are indecomposable.



14/18 (3/4)Interval modules

Definition: Let I ⊂ R+ be an interval: [a, b], (a, b], [a, b) or (a, b), with a, b ∈ R+ such
that a ≤ b, and potentially a = −∞ or b = +∞.

The interval module associated to I is the persistence module B[I] with vector spaces
Bt[I] and linear maps vts : Bs[I]→ Bt[I] defined as

Bt[I] =

{
Z/2Z if t ∈ I,
0 otherwise,

and vts =

{
id if s, t ∈ I,
0 otherwise.

R+

We can sum interval modules:

⊕
= R+

Z/2Z (Z/2Z)2(
1 0
0 0

)



14/18 (4/4)Interval modules

Definition: Let I ⊂ R+ be an interval: [a, b], (a, b], [a, b) or (a, b), with a, b ∈ R+ such
that a ≤ b, and potentially a = −∞ or b = +∞.

The interval module associated to I is the persistence module B[I] with vector spaces
Bt[I] and linear maps vts : Bs[I]→ Bt[I] defined as

Bt[I] =

{
Z/2Z if t ∈ I,
0 otherwise,

and vts =

{
id if s, t ∈ I,
0 otherwise.

R+

(Z/2Z)3 (Z/2Z)2(
1 0 0
0 1 0

)



15/18 (1/7)Barcodes

A persistence module V decomposes into interval module if there exists a multiset I of
intervals of T such that

V '
⊕
I∈I

B[I].

Multiset means that I may contain several copies of the same interval I.

Theorem (consequence of Krull–Remak–Schmidt–Azumaya): If a persistence module
decomposes into interval modules, then the multiset I of intervals is unique.

In this case, I is called the persistence barcode of V. It is written Barcode (V).
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A persistence module V decomposes into interval module if there exists a multiset I of
intervals of T such that

V '
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I∈I
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Theorem (consequence of Krull–Remak–Schmidt–Azumaya): If a persistence module
decomposes into interval modules, then the multiset I of intervals is unique.

In this case, I is called the persistence barcode of V. It is written Barcode (V).

For every [a, b], (a, b], [a, b) or (a, b) in Barcode (V), consider the point (a, b) of R2.
The collection of all such points is the persistence diagram of V.



15/18 (3/7)Barcodes

A persistence module V decomposes into interval module if there exists a multiset I of
intervals of T such that

V '
⊕
I∈I

B[I].

Multiset means that I may contain several copies of the same interval I.

Theorem (consequence of Krull–Remak–Schmidt–Azumaya): If a persistence module
decomposes into interval modules, then the multiset I of intervals is unique.

In this case, I is called the persistence barcode of V. It is written Barcode (V).

For every [a, b], (a, b], [a, b) or (a, b) in Barcode (V), consider the point (a, b) of R2.
The collection of all such points is the persistence diagram of V.

Barcode (V) Diagram (V)
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Theorem (Crawley-Boevey, 2015): Every pointwise finite-dimensional persistence
module decomposes into interval modules.

A persistence module V is said pointwise finite dimensional if dimV t < +∞ for all t.
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Theorem (Crawley-Boevey, 2015): Every pointwise finite-dimensional persistence
module decomposes into interval modules.

A persistence module V is said pointwise finite dimensional if dimV t < +∞ for all t.

Proof (Zomorodian, Carlsson, 2005): Simpler case: the persistence module is
finite-dimensional and has finitely many terms.
We can write our persistence module as

V 1 V 2 V 3 V 4 . . . V n
v21 v32 v43

Consider the vector space V =
⊗

1≤i≤n V
i = V 1 × · · · × V n.

Let Z/2Z[x] denote the space of polynomials with coefficients in Z/2Z. We give V an
action of Z/2Z[x] via

x · (a1, a2, ..., an) = (0, v21(a1), v32(a2), ..., vnn−1(an−1)).

Hence V can be seen as a finitely generated module over the principal ideal domain
Z/2Z[x]. By classification, V is isomorphic to a sum

V '
⊕
i∈I

Z/2Z[x]/xi · Z/2Z[x].

We identify the components Z/2Z[x]/xi · Z/2Z[x] with bars of the barcode of length i.
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On a barcode we can read homology at each step, and see how it evolves.
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I - Functoriality of homology

II - Persistence modules

III - Decomposition

IV - Persistence algorithm
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The Čech or the Rips filtration define an increasing sequence of simplices

. . . ⊂ Čech
t1

(X) ⊂ Čech
t2

(X) ⊂ Čech
t3

(X) ⊂ . . .

We can turn it consistently into an ordering of the simplices, by inserting the simplices
by order of apparition in the filtration.

σ1 < σ2 < ... < σn

Denote t(σ) the time of apparition of the simplex σ in the filtration. The total order on
the simplices satisfies

t(σi) < t(σj) for all i < j.

In practice several simplices may appear at the same time. If this occurs, choose an
order of the simplices.

Consider the boundary matrix, and compute a Gauss reduction.
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For any j ∈ J1, nK,

δ(j) = max{i ∈ J1, nK,∆i,j 6= 0},

and ∆i,j = 0 for all j, then δ(j) is undefined.
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Now, for all j such that δ(j) is defined, consider the pair of simplices(
σδ(j), σj

)
.

Also, for all i such that ∀j, δ(j) 6= i, we set:
(
σi,+∞

)
.

(
σδ(j), σi

)
if δ(j) is defined,(

σi,+∞
)

else.

The pairs of simplices (σ, τ) are called persistence pairs.
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Now, for all j such that δ(j) is defined, consider the pair of simplices(
σδ(j), σj

)
.

Also, for all i such that ∀j, δ(j) 6= i, we set:
(
σi,+∞

)
.

(
σδ(j), σi

)
if δ(j) is defined,(

σi,+∞
)

else.

The pairs of simplices (σ, τ) are called persistence pairs.

+∞

+∞

(σ1,+∞)

(σ2, σ5)

(σ3, σ6)

(σ4, σ7)

(σ8,+∞)

(σ9, σ10)
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Proposition: The barcodes of the filtration consists in the intervals

I =
{

(t(σ), t(τ)) for all persistence pair (σ, τ) such that t(σ) 6= t(τ)
}
.

+∞

+∞

(σ1,+∞)

(σ2, σ5)

(σ3, σ6)

(σ4, σ7)

(σ8,+∞)

(σ9, σ10)
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Proposition: The barcodes of the filtration consists in the intervals

I =
{

(t(σ), t(τ)) for all persistence pair (σ, τ) such that t(σ) 6= t(τ)
}
.

Proof: We shall show that the algorithm allows to define, for all i, j ≥ 0, a basis Bji of

Hi(K
j), such that one passes from Bji to Bj+1

i by adding or removing a cycle.

As a consequence, we obtain an isomorphism between the persistence module and a
sum of interval modules given by I.

We build the basis as follows: for every j ≥ 0, consider the simplex σj and its dimension
i = dim(σj).

If σj is positive, then we add the corresponding cycle to the basis Bj−1i .

If it is negative, then there exists a simplex σk, with k < j, such that δ(k) = j. We
remove the cycle corresponding to σk to the basis Bj−1i−1 .
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Conclusion

We used induced maps in homology to track the cycles throughout filtrations.

We gathered all this information into a persisten ce module.

We have seen that the barcode of a persistence module summarizes the persistence
of all the cycles.

We used the incremental algorithm to compute the barcode.

Homework: Exercise 52
Facultative: Exercises 48, 49, 51
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We used induced maps in homology to track the cycles throughout filtrations.
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We have seen that the barcode of a persistence module summarizes the persistence
of all the cycles.

We used the incremental algorithm to compute the barcode.

Homework: Exercise 52
Facultative: Exercises 48, 49, 51

Merci !


