EMAp Summer Course

Topological Data Analysis with Persistent Homology

https://raphaeltinarrage.github.io/EMAp.html

Lesson 7: Topological inference

Last update: February 3, 2021

Introduction

In real life, we are often given datasets that are subsets of the Euclidean space: $X \subset \mathbb{R}^n$.

Of course, X is finite.

Introduction

In real life, we are often given datasets that are subsets of the Euclidean space: $X \subset \mathbb{R}^n$.

Of course, X is finite.

In Topological Data Analysis, we think of X as being a sample of an underlying continuous object, $\mathcal{M} \subset \mathbb{R}^n$.

Understanding the topology of \mathcal{M} would give us interesting insights about our dataset.

I - Thickenings

II - Čech complex

III - Rips complex

4/16 (1/13)

Let $\mathcal{M} \subset \mathbb{R}^n$ be a bounded subset. Suppose that we are given a finite sample $X \subset \mathcal{M}$. Estimate the homology groups of \mathcal{M} from X. X \mathcal{M}

The Topological Inference problem 4/16 (2/13)

We cannot use X directly. Its homology is disapointing:

 $\beta_0(X)=30 \quad \text{and} \quad \beta_i(X) \text{ for } i\geq 1$ number of connected components / = number of points of X

The Topological Inference problem 4/16 (3/13)

We cannot use X directly.

Idea: Thicken X.

$$X^{t} = \left\{ y \in \mathbb{R}^{n}, \exists x \in X, \|x - y\| \le t \right\}.$$

4/16 (4/13)

We cannot use X directly.

Idea: Thicken X.

$$X^{t} = \left\{ y \in \mathbb{R}^{n}, \exists x \in X, \|x - y\| \le t \right\}.$$

4/16 (5/13)

Let $\mathcal{M} \subset \mathbb{R}^n$ be a bounded subset. Suppose that we are given a finite sample $X \subset \mathcal{M}$. Estimate the homology groups of \mathcal{M} from X. $X^{0.1}$ \mathcal{M}

We cannot use X directly.

Idea: Thicken X.

$$X^{t} = \left\{ y \in \mathbb{R}^{n}, \exists x \in X, \|x - y\| \le t \right\}.$$

4/16 (6/13)

Let $\mathcal{M} \subset \mathbb{R}^n$ be a bounded subset. Suppose that we are given a finite sample $X \subset \mathcal{M}$. Estimate the homology groups of \mathcal{M} from X. $X^{0.2}$ \mathcal{M}

We cannot use X directly.

Idea: Thicken X.

$$X^{t} = \left\{ y \in \mathbb{R}^{n}, \exists x \in X, \|x - y\| \le t \right\}.$$

The Topological Inference problem 4/16 (7/13)

Let $\mathcal{M} \subset \mathbb{R}^n$ be a bounded subset. Suppose that we are given a finite sample $X \subset \mathcal{M}$. Estimate the homology groups of \mathcal{M} from X. $X^{0.3}$ \mathcal{M}

We cannot use X directly.

Idea: Thicken X.

$$X^{t} = \left\{ y \in \mathbb{R}^{n}, \exists x \in X, \|x - y\| \le t \right\}.$$

The Topological Inference problem 4/16 (8/13)

We cannot use X directly.

Idea: Thicken X.

$$X^{t} = \left\{ y \in \mathbb{R}^{n}, \exists x \in X, \|x - y\| \le t \right\}.$$

The Topological Inference problem 4/16 (9/13)

We cannot use X directly.

Idea: Thicken X.

$$X^{t} = \left\{ y \in \mathbb{R}^{n}, \exists x \in X, \|x - y\| \le t \right\}.$$

The Topological Inference problem 4/16 (10/13)

 \mathcal{M}

Let $\mathcal{M} \subset \mathbb{R}^n$ be a bounded subset. Suppose that we are given a finite sample $X \subset \mathcal{M}$.

We cannot use X direct

Idea: Thicken X.

 $\mathbf{V}0.9$

$$X^{t} = \left\{ y \in \mathbb{R}^{n}, \exists x \in X, \|x - y\| \le t \right\}.$$

The Topological Inference problem 4/16 (11/13)

Some thickenings are homotopy equivalent to \mathcal{M} .

Hence we can recover the homology of \mathcal{M} :

$$\beta_0(\mathcal{M}) = \beta_0(X^{0.3})$$
$$\beta_1(\mathcal{M}) = \beta_1(X^{0.3})$$
$$\beta_2(\mathcal{M}) = \beta_2(X^{0.3})$$

. . .

The Topological Inference problem 4/16 (12/13)

Some thickenings are homotopy equivalent to \mathcal{M} .

Hence we can recover the homology of \mathcal{M} :

$$\beta_0(\mathcal{M}) = \beta_0(X^{0.3})$$

$$\beta_1(\mathcal{M}) = \beta_1(X^{0.3})$$

$$\beta_2(\mathcal{M}) = \beta_2(X^{0.3})$$

. .

Question 1: How to select a t such that $X^t \approx \mathcal{M}$?

Question 2: How to compute the homology groups of X^t ?

The Topological Inference problem 4/16 (13/13)

Some thickenings are homotopy equivalent to \mathcal{M} .

Hence we can recover the homology of \mathcal{M} :

Question 2: How to compute the homology groups of X^t ?

Hausdorff distance

5/16 (1/3)

Let X be any subset of \mathbb{R}^n . The function *distance to* X is the map

dist
$$(\cdot, X) : \mathbb{R}^n \longrightarrow \mathbb{R}$$

 $y \longmapsto \operatorname{dist}(y, X) = \inf\{ \|y - x\|, x \in X \}$

A projection of $y \in \mathbb{R}^n$ on X is a point $x \in X$ which attains this infimum.

Hausdorff distance

5/16 (2/3)

Let X be any subset of \mathbb{R}^n . The function *distance to* X is the map

dist
$$(\cdot, X) : \mathbb{R}^n \longrightarrow \mathbb{R}$$

 $y \longmapsto \operatorname{dist}(y, X) = \inf\{ \|y - x\|, x \in X \}$

A projection of $y \in \mathbb{R}^n$ on X is a point $x \in X$ which attains this infimum.

Definition: Let $Y \subset \mathbb{R}^n$ be another subset. The *Hausdorff distance* between X and Y is

$$d_{H}(X,Y) = \max\left\{\sup_{y\in Y} \operatorname{dist}(y,X), \sup_{x\in X} \operatorname{dist}(x,Y)\right\}$$
$$= \max\left\{\sup_{y\in Y} \inf_{x\in X} \|x-y\|, \sup_{x\in X} \inf_{y\in Y} \|x-y\|\right\}$$

Hausdorff distance

Let X be any subset of \mathbb{R}^n . The function *distance to* X is the map

dist
$$(\cdot, X) : \mathbb{R}^n \longrightarrow \mathbb{R}$$

 $y \longmapsto \operatorname{dist}(y, X) = \inf\{ \|y - x\|, x \in X \}$

A projection of $y \in \mathbb{R}^n$ on X is a point $x \in X$ which attains this infimum.

Definition: Let $Y \subset \mathbb{R}^n$ be another subset. The *Hausdorff distance* between X and Y is

$$d_{\mathrm{H}}(X,Y) = \max\left\{\sup_{y\in Y}\operatorname{dist}(y,X), \sup_{x\in X}\operatorname{dist}(x,Y)\right\}$$
$$= \max\left\{\sup_{y\in Y}\inf_{x\in X}\|x-y\|, \sup_{x\in X}\inf_{y\in Y}\|x-y\|\right\}$$

Exercise: Show that the Hausdorff distance is equal to $\inf \{t \ge 0, X \subset Y^t \text{ and } Y \subset X^t\}$.

5/16 (3/3)

6/16 (1/11)

The *medial axis* of X is the subset $med(X) \subset \mathbb{R}^n$ which consists of points $y \in \mathbb{R}^n$ that admit at least two projections on X:

$$med(X) = \{ y \in \mathbb{R}^n, \exists x, x' \in X, x \neq x', \|y - x\| = \|y - x'\| = dist(y, X) \}.$$

6/16 (2/11)

The *medial axis* of X is the subset $med(X) \subset \mathbb{R}^n$ which consists of points $y \in \mathbb{R}^n$ that admit at least two projections on X:

$$med(X) = \{ y \in \mathbb{R}^n, \exists x, x' \in X, x \neq x', \|y - x\| = \|y - x'\| = dist(y, X) \}.$$

Examples:

The medial axis of the unit circle is the origin

6/16 (3/11)

The *medial axis* of X is the subset $med(X) \subset \mathbb{R}^n$ which consists of points $y \in \mathbb{R}^n$ that admit at least two projections on X:

 $med(X) = \{ y \in \mathbb{R}^n, \exists x, x' \in X, x \neq x', \|y - x\| = \|y - x'\| = dist(y, X) \}.$

Examples:

The medial axis of the unit circle is the origin

The medial axis of an ellipse is a segment

6/16 (4/11)

The *medial axis* of X is the subset $med(X) \subset \mathbb{R}^n$ which consists of points $y \in \mathbb{R}^n$ that admit at least two projections on X:

 $med(X) = \{ y \in \mathbb{R}^n, \exists x, x' \in X, x \neq x', \|y - x\| = \|y - x'\| = dist(y, X) \}.$

Examples:

The medial axis of the unit circle is the origin

The medial axis of an ellipse is a segment

The medial axis of a point is the empty set

6/16 (5/11)

The *medial axis* of X is the subset $med(X) \subset \mathbb{R}^n$ which consists of points $y \in \mathbb{R}^n$ that admit at least two projections on X:

 $med(X) = \{ y \in \mathbb{R}^n, \exists x, x' \in X, x \neq x', \|y - x\| = \|y - x'\| = dist(y, X) \}.$

Examples:

The medial axis of the unit circle is the origin

The medial axis of an ellipse is a segment

The medial axis of a point is the empty set

The medial axis of two points is their bisector

6/16 (6/11)

The *medial axis* of X is the subset $med(X) \subset \mathbb{R}^n$ which consists of points $y \in \mathbb{R}^n$ that admit at least two projections on X:

$$med(X) = \{ y \in \mathbb{R}^n, \exists x, x' \in X, x \neq x', \|y - x\| = \|y - x'\| = dist(y, X) \}.$$

The *reach* of X is

reach
$$(X) = \inf \{ \text{dist}(y, X), y \in \text{med}(X) \}$$

= $\inf \{ \|x - y\|, x \in X, y \in \text{med}(X) \}.$

6/16 (7/11)

The *medial axis* of X is the subset $med(X) \subset \mathbb{R}^n$ which consists of points $y \in \mathbb{R}^n$ that admit at least two projections on X:

$$med(X) = \{ y \in \mathbb{R}^n, \exists x, x' \in X, x \neq x', \|y - x\| = \|y - x'\| = dist(y, X) \}.$$

The *reach* of X is

reach
$$(X) = \inf \{ \text{dist}(y, X), y \in \text{med}(X) \}$$

= $\inf \{ \|x - y\|, x \in X, y \in \text{med}(X) \}$.

6/16 (8/11)

The *medial axis* of X is the subset $med(X) \subset \mathbb{R}^n$ which consists of points $y \in \mathbb{R}^n$ that admit at least two projections on X:

$$med(X) = \{ y \in \mathbb{R}^n, \exists x, x' \in X, x \neq x', \|y - x\| = \|y - x'\| = dist(y, X) \}.$$

The *reach* of X is

reach
$$(X) = \inf \{ \text{dist}(y, X), y \in \text{med}(X) \}$$

= $\inf \{ \|x - y\|, x \in X, y \in \text{med}(X) \}.$

Proposition: For every $t \in [0, \operatorname{reach}(X))$, the spaces X and X^t are homotopy equivalent.

6/16 (9/11)

The *medial axis* of X is the subset $med(X) \subset \mathbb{R}^n$ which consists of points $y \in \mathbb{R}^n$ that admit at least two projections on X:

$$med(X) = \{ y \in \mathbb{R}^n, \exists x, x' \in X, x \neq x', \|y - x\| = \|y - x'\| = dist(y, X) \}.$$

The *reach* of X is

reach
$$(X) = \inf \{ \text{dist}(y, X), y \in \text{med}(X) \}$$

= $\inf \{ \|x - y\|, x \in X, y \in \text{med}(X) \}.$

Proposition: For every $t \in [0, \operatorname{reach}(X))$, the spaces X and X^t are homotopy equivalent.

6/16 (10/11)

The *medial axis* of X is the subset $med(X) \subset \mathbb{R}^n$ which consists of points $y \in \mathbb{R}^n$ that admit at least two projections on X:

$$med(X) = \{ y \in \mathbb{R}^n, \exists x, x' \in X, x \neq x', \|y - x\| = \|y - x'\| = dist(y, X) \}.$$

The *reach* of X is

reach
$$(X) = \inf \{ \text{dist}(y, X), y \in \text{med}(X) \}$$

= $\inf \{ \|x - y\|, x \in X, y \in \text{med}(X) \}.$

Proposition: For every $t \in [0, \operatorname{reach}(X))$, the spaces X and X^t are homotopy equivalent.

If $t \ge \operatorname{reach}(X)$, the sets X and X^t may not be homotopy equivalent.

Proposition: For every $t \in [0, \operatorname{reach}(X))$, the spaces X and X^t are homotopy equivalent.

Proof: For every $t \in [0, \operatorname{reach}(X))$, the thickening X^t deform retracts onto X. A homotopy is given by the following map:

$$\begin{aligned} X^t \times [0,1] &\longrightarrow X^t \\ (x,t) &\longmapsto (1-t)x + t \cdot \operatorname{proj}(x,X) \,. \end{aligned}$$

Indeed, the projection proj(x, X) is well defined (it is unique).

Selection of the parameter t

7/16 (1/2)

Remember Question 1: How to select a t such that $X^t \approx \mathcal{M}$?

Theorem (Frédéric Chazal, David Cohen-Steiner, and André Lieutier, 2009): Let X and \mathcal{M} be subsets of \mathbb{R}^n . Suppose that \mathcal{M} has positive reach, and that $d_H(X, \mathcal{M}) \leq \frac{1}{17} \operatorname{reach}(\mathcal{M})$. Then X^t and \mathcal{M} are homotopic equivalent, provided that

Then X^t and \mathcal{M} are homotopic equivalent, provided that

$$t \in [4d_{\mathrm{H}}(X, \mathcal{M}), \mathrm{reach}(\mathcal{M}) - 3d_{\mathrm{H}}(X, \mathcal{M})).$$

Selection of the parameter t

Remember Question 1: How to select a t such that $X^t \approx \mathcal{M}$?

Theorem (Frédéric Chazal, David Cohen-Steiner, and André Lieutier, 2009): Let X and \mathcal{M} be subsets of \mathbb{R}^n . Suppose that \mathcal{M} has positive reach, and that $d_H(X, \mathcal{M}) \leq \frac{1}{17} \operatorname{reach}(\mathcal{M})$. Then X^t and \mathcal{M} are homotopic equivalent, provided that

 $t \in [4d_{\mathrm{H}}(X, \mathcal{M}), \mathrm{reach}(\mathcal{M}) - 3d_{\mathrm{H}}(X, \mathcal{M})).$

Theorem (Partha Niyogi, Stephen Smale, and Shmuel Weinberger, 2008): Let X and \mathcal{M} be subsets of \mathbb{R}^n , with \mathcal{M} a submanifold, and X a finite subset of \mathcal{M} . Suppose that \mathcal{M} has positive reach.

Then X^t and \mathcal{M} are homotopic equivalent, provided that

$$t \in \left[2d_{\mathrm{H}}(X, \mathcal{M}), \sqrt{\frac{3}{5}} \mathrm{reach}(\mathcal{M}) \right)$$

7/16 (2/2)

I - Thickenings

II - Čech complex

III - Rips complex

(Weak) triangulations

Let us consider Question 2: How to compute the homology groups of X^t ?

We must a triangulation of X^t , that is: a simplicial complex K homeomorphic to X.

Actually, we will define something weaker: a simplicial complex K that is homotopy equivalent to X.

(Weak) triangulations

9/16 (2/2)

Let us consider Question 2: How to compute the homology groups of X^t ?

We must a triangulation of X^t , that is: a simplicial complex K homeomorphic to X.

Actually, we will define something weaker: a simplicial complex K that is homotopy equivalent to X.

weak triangulation

Either case, we will have $\beta_i(X) = \beta_i(K)$ for all $i \ge 0$.

10/16 (1/12)

Definition: Let X be a topological space, and $\mathcal{U} = \{U_i\}_{1 \le i \le N}$ a cover of X, that is, a collection of subsets $U_i \subset X$ such that

$$\bigcup_{1 \le i \le N} U_i = X.$$

10/16 (2/12)

Definition: Let X be a topological space, and $\mathcal{U} = \{U_i\}_{1 \le i \le N}$ a cover of X, that is, a collection of subsets $U_i \subset X$ such that

10/16 (3/12)

Definition: Let X be a topological space, and $\mathcal{U} = \{U_i\}_{1 \le i \le N}$ a cover of X, that is, a collection of subsets $U_i \subset X$ such that

10/16 (4/12)

Definition: Let X be a topological space, and $\mathcal{U} = \{U_i\}_{1 \le i \le N}$ a cover of X, that is, a collection of subsets $U_i \subset X$ such that

10/16 (5/12)

Definition: Let X be a topological space, and $\mathcal{U} = \{U_i\}_{1 \le i \le N}$ a cover of X, that is, a collection of subsets $U_i \subset X$ such that

10/16 (6/12)

Definition: Let X be a topological space, and $\mathcal{U} = \{U_i\}_{1 \le i \le N}$ a cover of X, that is, a collection of subsets $U_i \subset X$ such that

$$\bigcup_{1 \le i \le N} U_i = X.$$

10/16 (7/12)

Definition: Let X be a topological space, and $\mathcal{U} = \{U_i\}_{1 \le i \le N}$ a cover of X, that is, a collection of subsets $U_i \subset X$ such that

$$\bigcup_{1 \le i \le N} U_i = X.$$

10/16 (8/12)

Definition: Let X be a topological space, and $\mathcal{U} = \{U_i\}_{1 \le i \le N}$ a cover of X, that is, a collection of subsets $U_i \subset X$ such that

The *nerve* of \mathcal{U} is the simplicial complex with vertex set $\{1, ..., N\}$ and whose *m*-simplices are the subsets $\{i_1, ..., i_m\} \subset \{1, ..., N\}$ such that $\bigcap_{k=0}^m U_{i_k} \neq \emptyset$. It is denoted $\mathcal{N}(\mathcal{U})$.

 $X^{0.2} = \bigcup_{x \in X} \overline{\mathcal{B}}\left(x, 0.2\right) \text{ is covered by } \mathcal{U} = \left\{\overline{\mathcal{B}}\left(x, 0.2\right), x \in X\right\}$

10/16 (9/12)

Definition: Let X be a topological space, and $\mathcal{U} = \{U_i\}_{1 \le i \le N}$ a cover of X, that is, a collection of subsets $U_i \subset X$ such that

The *nerve* of \mathcal{U} is the simplicial complex with vertex set $\{1, ..., N\}$ and whose *m*-simplices are the subsets $\{i_1, ..., i_m\} \subset \{1, ..., N\}$ such that $\bigcap_{k=0}^m U_{i_k} \neq \emptyset$. It is denoted $\mathcal{N}(\mathcal{U})$.

 $X^{0.2} = \bigcup_{x \in X} \overline{\mathcal{B}}\left(x, 0.2\right) \text{ is covered by } \mathcal{U} = \left\{\overline{\mathcal{B}}\left(x, 0.2\right), x \in X\right\}$

10/16 (10/12)

Definition: Let X be a topological space, and $\mathcal{U} = \{U_i\}_{1 \le i \le N}$ a cover of X, that is, a collection of subsets $U_i \subset X$ such that

The *nerve* of \mathcal{U} is the simplicial complex with vertex set $\{1, ..., N\}$ and whose m-simplices are the subsets $\{i_1, ..., i_m\} \subset \{1, ..., N\}$ such that $\bigcap_{k=0}^m U_{i_k} \neq \emptyset$. It is denoted $\mathcal{N}(\mathcal{U})$.

 $X^{0.3} = \bigcup_{x \in X} \overline{\mathcal{B}}\left(x, 0.3\right) \text{ is covered by } \mathcal{U} = \left\{\overline{\mathcal{B}}\left(x, 0.3\right), x \in X\right\}$

10/16 (11/12)

Definition: Let X be a topological space, and $\mathcal{U} = \{U_i\}_{1 \le i \le N}$ a cover of X, that is, a collection of subsets $U_i \subset X$ such that

10/16 (12/12)

Definition: Let X be a topological space, and $\mathcal{U} = \{U_i\}_{1 \le i \le N}$ a cover of X, that is, a collection of subsets $U_i \subset X$ such that

$$\bigcup_{1 \le i \le N} U_i = X.$$

The *nerve* of \mathcal{U} is the simplicial complex with vertex set $\{1, ..., N\}$ and whose *m*-simplices are the subsets $\{i_1, ..., i_m\} \subset \{1, ..., N\}$ such that $\bigcap_{k=0}^m U_{i_k} \neq \emptyset$. It is denoted $\mathcal{N}(\mathcal{U})$.

Nerve theorem: Consider $X \subset \mathbb{R}^n$. Suppose that each U_i are balls (or more generally, closed and convex). Then $\mathcal{N}(\mathcal{U})$ is homotopy equivalent to X.

Čech complex

Let X be a finite subset of \mathbb{R}^n , and $t \ge 0$. Consider the collection

$$\mathcal{V}^{t} = \left\{ \overline{\mathcal{B}}\left(x,t\right), x \in X \right\}.$$

This is a cover of the thickening X^t , and each components are closed balls. By Nerve Theorem, its nerve $\mathcal{N}(\mathcal{V}^t)$ has the homotopy type of X^t .

Definition: This nerve is denoted $\check{\operatorname{Cech}}^t(X)$ and is called the $\check{\operatorname{Cech}}$ complex of X at time t.

Čech complex

11/16 (2/2)

Let X be a finite subset of \mathbb{R}^n , and $t \ge 0$. Consider the collection

$$\mathcal{V}^{t} = \left\{ \overline{\mathcal{B}}\left(x,t\right), x \in X \right\}.$$

This is a cover of the thickening X^t , and each components are closed balls. By Nerve Theorem, its nerve $\mathcal{N}(\mathcal{V}^t)$ has the homotopy type of X^t .

Definition: This nerve is denoted $\operatorname{\check{Cech}}^{t}(X)$ and is called the $\operatorname{\check{Cech}}$ complex of X at time t.

• The Question 2 (How to compute the homology groups of X^t ?) is solved.

I - Thickenings

II - Čech complex

III - Rips complex

Computation of the Čech complex 13/16(1/3)

Let $X = \{x_1, \ldots, x_N\} \subset \mathbb{R}^n$ be finite, let $t \ge 0$ and consider the *t*-thickening

$$X^{t} = \bigcup_{x \in X} \overline{\mathcal{B}}(x, t) \,.$$

By definition, its nerve, $\operatorname{\check{Cech}}^t(X)$, the $\operatorname{\check{Cech}}^t$ complex at time t, is a simplicial complex on the vertices $\{1, \ldots, N\}$ whose simplices are the subsets $\{i_1, \ldots, i_m\}$ such that

$$\bigcap_{1 \le k \le m} \overline{\mathcal{B}}\left(x_{i_k}, t\right) \neq \emptyset.$$

Computation of the Čech complex $_{13/16}$ (2/3)

Let $X = \{x_1, \ldots, x_N\} \subset \mathbb{R}^n$ be finite, let $t \ge 0$ and consider the *t*-thickening

$$X^{t} = \bigcup_{x \in X} \overline{\mathcal{B}}(x, t) \,.$$

By definition, its nerve, $\operatorname{\check{Cech}}^t(X)$, the $\operatorname{\check{Cech}}^t$ complex at time t, is a simplicial complex on the vertices $\{1, \ldots, N\}$ whose simplices are the subsets $\{i_1, \ldots, i_m\}$ such that

$$\bigcap_{1 \le k \le m} \overline{\mathcal{B}}\left(x_{i_k}, t\right) \neq \emptyset.$$

Therefore, computing the Čech complex relies on the following geometric predicate:

Given
$$m$$
 closed balls of \mathbb{R}^n , do they intersect?

This problem is known as the *smallest circle problem*. It can can be solved in O(m) time, where m is the number of points.

Computation of the Čech complex 13/16(3/3)

Let $X = \{x_1, \ldots, x_N\} \subset \mathbb{R}^n$ be finite, let $t \ge 0$ and consider the *t*-thickening

$$X^{t} = \bigcup_{x \in X} \overline{\mathcal{B}}(x, t) \,.$$

By definition, its nerve, $\operatorname{\check{Cech}}^t(X)$, the $\operatorname{\check{Cech}}^t$ complex at time t, is a simplicial complex on the vertices $\{1, \ldots, N\}$ whose simplices are the subsets $\{i_1, \ldots, i_m\}$ such that

$$\bigcap_{1 \le k \le m} \overline{\mathcal{B}}\left(x_{i_k}, t\right) \neq \emptyset.$$

Therefore, computing the Čech complex relies on the following geometric predicate:

Given
$$m$$
 closed balls of \mathbb{R}^n , do they intersect?

This problem is known as the *smallest circle problem*. It can can be solved in O(m) time, where m is the number of points.

in practice, we prefer a more simple version

14/16 (1/6)

Let G be a graph.

14/16 (2/6)

Let G be a graph.

14/16 (3/6)

Let G be a graph.

14/16 (4/6)

Let G be a graph.

14/16 (5/6)

Let G be a graph.

We call a *clique* of G a set of vertices $v_1, ..., v_m$ such that for every $i, j \in [\![1, m]\!]$ with $i \neq j$, the edge $[v_i, v_j]$ belongs to G.

Definition: Given a graph G, the corresponding *clique complex* is the simplicial complex whose

- vertices are the vertices of G,
- simplices are the sets of vertices of the cliques of G.

14/16 (6/6)

Let G be a graph.

We call a *clique* of G a set of vertices $v_1, ..., v_m$ such that for every $i, j \in [\![1, m]\!]$ with $i \neq j$, the edge $[v_i, v_j]$ belongs to G.

Definition: Given a graph G, the corresponding *clique complex* is the simplicial complex whose

- vertices are the vertices of G,
- simplices are the sets of vertices of the cliques of G.

Exercise: Prove that the clique complex of a graph is a simplicial complex.

15/16 (1/6)

Let $X = \{x_1, \ldots, x_N\} \subset \mathbb{R}^n$ and $t \ge 0$.

Consider the graph G^t whose vertex set is $\{1, \ldots, N\}$, and whose edges are the pairs (i, j) such that $||x_i - x_j|| \le 2t$.

Alternatively, G^t can be seen as the 1-skeleton of the Čech complex $\operatorname{\check{C}ech}^t(X)$.

15/16 (2/6)

Let $X = \{x_1, \ldots, x_N\} \subset \mathbb{R}^n$ and $t \ge 0$.

Consider the graph G^t whose vertex set is $\{1, \ldots, N\}$, and whose edges are the pairs (i, j) such that $||x_i - x_j|| \le 2t$.

Alternatively, G^t can be seen as the 1-skeleton of the Čech complex $\operatorname{\check{C}ech}^t(X)$.

Definition: The *Rips complex of* X *at time* t is the clique complex of the graph G^t . We denote it $\operatorname{Rips}^t(X)$.

15/16 (3/6)

Let $X = \{x_1, \ldots, x_N\} \subset \mathbb{R}^n$ and $t \ge 0$.

Consider the graph G^t whose vertex set is $\{1, \ldots, N\}$, and whose edges are the pairs (i, j) such that $||x_i - x_j|| \le 2t$.

Alternatively, G^t can be seen as the 1-skeleton of the Čech complex $\operatorname{\check{C}ech}^t(X)$.

Definition: The *Rips complex of* X *at time* t is the clique complex of the graph G^t . We denote it $\operatorname{Rips}^t(X)$.

15/16 (4/6)

Let $X = \{x_1, \ldots, x_N\} \subset \mathbb{R}^n$ and $t \ge 0$.

Consider the graph G^t whose vertex set is $\{1, \ldots, N\}$, and whose edges are the pairs (i, j) such that $||x_i - x_j|| \le 2t$.

Alternatively, G^t can be seen as the 1-skeleton of the Čech complex $\operatorname{\check{C}ech}^t(X)$.

Definition: The *Rips complex of* X *at time* t is the clique complex of the graph G^t . We denote it $\operatorname{Rips}^t(X)$.

15/16 (5/6)

15/16 (6/6)

Proof: Let $t \ge 0$. The first inclusion follows from the fact that $\operatorname{Rips}^{t}(X)$ is the clique complex of $\operatorname{\check{Cech}}^{t}(X)$.

To prove the second one, choose a simplex $\sigma \in \operatorname{Rips}^{t}(X)$. Let us prove that $\omega \in \operatorname{\check{Cech}}^{2t}(X)$.

Let $x \in \sigma$ be any vertex. Note that $\forall y \in \sigma$, we have $||x - y|| \le 2t$ by definition of the Rips complex. Hence

$$x \in \bigcap_{y \in \sigma} \overline{\mathcal{B}}(y, 2t) \,.$$

The intersection being non-empty, we deduce $\sigma \in \operatorname{\check{C}ech}^{2t}(X)$.

We considered the problem of topological inference, and studied the solution by thickenings.

We've seen that a nice thickening exists, and that its homology can be computed via the Čech complex.

For computational reasons, we introduced the Rips complex.

Homework: Exercise 37 Facultative: Exercises 39, 40, 41

We considered the problem of topological inference, and studied the solution by thickenings.

We've seen that a nice thickening exists, and that its homology can be computed via the Čech complex.

For computational reasons, we introduced the Rips complex.

Theorem (Frédéric Chazal, David Cohen-Steiner, and André Lieutier, 2009): Let X and \mathcal{M} be subsets of \mathbb{R}^n . Suppose that \mathcal{M} has positive reach, and that $d_H(X, \mathcal{M}) \leq \frac{1}{17} \operatorname{reach}(\mathcal{M})$. Then X^t and \mathcal{M} are homotopic equivalent, provided that

 $t \in [4d_{\mathrm{H}}(X, \mathcal{M}), \operatorname{reach}(\mathcal{M}) - 3d_{\mathrm{H}}(X, \mathcal{M})).$

Theorem (Partha Niyogi, Stephen Smale, and Shmuel Weinberger, 2008): Let X and \mathcal{M} be subsets of \mathbb{R}^n , with \mathcal{M} a submanifold, and X a finite subset of \mathcal{M} . Suppose that \mathcal{M} has positive reach.

Then X^t and \mathcal{M} are homotopic equivalent, provided that

$$t \in \left[2d_{\mathrm{H}}(X, \mathcal{M}), \sqrt{\frac{3}{5}} \mathrm{reach}(\mathcal{M}) \right).$$

We considered the problem of topological inference, and studied the solution by thickenings.

We've seen that a nice thickening exists, and that its homology can be computed via the Čech complex.

For computational reasons, we introduced the Rips complex.

Theorem (Frédéric Chazal, David Cohen-Steiner, and André Lieutier, 2009):Let X and \mathcal{M} be subsets of \mathbb{R}^n . Suppose that \mathcal{M} has positive reach, and that $d_H(X, \mathcal{M}) \leq \frac{1}{17} \operatorname{reach}(\mathcal{M})$.Then X^t and \mathcal{M} are homotopic equivalent, provided thatunknown in practice

$$t \in [4d_{\mathrm{H}}(X, \mathcal{M})]$$
 reach $(\mathcal{M}) \rightarrow 3d_{\mathrm{H}}(X, \mathcal{M}))$.

Theorem (Partha Niyogi, Stephen Smale, and Shmuel Weinberger, 2008): Let X and \mathcal{M} be subsets of \mathbb{R}^n , with \mathcal{M} a submanifold, and X a finite subset of \mathcal{M} . Suppose that \mathcal{M} has positive reach.

Then X^t and \mathcal{M} are homotopic equivalent, provided that

$$t \in \left[2 \operatorname{d}_{\mathrm{H}}(X, \mathcal{M}), \sqrt{\frac{3}{5}} \operatorname{reach}(\mathcal{M}) \right].$$

We considered the problem of topological inference, and studied the solution by thickenings.

We've seen that a nice thickening exists, and that its homology can be computed via the Čech complex.

For computational reasons, we introduced the Rips complex.

Homework: Exercise 37 Facultative: Exercises 39, 40, 41