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In real life, we are often given datasets that are subsets of the Euclidean space:
X ⊂ Rn.

Of course, X is finite.
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2/16 (2/2)Introduction

In real life, we are often given datasets that are subsets of the Euclidean space:
X ⊂ Rn.

Of course, X is finite.

In Topological Data Analysis, we think of X as being a sample of an underlying
continuous object, M⊂ Rn.

Understanding the topology of M would give us interesting insights about our dataset.

X

M
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X M

Let M⊂ Rn be a bounded subset.
Suppose that we are given a finite sample X ⊂M.

Estimate the homology groups of M from X.



4/16 (2/13)The Topological Inference problem

X M

Let M⊂ Rn be a bounded subset.
Suppose that we are given a finite sample X ⊂M.

Estimate the homology groups of M from X.

We cannot use X directly.

β0(X) = 30 and βi(X) for i ≥ 1

number of connected components

= number of points of X

Its homology is disapointing:
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X M

Let M⊂ Rn be a bounded subset.
Suppose that we are given a finite sample X ⊂M.

Estimate the homology groups of M from X.

We cannot use X directly.

Idea: Thicken X.

Definition: For every t ≥ 0, the t-thickening of the set X, denoted Xt, is the set of
points of the ambient space with distance at most t from X:

Xt = {y ∈ Rn,∃x ∈ X, ‖x− y‖ ≤ t} .
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M

Let M⊂ Rn be a bounded subset.
Suppose that we are given a finite sample X ⊂M.

Estimate the homology groups of M from X.

We cannot use X directly.

Idea: Thicken X.

Definition: For every t ≥ 0, the t-thickening of the set X, denoted Xt, is the set of
points of the ambient space with distance at most t from X:

Xt = {y ∈ Rn,∃x ∈ X, ‖x− y‖ ≤ t} .

X0.05



4/16 (5/13)The Topological Inference problem

M

Let M⊂ Rn be a bounded subset.
Suppose that we are given a finite sample X ⊂M.

Estimate the homology groups of M from X.

We cannot use X directly.

Idea: Thicken X.

Definition: For every t ≥ 0, the t-thickening of the set X, denoted Xt, is the set of
points of the ambient space with distance at most t from X:

Xt = {y ∈ Rn,∃x ∈ X, ‖x− y‖ ≤ t} .

X0.1
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M

Let M⊂ Rn be a bounded subset.
Suppose that we are given a finite sample X ⊂M.

Estimate the homology groups of M from X.

We cannot use X directly.

Idea: Thicken X.

Definition: For every t ≥ 0, the t-thickening of the set X, denoted Xt, is the set of
points of the ambient space with distance at most t from X:

Xt = {y ∈ Rn,∃x ∈ X, ‖x− y‖ ≤ t} .

X0.2
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M

Let M⊂ Rn be a bounded subset.
Suppose that we are given a finite sample X ⊂M.

Estimate the homology groups of M from X.

We cannot use X directly.

Idea: Thicken X.

Definition: For every t ≥ 0, the t-thickening of the set X, denoted Xt, is the set of
points of the ambient space with distance at most t from X:

Xt = {y ∈ Rn,∃x ∈ X, ‖x− y‖ ≤ t} .

X0.3
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M

Let M⊂ Rn be a bounded subset.
Suppose that we are given a finite sample X ⊂M.

Estimate the homology groups of M from X.

We cannot use X directly.

Idea: Thicken X.

Definition: For every t ≥ 0, the t-thickening of the set X, denoted Xt, is the set of
points of the ambient space with distance at most t from X:

Xt = {y ∈ Rn,∃x ∈ X, ‖x− y‖ ≤ t} .

X0.4
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M

Let M⊂ Rn be a bounded subset.
Suppose that we are given a finite sample X ⊂M.

Estimate the homology groups of M from X.

We cannot use X directly.

Idea: Thicken X.

Definition: For every t ≥ 0, the t-thickening of the set X, denoted Xt, is the set of
points of the ambient space with distance at most t from X:

Xt = {y ∈ Rn,∃x ∈ X, ‖x− y‖ ≤ t} .

X0.5
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M

Let M⊂ Rn be a bounded subset.
Suppose that we are given a finite sample X ⊂M.

Estimate the homology groups of M from X.

We cannot use X directly.

Idea: Thicken X.

Definition: For every t ≥ 0, the t-thickening of the set X, denoted Xt, is the set of
points of the ambient space with distance at most t from X:

Xt = {y ∈ Rn,∃x ∈ X, ‖x− y‖ ≤ t} .

X0.9
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Some thickenings are homotopy equivalent to M.

X0.3 X0.4 X0.5

≈ ≈ ≈

M

Hence we can recover the homology of M:

β0(M) = β0(X0.3)
β1(M) = β1(X0.3)
β2(M) = β2(X0.3)

...
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Some thickenings are homotopy equivalent to M.

X0.3 X0.4 X0.5

≈ ≈ ≈

M

Hence we can recover the homology of M:

Question 1: How to select a t such that Xt ≈M?

Question 2: How to compute the homology groups of Xt?

β0(M) = β0(X0.3)
β1(M) = β1(X0.3)
β2(M) = β2(X0.3)

...



4/16 (13/13)The Topological Inference problem

Some thickenings are homotopy equivalent to M.

X0.3 X0.4 X0.5

≈ ≈ ≈

M

Hence we can recover the homology of M:

Question 1: How to select a t such that Xt ≈M?

Question 2: How to compute the homology groups of Xt?

β0(M) = β0(X0.3)
β1(M) = β1(X0.3)
β2(M) = β2(X0.3)

...
Hausdorff distance

Reach



5/16 (1/3)Hausdorff distance

Let X be any subset of Rn. The function distance to X is the map

dist (·, X) : Rn −→ R
y 7−→ dist (y,X) = inf{‖y − x‖ , x ∈ X}

A projection of y ∈ Rn on X is a point x ∈ X which attains this infimum.



5/16 (2/3)Hausdorff distance

Let X be any subset of Rn. The function distance to X is the map

dist (·, X) : Rn −→ R
y 7−→ dist (y,X) = inf{‖y − x‖ , x ∈ X}

A projection of y ∈ Rn on X is a point x ∈ X which attains this infimum.

Definition: Let Y ⊂ Rn be another subset. The Hausdorff distance between X and Y is

dH (X,Y ) = max

{
sup
y∈Y

dist (y,X) , sup
x∈X

dist (x, Y )

}
= max

{
sup
y∈Y

inf
x∈X
‖x− y‖ , sup

x∈X
inf
y∈Y
‖x− y‖

}
.



5/16 (3/3)Hausdorff distance

Let X be any subset of Rn. The function distance to X is the map

dist (·, X) : Rn −→ R
y 7−→ dist (y,X) = inf{‖y − x‖ , x ∈ X}

A projection of y ∈ Rn on X is a point x ∈ X which attains this infimum.

Definition: Let Y ⊂ Rn be another subset. The Hausdorff distance between X and Y is

dH (X,Y ) = max

{
sup
y∈Y

dist (y,X) , sup
x∈X

dist (x, Y )

}
= max

{
sup
y∈Y

inf
x∈X
‖x− y‖ , sup

x∈X
inf
y∈Y
‖x− y‖

}
.

Exercise: Show that the Hausdorff distance is equal to inf {t ≥ 0, X ⊂ Y t and Y ⊂ Xt} .

X Y Y ⊂ X0.3 X ⊂ Y 0.3



6/16 (1/11)Medial axis and reach

The medial axis of X is the subset med (X) ⊂ Rn which consists of points y ∈ Rn that
admit at least two projections on X:

med (X) = {y ∈ Rn,∃x, x′ ∈ X,x 6= x′, ‖y − x‖ = ‖y − x′‖ = dist (y,X)} .
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The medial axis of X is the subset med (X) ⊂ Rn which consists of points y ∈ Rn that
admit at least two projections on X:

med (X) = {y ∈ Rn,∃x, x′ ∈ X,x 6= x′, ‖y − x‖ = ‖y − x′‖ = dist (y,X)} .

Examples:
The medial axis of the unit circle is the origin
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The medial axis of X is the subset med (X) ⊂ Rn which consists of points y ∈ Rn that
admit at least two projections on X:

med (X) = {y ∈ Rn,∃x, x′ ∈ X,x 6= x′, ‖y − x‖ = ‖y − x′‖ = dist (y,X)} .

Examples:
The medial axis of the unit circle is the origin

The medial axis of an ellipse is a segment



6/16 (4/11)Medial axis and reach

The medial axis of X is the subset med (X) ⊂ Rn which consists of points y ∈ Rn that
admit at least two projections on X:

med (X) = {y ∈ Rn,∃x, x′ ∈ X,x 6= x′, ‖y − x‖ = ‖y − x′‖ = dist (y,X)} .

Examples:
The medial axis of the unit circle is the origin

The medial axis of an ellipse is a segment

The medial axis of a point is the empty set



6/16 (5/11)Medial axis and reach

The medial axis of X is the subset med (X) ⊂ Rn which consists of points y ∈ Rn that
admit at least two projections on X:

med (X) = {y ∈ Rn,∃x, x′ ∈ X,x 6= x′, ‖y − x‖ = ‖y − x′‖ = dist (y,X)} .

Examples:
The medial axis of the unit circle is the origin

The medial axis of an ellipse is a segment

The medial axis of a point is the empty set

The medial axis of two points is their bisector
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The medial axis of X is the subset med (X) ⊂ Rn which consists of points y ∈ Rn that
admit at least two projections on X:

med (X) = {y ∈ Rn,∃x, x′ ∈ X,x 6= x′, ‖y − x‖ = ‖y − x′‖ = dist (y,X)} .

The reach of X is

reach (X) = inf {dist (y,X) , y ∈ med (X)}
= inf {‖x− y‖ , x ∈ X, y ∈ med (X)} .
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The medial axis of X is the subset med (X) ⊂ Rn which consists of points y ∈ Rn that
admit at least two projections on X:

med (X) = {y ∈ Rn,∃x, x′ ∈ X,x 6= x′, ‖y − x‖ = ‖y − x′‖ = dist (y,X)} .

The reach of X is

reach (X) = inf {dist (y,X) , y ∈ med (X)}
= inf {‖x− y‖ , x ∈ X, y ∈ med (X)} .
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The medial axis of X is the subset med (X) ⊂ Rn which consists of points y ∈ Rn that
admit at least two projections on X:

med (X) = {y ∈ Rn,∃x, x′ ∈ X,x 6= x′, ‖y − x‖ = ‖y − x′‖ = dist (y,X)} .

The reach of X is

reach (X) = inf {dist (y,X) , y ∈ med (X)}
= inf {‖x− y‖ , x ∈ X, y ∈ med (X)} .

Proposition: For every t ∈ [0, reach (X)), the spaces X and Xt are homotopy
equivalent.



6/16 (9/11)Medial axis and reach

The medial axis of X is the subset med (X) ⊂ Rn which consists of points y ∈ Rn that
admit at least two projections on X:

med (X) = {y ∈ Rn,∃x, x′ ∈ X,x 6= x′, ‖y − x‖ = ‖y − x′‖ = dist (y,X)} .

The reach of X is

reach (X) = inf {dist (y,X) , y ∈ med (X)}
= inf {‖x− y‖ , x ∈ X, y ∈ med (X)} .

Proposition: For every t ∈ [0, reach (X)), the spaces X and Xt are homotopy
equivalent.



6/16 (10/11)Medial axis and reach

The medial axis of X is the subset med (X) ⊂ Rn which consists of points y ∈ Rn that
admit at least two projections on X:

med (X) = {y ∈ Rn,∃x, x′ ∈ X,x 6= x′, ‖y − x‖ = ‖y − x′‖ = dist (y,X)} .

The reach of X is

reach (X) = inf {dist (y,X) , y ∈ med (X)}
= inf {‖x− y‖ , x ∈ X, y ∈ med (X)} .

Proposition: For every t ∈ [0, reach (X)), the spaces X and Xt are homotopy
equivalent.

If t ≥ reach (X), the sets X and Xt may not be homotopy equivalent.
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Proposition: For every t ∈ [0, reach (X)), the spaces X and Xt are homotopy
equivalent.

Proof: For every t ∈ [0, reach (X)), the thickening Xt deform retracts onto X. A
homotopy is given by the following map:

Xt × [0, 1] −→ Xt

(x, t) 7−→ (1− t)x+ t · proj (x,X) .

Indeed, the projection proj (x,X) is well defined (it is unique).



7/16 (1/2)Selection of the parameter t

Remember Question 1: How to select a t such that Xt ≈M?

Theorem (Frédéric Chazal, David Cohen-Steiner, and André Lieutier, 2009):
Let X and M be subsets of Rn. Suppose that M has positive reach, and that
dH (X,M) ≤ 1

17 reach (M).
Then Xt and M are homotopic equivalent, provided that

t ∈ [4dH (X,M) , reach (M)− 3dH (X,M)) .

X0.3

≈
M



7/16 (2/2)Selection of the parameter t

Remember Question 1: How to select a t such that Xt ≈M?

Theorem (Frédéric Chazal, David Cohen-Steiner, and André Lieutier, 2009):
Let X and M be subsets of Rn. Suppose that M has positive reach, and that
dH (X,M) ≤ 1

17 reach (M).
Then Xt and M are homotopic equivalent, provided that

t ∈ [4dH (X,M) , reach (M)− 3dH (X,M)) .

Theorem (Partha Niyogi, Stephen Smale, and Shmuel Weinberger, 2008):
Let X and M be subsets of Rn, with M a submanifold, and X a finite subset of M.
Suppose that M has positive reach.
Then Xt and M are homotopic equivalent, provided that

t ∈

[
2dH (X,M) ,

√
3

5
reach (M)

)
.

X0.3

≈
M
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9/16 (1/2)(Weak) triangulations

Let us consider Question 2: How to compute the homology groups of Xt?

We must a triangulation of Xt, that is: a simplicial complex K homeomorphic to X.

Actually, we will define something weaker: a simplicial complex K that is homotopy
equivalent to X.



9/16 (2/2)(Weak) triangulations

Let us consider Question 2: How to compute the homology groups of Xt?

We must a triangulation of Xt, that is: a simplicial complex K homeomorphic to X.

Actually, we will define something weaker: a simplicial complex K that is homotopy
equivalent to X.

weak triangulation

Either case, we will have βi(X) = βi(K) for all i ≥ 0.



10/16 (1/12)Nerves

Definition: Let X be a topological space, and U = {Ui}1≤i≤N a cover of X, that is, a
collection of subsets Ui ⊂ X such that⋃

1≤i≤N

Ui = X.

The nerve of U is the simplicial complex with vertex set {1, ..., N} and whose
m-simplices are the subsets {i1, ..., im} ⊂ {1, ..., N} such that

⋂m
k=0 Uik 6= ∅. It is

denoted N (U).

U1

U2

U3

U4
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Definition: Let X be a topological space, and U = {Ui}1≤i≤N a cover of X, that is, a
collection of subsets Ui ⊂ X such that⋃

1≤i≤N

Ui = X.

The nerve of U is the simplicial complex with vertex set {1, ..., N} and whose
m-simplices are the subsets {i1, ..., im} ⊂ {1, ..., N} such that

⋂m
k=0 Uik 6= ∅. It is

denoted N (U).

U1

U2

U3

U4

1

2

3

4
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Definition: Let X be a topological space, and U = {Ui}1≤i≤N a cover of X, that is, a
collection of subsets Ui ⊂ X such that⋃

1≤i≤N

Ui = X.

The nerve of U is the simplicial complex with vertex set {1, ..., N} and whose
m-simplices are the subsets {i1, ..., im} ⊂ {1, ..., N} such that

⋂m
k=0 Uik 6= ∅. It is

denoted N (U).

U1

U2

U3

U4

1

2

3

4
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Definition: Let X be a topological space, and U = {Ui}1≤i≤N a cover of X, that is, a
collection of subsets Ui ⊂ X such that⋃

1≤i≤N

Ui = X.

The nerve of U is the simplicial complex with vertex set {1, ..., N} and whose
m-simplices are the subsets {i1, ..., im} ⊂ {1, ..., N} such that

⋂m
k=0 Uik 6= ∅. It is

denoted N (U).

U1

U2

U3

U4

1

2

3

4
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Definition: Let X be a topological space, and U = {Ui}1≤i≤N a cover of X, that is, a
collection of subsets Ui ⊂ X such that⋃

1≤i≤N

Ui = X.

The nerve of U is the simplicial complex with vertex set {1, ..., N} and whose
m-simplices are the subsets {i1, ..., im} ⊂ {1, ..., N} such that

⋂m
k=0 Uik 6= ∅. It is

denoted N (U).

U1

U2

U3

U4

1

2

3

4
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Definition: Let X be a topological space, and U = {Ui}1≤i≤N a cover of X, that is, a
collection of subsets Ui ⊂ X such that⋃

1≤i≤N

Ui = X.

The nerve of U is the simplicial complex with vertex set {1, ..., N} and whose
m-simplices are the subsets {i1, ..., im} ⊂ {1, ..., N} such that

⋂m
k=0 Uik 6= ∅. It is

denoted N (U).

U1

U2

U3

U4

1

2

3

4
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Definition: Let X be a topological space, and U = {Ui}1≤i≤N a cover of X, that is, a
collection of subsets Ui ⊂ X such that⋃

1≤i≤N

Ui = X.

The nerve of U is the simplicial complex with vertex set {1, ..., N} and whose
m-simplices are the subsets {i1, ..., im} ⊂ {1, ..., N} such that

⋂m
k=0 Uik 6= ∅. It is

denoted N (U).

U1

U2

U3

U4

1

2

3

4

N (U)
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Definition: Let X be a topological space, and U = {Ui}1≤i≤N a cover of X, that is, a
collection of subsets Ui ⊂ X such that⋃

1≤i≤N

Ui = X.

The nerve of U is the simplicial complex with vertex set {1, ..., N} and whose
m-simplices are the subsets {i1, ..., im} ⊂ {1, ..., N} such that

⋂m
k=0 Uik 6= ∅. It is

denoted N (U).

X0.2 =
⋃
x∈X B (x, 0.2) is covered by U =

{
B (x, 0.2) , x ∈ X

}
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Definition: Let X be a topological space, and U = {Ui}1≤i≤N a cover of X, that is, a
collection of subsets Ui ⊂ X such that⋃

1≤i≤N

Ui = X.

The nerve of U is the simplicial complex with vertex set {1, ..., N} and whose
m-simplices are the subsets {i1, ..., im} ⊂ {1, ..., N} such that

⋂m
k=0 Uik 6= ∅. It is

denoted N (U).

X0.2 =
⋃
x∈X B (x, 0.2) is covered by U =

{
B (x, 0.2) , x ∈ X

}
2-simplex

3-simplex



10/16 (10/12)Nerves

Definition: Let X be a topological space, and U = {Ui}1≤i≤N a cover of X, that is, a
collection of subsets Ui ⊂ X such that⋃

1≤i≤N

Ui = X.

The nerve of U is the simplicial complex with vertex set {1, ..., N} and whose
m-simplices are the subsets {i1, ..., im} ⊂ {1, ..., N} such that

⋂m
k=0 Uik 6= ∅. It is

denoted N (U).

X0.3 =
⋃
x∈X B (x, 0.3) is covered by U =

{
B (x, 0.3) , x ∈ X

}
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Definition: Let X be a topological space, and U = {Ui}1≤i≤N a cover of X, that is, a
collection of subsets Ui ⊂ X such that⋃

1≤i≤N

Ui = X.

The nerve of U is the simplicial complex with vertex set {1, ..., N} and whose
m-simplices are the subsets {i1, ..., im} ⊂ {1, ..., N} such that

⋂m
k=0 Uik 6= ∅. It is

denoted N (U).

X0.3 =
⋃
x∈X B (x, 0.3) is covered by U =

{
B (x, 0.3) , x ∈ X

}

6-simplex

5-simplex

4-simplex

3-simplex
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Definition: Let X be a topological space, and U = {Ui}1≤i≤N a cover of X, that is, a
collection of subsets Ui ⊂ X such that⋃

1≤i≤N

Ui = X.

The nerve of U is the simplicial complex with vertex set {1, ..., N} and whose
m-simplices are the subsets {i1, ..., im} ⊂ {1, ..., N} such that

⋂m
k=0 Uik 6= ∅. It is

denoted N (U).

Nerve theorem: Consider X ⊂ Rn. Suppose that each Ui are balls (or more generally,
closed and convex). Then N (U) is homotopy equivalent to X.

≈

≈

≈



11/16 (1/2)Čech complex

Let X be a finite subset of Rn, and t ≥ 0. Consider the collection

Vt =
{
B (x, t) , x ∈ X

}
.

This is a cover of the thickening Xt, and each components are closed balls.
By Nerve Theorem, its nerve N (Vt) has the homotopy type of Xt.

Definition: This nerve is denoted Čech
t
(X) and is called the Čech complex of X at

time t.



11/16 (2/2)Čech complex

Let X be a finite subset of Rn, and t ≥ 0. Consider the collection

Vt =
{
B (x, t) , x ∈ X

}
.

This is a cover of the thickening Xt, and each components are closed balls.
By Nerve Theorem, its nerve N (Vt) has the homotopy type of Xt.

Definition: This nerve is denoted Čech
t
(X) and is called the Čech complex of X at

time t.

The Question 2 (How to compute the homology groups of Xt?) is solved.
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13/16 (1/3)Computation of the Čech complex

Let X = {x1, . . . , xN} ⊂ Rn be finite, let t ≥ 0 and consider the t-thickening

Xt =
⋃
x∈X
B (x, t) .

By definition, its nerve, Čech
t
(X), the Čech complex at time t, is a simplicial complex

on the vertices {1, . . . , N} whose simplices are the subsets {i1, ..., im} such that⋂
1≤k≤m

B (xik , t) 6= ∅.



13/16 (2/3)Computation of the Čech complex

Let X = {x1, . . . , xN} ⊂ Rn be finite, let t ≥ 0 and consider the t-thickening

Xt =
⋃
x∈X
B (x, t) .

By definition, its nerve, Čech
t
(X), the Čech complex at time t, is a simplicial complex

on the vertices {1, . . . , N} whose simplices are the subsets {i1, ..., im} such that⋂
1≤k≤m

B (xik , t) 6= ∅.

Therefore, computing the Čech complex relies on the following geometric predicate:

Given m closed balls of Rn, do they intersect?

This problem is known as the smallest circle problem.

It can can be solved in O(m) time, where m is the number of points.



13/16 (3/3)Computation of the Čech complex

Let X = {x1, . . . , xN} ⊂ Rn be finite, let t ≥ 0 and consider the t-thickening

Xt =
⋃
x∈X
B (x, t) .

By definition, its nerve, Čech
t
(X), the Čech complex at time t, is a simplicial complex

on the vertices {1, . . . , N} whose simplices are the subsets {i1, ..., im} such that⋂
1≤k≤m

B (xik , t) 6= ∅.

Therefore, computing the Čech complex relies on the following geometric predicate:

Given m closed balls of Rn, do they intersect?

This problem is known as the smallest circle problem.

It can can be solved in O(m) time, where m is the number of points.

in practice, we prefer a more simple version



14/16 (1/6)Clique complex

Let G be a graph.
We call a clique of G a set of vertices v1, ..., vm such that for every i, j ∈ J1,mK with
i 6= j, the edge [vi, vj ] belongs to G.



14/16 (2/6)Clique complex

Let G be a graph.
We call a clique of G a set of vertices v1, ..., vm such that for every i, j ∈ J1,mK with
i 6= j, the edge [vi, vj ] belongs to G.

2-clique



14/16 (3/6)Clique complex

Let G be a graph.
We call a clique of G a set of vertices v1, ..., vm such that for every i, j ∈ J1,mK with
i 6= j, the edge [vi, vj ] belongs to G.

3-clique



14/16 (4/6)Clique complex

Let G be a graph.
We call a clique of G a set of vertices v1, ..., vm such that for every i, j ∈ J1,mK with
i 6= j, the edge [vi, vj ] belongs to G.

4-clique



14/16 (5/6)Clique complex

Let G be a graph.
We call a clique of G a set of vertices v1, ..., vm such that for every i, j ∈ J1,mK with
i 6= j, the edge [vi, vj ] belongs to G.

Definition: Given a graph G, the corresponding clique complex is the simplicial complex
whose
• vertices are the vertices of G,
• simplices are the sets of vertices of the cliques of G.

3-simplex 2-simplex



14/16 (6/6)Clique complex

Let G be a graph.
We call a clique of G a set of vertices v1, ..., vm such that for every i, j ∈ J1,mK with
i 6= j, the edge [vi, vj ] belongs to G.

Definition: Given a graph G, the corresponding clique complex is the simplicial complex
whose
• vertices are the vertices of G,
• simplices are the sets of vertices of the cliques of G.

3-simplex 2-simplex

Exercise: Prove that the clique complex of a graph is a simplicial complex.



15/16 (1/6)Rips complex

Let X = {x1, . . . , xN} ⊂ Rn and t ≥ 0.

Consider the graph Gt whose vertex set is {1, . . . , N}, and whose edges are the pairs
(i, j) such that ‖xi − xj‖ ≤ 2t.

Alternatively, Gt can be seen as the 1-skeleton of the Čech complex Čech
t
(X).

2t

X Gt Xt



15/16 (2/6)Rips complex

Let X = {x1, . . . , xN} ⊂ Rn and t ≥ 0.

Consider the graph Gt whose vertex set is {1, . . . , N}, and whose edges are the pairs
(i, j) such that ‖xi − xj‖ ≤ 2t.

Alternatively, Gt can be seen as the 1-skeleton of the Čech complex Čech
t
(X).

Definition: The Rips complex of X at time t is the clique complex of the graph Gt. We
denote it Ripst(X).

2t

Ripst(X)Gt

X Gt Xt



15/16 (3/6)Rips complex

Let X = {x1, . . . , xN} ⊂ Rn and t ≥ 0.

Consider the graph Gt whose vertex set is {1, . . . , N}, and whose edges are the pairs
(i, j) such that ‖xi − xj‖ ≤ 2t.

Alternatively, Gt can be seen as the 1-skeleton of the Čech complex Čech
t
(X).

Definition: The Rips complex of X at time t is the clique complex of the graph Gt. We
denote it Ripst(X).

2t

Ripst(X) Čech
t
(X)Gt

X Gt Xt



15/16 (4/6)Rips complex

Let X = {x1, . . . , xN} ⊂ Rn and t ≥ 0.

Consider the graph Gt whose vertex set is {1, . . . , N}, and whose edges are the pairs
(i, j) such that ‖xi − xj‖ ≤ 2t.

Alternatively, Gt can be seen as the 1-skeleton of the Čech complex Čech
t
(X).

Definition: The Rips complex of X at time t is the clique complex of the graph Gt. We
denote it Ripst(X).

2t

Ripst(X) Čech
t
(X)Gt

X Gt Xt

≈



15/16 (5/6)Rips complex

Proposition: For every t ≥ 0, we have

Čech
t
(X) ⊂ Ripst(X) ⊂ Čech

2t
(X).

Ripst(X)Čech
t
(X) Čech

2t
(X)
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Proposition: For every t ≥ 0, we have

Čech
t
(X) ⊂ Ripst(X) ⊂ Čech

2t
(X).

Proof: Let t ≥ 0. The first inclusion follows from the fact that Ripst(X) is the clique

complex of Čech
t
(X).

To prove the second one, choose a simplex σ ∈ Ripst(X). Let us prove that

ω ∈ Čech
2t

(X).

Let x ∈ σ be any vertex. Note that ∀y ∈ σ, we have ‖x− y‖ ≤ 2t by definition of the
Rips complex. Hence

x ∈
⋂
y∈σ
B (y, 2t) .

The intersection being non-empty, we deduce σ ∈ Čech
2t

(X).

Ripst(X)Čech
t
(X) Čech

2t
(X)



16/16 (1/4)Conclusion
We considered the problem of topological inference, and studied the solution by
thickenings.

We’ve seen that a nice thickening exists, and that its homology can be computed via
the Čech complex.

For computational reasons, we introduced the Rips complex.

Homework: Exercise 37

Facultative: Exercises 39, 40, 41



16/16 (2/4)Conclusion
We considered the problem of topological inference, and studied the solution by
thickenings.

We’ve seen that a nice thickening exists, and that its homology can be computed via
the Čech complex.

For computational reasons, we introduced the Rips complex.

Theorem (Frédéric Chazal, David Cohen-Steiner, and André Lieutier, 2009):
Let X and M be subsets of Rn. Suppose that M has positive reach, and that
dH (X,M) ≤ 1

17 reach (M).
Then Xt and M are homotopic equivalent, provided that

t ∈ [4dH (X,M) , reach (M)− 3dH (X,M)) .

Theorem (Partha Niyogi, Stephen Smale, and Shmuel Weinberger, 2008):
Let X and M be subsets of Rn, with M a submanifold, and X a finite subset of M.
Suppose that M has positive reach.
Then Xt and M are homotopic equivalent, provided that

t ∈

[
2dH (X,M) ,

√
3

5
reach (M)

)
.



16/16 (3/4)Conclusion
We considered the problem of topological inference, and studied the solution by
thickenings.

We’ve seen that a nice thickening exists, and that its homology can be computed via
the Čech complex.

For computational reasons, we introduced the Rips complex.

Theorem (Frédéric Chazal, David Cohen-Steiner, and André Lieutier, 2009):
Let X and M be subsets of Rn. Suppose that M has positive reach, and that
dH (X,M) ≤ 1

17 reach (M).
Then Xt and M are homotopic equivalent, provided that

t ∈ [4dH (X,M) , reach (M)− 3dH (X,M)) .

Theorem (Partha Niyogi, Stephen Smale, and Shmuel Weinberger, 2008):
Let X and M be subsets of Rn, with M a submanifold, and X a finite subset of M.
Suppose that M has positive reach.
Then Xt and M are homotopic equivalent, provided that

t ∈

[
2dH (X,M) ,

√
3

5
reach (M)

)
.

unknown in practice



16/16 (4/4)Conclusion
We considered the problem of topological inference, and studied the solution by
thickenings.

We’ve seen that a nice thickening exists, and that its homology can be computed via
the Čech complex.

For computational reasons, we introduced the Rips complex.

Homework: Exercise 37

Facultative: Exercises 39, 40, 41

Merci !


