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Introduction 2/16 (1/2)

In real life, we are often given datasets that are subsets of the Euclidean space:
X C R™.

Of course, X is finite.



In real life, we are often given datasets that are subsets of the Euclidean space:
X C R™.

Of course, X is finite.

M

In Topological Data Analysis, we think of X as being a sample of an underlying
continuous object, M C R".

Understanding the topology of M would give us interesting insights about our dataset.



I - Thickenings



he Topological Inference problem 14 (7 13

Let M C R™ be a bounded subset.
Suppose that we are given a finite sample X C M.
Estimate the homology groups of M from X.



he Topological Inference problem 14 (5/13)

Let M C R™ be a bounded subset.
Suppose that we are given a finite sample X C M.
Estimate the homology groups of M from X.

X M

We cannot use X directly. Its homology is disapointing:

Bo(X)=30 and [G;(X)fori>1

number of connected components /
= number of points of X



he Topological Inference problem 14 (3/13)

Let M C R™ be a bounded subset.
Suppose that we are given a finite sample X C M.
Estimate the homology groups of M from X.

X M

We cannot use X directly.

Thicken X.

Definition: For every t > 0, the t-thickening of the set X, denoted X?, is the set of
points of the ambient space with distance at most ¢ from X:

X'={yeR"3wxeX,|z—y| <t}



he Topological Inference problem 14 (4/13)

Let M C R™ be a bounded subset.
Suppose that we are given a finite sample X C M.
Estimate the homology groups of M from X.

x0.05 .. P M

We cannot use X directly.

Thicken X.

Definition: For every t > 0, the t-thickening of the set X, denoted X?, is the set of
points of the ambient space with distance at most ¢ from X:

X'={yeR"3wxeX,|z—y| <t}



he Topological Inference problem 14 (5/13)

Let M C R™ be a bounded subset.
Suppose that we are given a finite sample X C M.
Estimate the homology groups of M from X.
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We cannot use X directly.

Thicken X.

Definition: For every t > 0, the t-thickening of the set X, denoted X?, is the set of
points of the ambient space with distance at most ¢ from X:

X'={yeR"3wxeX,|z—y| <t}



The Topological Inference problem 4/16 (6/13)

Let M C R™ be a bounded subset.
Suppose that we are given a finite sample X C M.
Estimate the homology groups of M from X.

XO.2

We cannot use X directly.
\dea: Thicken X.

Definition: For every t > 0, the t-thickening of the set X, denoted X?, is the set of
points of the ambient space with distance at most ¢ from X:

X'={yeR"weX,|z—yl| <t}



The Topological Inference problem 4/16 (7/13)

Let M C R™ be a bounded subset.
Suppose that we are given a finite sample X C M.
Estimate the homology groups of M from X.

XO.3

We cannot use X directly.

\dea: Thicken X.

Definition: For every t > 0, the t-thickening of the set X, denoted X?, is the set of
points of the ambient space with distance at most ¢ from X:

X'={yeR"weX,|z—yl| <t}



The Topological Inference problem 4/16 (8/13)

Let M C R™ be a bounded subset.
Suppose that we are given a finite sample X C M.
Estimate the homology groups of M from X.

X0.4

We cannot use X directly.

\dea: Thicken X.

Definition: For every t > 0, the t-thickening of the set X, denoted X?, is the set of
points of the ambient space with distance at most ¢ from X:

X'={yeR"weX,|z—yl| <t}



he Topological Inference problem 14 (9/13)

Let M C R™ be a bounded subset.
Suppose that we are given a finite sample X C M.
Estimate the homology groups of M from X.

We cannot use X

\dea: Thicken X.

Definition: For every t > 0, the t-thickening of the set X, denoted X?, is the set of
points of the ambient space with distance at most ¢ from X:

X'={yeR"weX,|z—yl| <t}



he Topological Inference problem ;16 19/13)

Let M C R™ be a bounded subset.
t we are given a finite sample X C M.
omology groups of M from X.

We cannot

\dea: Thicken X.

Definition: For every t > 0, the t-thickening of the set X, denoted X?, is the set of
points of the ambient space with distance at most ¢ from X:

X'={yeR"IzeX, |z—yl|<t}.



The Topological Inference problem ;16 1113

Some thickenings are homotopy equivalent to M.

- - O
Y <
o M
Hence we can recover the homology of M:

Bo(M) = Bo(X°?)
B1(M) = B1(X")
Ba(M) = B2(X03)

2

XO'S X0.4



The Topological Inference problem ;16 15/13)

Some thickenings are homotopy equivalent to M.

- - O
Y <
o M
Hence we can recover the homology of M:

Bo(M) = Bo(X°?)
B1(M) = B1(X")
Ba(M) = B2(X03)

2

XO'S X0.4

Question 1: How to select a t such that Xt ~ M?

Question 2: How to compute the homology groups of X7



The Topological Inference problem 4/16 (13/13)
M

/—> Hausdorff distance
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Question 1: How to select a ¢ such that X' ~ M?7 —— & Reach

Some thickenings are homotopy equivalent to M.

m
Y
o
Hence we can recover the homology of M:

Bo(M) = Bo(X°?)
B1(M) = B1(X")
Ba(M) = B2(X03)

2
X

XO'S X0.4

Question 2: How to compute the homology groups of X7



Hausdorff distance 5/16 (1/3)

Let X be any subset of R™. The function distance to X is the map

dist (-, X) : R — R
y — dist (y, X) = inf{[|ly — 2|,z € X}

A projection of y € R™ on X is a point z € X which attains this infimum.



Hausdorff distance 5/16 (2/3)

Let X be any subset of R™. The function distance to X is the map

dist (-, X) : R — R
y — dist (y, X) = inf{[|ly — 2|,z € X}

A projection of y € R™ on X is a point z € X which attains this infimum.

Definition: Let Y C R"™ be another subset. The Hausdorff distance between X and Y is

dy (X,Y) = max {sup dist (y, X ), sup dist (z, Y)}
yey reX

= max § sup inf ||x — sup inf ||z — :
{sup inf o~ vl sup inf o o1}



Hausdorff distance 5/16 (3/3)

Let X be any subset of R™. The function distance to X is the map
dist (-, X): R" — R
y — dist (y, X) = inf{||ly — z|| ,x € X}
A projection of y € R™ on X is a point x € X which attains this infimum.

Definition: Let Y C R"™ be another subset. The Hausdorff distance between X and Y is

dg (X,Y) = max {sup dist (y, X), sup dist (z, Y)}
yeyYy xeX

= max < sup inf ||z — sup inf ||z — .
{sup inf o~ sup int o~ ]}

Exercise: Show that the Hausdorff distance is equal to inf {t > 0,X C Y' and Y C X*}.




Medial axis and reach 6/16 (1/11)

The medial axis of X is the subset med (X) C R™ which consists of points y € R™ that
admit at least two projections on X:

med (X) ={y € R",3z,2’ € X,z # 2, ly — || = ||ly — || = dist (y, X)}.



Medial axis and reach 6/16 (2/11)

The medial axis of X is the subset med (X) C R™ which consists of points y € R™ that
admit at least two projections on X:

med (X) ={y € R",3z,2’ € X,z # 2, ly — || = ||ly — || = dist (y, X)}.

Examples:
The medial axis of the unit circle is the origin



Medial axis and reach 6/16 (3/11)

The medial axis of X is the subset med (X) C R™ which consists of points y € R™ that
admit at least two projections on X:

med (X) ={y € R",3z,2’ € X,z # 2, ly — || = ||ly — || = dist (y, X)}.

Examples:
The medial axis of the unit circle is the origin

The medial axis of an ellipse is a segment



Medial axis and reach 6/16 (4/11)

The medial axis of X is the subset med (X) C R™ which consists of points y € R™ that
admit at least two projections on X:

med (X) ={y € R",3z,2’ € X,z # 2, ly — || = ||ly — || = dist (y, X)}.

Examples:
The medial axis of the unit circle is the origin

The medial axis of an ellipse is a segment

The medial axis of a point is the empty set ®



Medial axis and reach 6/16 (5/11)

The medial axis of X is the subset med (X) C R™ which consists of points y € R™ that
admit at least two projections on X:

med (X) ={y € R",3z,2’ € X,z # 2, ly — || = ||ly — || = dist (y, X)}.

Examples:
The medial axis of the unit circle is the origin

The medial axis of an ellipse is a segment

The medial axis of a point is the empty set ®

The medial axis of two points is their bisector



Medial axis and reach 6/16 (6/11)

The medial axis of X is the subset med (X) C R™ which consists of points y € R™ that
admit at least two projections on X:

med (X) ={y € R",3z,2’ € X,z # 2, ly — || = ||ly — || = dist (y, X)}.

The reach of X is

reach (X) = inf {dist (y, X ),y € med (X)}
= inf {||z —y|,x € X,y € med (X)}.



Medial axis and reach 6/16 (7/11)

The medial axis of X is the subset med (X) C R™ which consists of points y € R™ that
admit at least two projections on X:

med (X) ={y € R",3z,2’ € X,z # 2, ly — || = ||ly — || = dist (y, X)}.

The reach of X is

reach (X) = inf {dist (y, X ),y € med (X)}
= inf {||z —y|,x € X,y € med (X)}.



Medial axis and reach 6/16 (8/11)

The medial axis of X is the subset med (X) C R™ which consists of points y € R™ that
admit at least two projections on X:

med (X) ={y € R",3z,2’ € X,z # 2, ly — || = ||ly — || = dist (y, X)}.

The reach of X is

reach (X) = inf {dist (y, X ),y € med (X)}
= inf {||z —y|,x € X,y € med (X)}.

Proposition: For every t € [0,reach (X)), the spaces X and X' are homotopy
equivalent.



Medial axis and reach 6/16 (9/11)

The medial axis of X is the subset med (X) C R™ which consists of points y € R™ that
admit at least two projections on X:

med (X) ={y € R",3z,2’ € X,z # 2, ly — || = ||ly — || = dist (y, X)}.

The reach of X is

reach (X) = inf {dist (y, X ),y € med (X)}
=inf{||z —y|,z € X,y € med (X)}.

=X '

Proposition: For every t € [0,reach (X)), the spaces X and X' are homotopy
equivalent.




Medial axis and reach 6/16 (10/11)

The medial axis of X is the subset med (X) C R™ which consists of points y € R™ that
admit at least two projections on X:

med (X) ={y € R",3z,2’ € X,z # 2, ly — || = ||ly — || = dist (y, X)}.

The reach of X is

reach (X) = inf {dist (y, X ),y € med (X)}
=inf{||z —y|,z € X,y € med (X)}.

Proposition: For every t € [0,reach (X)), the spaces X and X' are homotopy
equivalent.

If £ > reach (X), the sets X and X' may not be homotopy equivalent.



Medial axis and reach 6/16 (11/11)

Proposition: For every t € [0,reach (X)), the spaces X and X' are homotopy
equivalent.

Proof: For every ¢ € [0,reach (X)), the thickening X* deform retracts onto X. A
homotopy is given by the following map:

Xt x [0,1] — X
(x,t) — (1 —t)z +t - proj (z, X).

Indeed, the projection proj (x, X) is well defined (it is unique).



Selection of the parameter ¢ 7/16 (1/2)

Remember Question 1: How to select a ¢ such that Xt ~ M?

I
Y

XO.3 M

Let X and M be subsets of R". Suppose that M has positive reach, and that
du (X, M) < t=reach (M).
Then X! and M are homotopic equivalent, provided that

t € [4dy (X, M) ,reach (M) — 3dyg (X, M)).



Selection of the parameter ¢ 7/16 (2/2)

Remember Question 1: How to select a ¢ such that Xt ~ M?

I
Y

XO.3 M

Let X and M be subsets of R". Suppose that M has positive reach, and that
du (X, M) < t=reach (M).
Then X! and M are homotopic equivalent, provided that

t € [4dy (X, M) ,reach (M) — 3dyg (X, M)).

Let X and M be subsets of R", with M a submanifold, and X a finite subset of M.
Suppose that M has positive reach.
Then X! and M are homotopic equivalent, provided that

t € [2dH (X, M), \/greach (M)) :



IT - Cech complex



(Weak) triangulations 0/16 (1/2)

Let us consider Question 2: How to compute the homology groups of X*'?

We must a triangulation of X?, that is: a simplicial complex K homeomorphic to X.

Actually, we will define something weaker: a simplicial complex K that is homotopy
equivalent to X.



(Weak) triangulations 0/16 (2/2)

Let us consider Question 2: How to compute the homology groups of X*'?

We must a triangulation of X?, that is: a simplicial complex K homeomorphic to X.

Actually, we will define something weaker: a simplicial complex K that is homotopy
equivalent to X.

AN

Either case, we will have 3;(X) = 8;(K) for all ¢+ > 0.

weak triangulation



Nerves 10/16 (1/12)

Definition: Let X be a topological space, and U = {U;}1<;<n a cover of X, thatis, a
collection of subsets U; C X such that

) ui=x

1<i<N

The nerve of U is the simplicial complex with vertex set {1,..., N} and whose
m-simplices are the subsets {i1, ..., } C {1,..., N} such that (,_, U;, # 0. Itis
denoted N (U).

Uy




Nerves 10/16 (2/12)

Definition: Let X be a topological space, and U = {U;}1<;<n a cover of X, thatis, a
collection of subsets U; C X such that

) ui=x

1<i<N

The nerve of U is the simplicial complex with vertex set {1,..., N} and whose
m-simplices are the subsets {i1, ..., } C {1,..., N} such that (,_, U;, # 0. Itis
denoted N (U).

Uy




Nerves 10/16 (3/12)

Definition: Let X be a topological space, and U = {U;}1<;<n a cover of X, thatis, a
collection of subsets U; C X such that

) ui=x

1<i<N

The nerve of U is the simplicial complex with vertex set {1,..., N} and whose
m-simplices are the subsets {i1, ..., } C {1,..., N} such that (,_, U;, # 0. Itis
denoted N (U).




Nerves 10/16 (4/12)

Definition: Let X be a topological space, and U = {U;}1<;<n a cover of X, thatis, a
collection of subsets U; C X such that

) ui=x

1<i<N

The nerve of U is the simplicial complex with vertex set {1,..., N} and whose
m-simplices are the subsets {i1, ..., } C {1,..., N} such that (,_, U;, # 0. Itis
denoted N (U).




Nerves 10/16 (5/12)

Definition: Let X be a topological space, and U = {U;}1<;<n a cover of X, thatis, a
collection of subsets U; C X such that

) ui=x

1<i<N

The nerve of U is the simplicial complex with vertex set {1,..., N} and whose
m-simplices are the subsets {i1, ..., } C {1,..., N} such that (,_, U;, # 0. Itis
denoted N (U).

Uy
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Nerves 10/16 (6/12)

Definition: Let X be a topological space, and U = {U;}1<;<n a cover of X, thatis, a
collection of subsets U; C X such that

) ui=x

1<i<N

The nerve of U is the simplicial complex with vertex set {1,..., N} and whose
m-simplices are the subsets {i1, ..., } C {1,..., N} such that (,_, U;, # 0. Itis
denoted N (U).
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Nerves 10/16 (7/12)

Definition: Let X be a topological space, and U = {U;}1<;<n a cover of X, thatis, a
collection of subsets U; C X such that

) ui=x

1<i<N

The nerve of U is the simplicial complex with vertex set {1,..., N} and whose
m-simplices are the subsets {i1, ..., } C {1,..., N} such that (,_, U;, # 0. Itis
denoted N (U).

Uy




Nerves 10/16 (8/12)

Definition: Let X be a topological space, and U = {U;}1<;<n a cover of X, thatis, a
collection of subsets U; C X such that

) ui=x

1<i<N

The nerve of U is the simplicial complex with vertex set {1,..., N} and whose
m-simplices are the subsets {i1, ..., } C {1,..., N} such that (,_, U;, # 0. Itis
denoted N (U).

X092 =], cx B(2,0.2) is covered by U = {B(2,0.2) ,z € X'}



Nerves 10/16 (9/12)

Definition: Let X be a topological space, and U = {U;}1<;<n a cover of X, thatis, a
collection of subsets U; C X such that

) ui=x

1<i<N

The nerve of U is the simplicial complex with vertex set {1,..., N} and whose
m-simplices are the subsets {i1, ..., } C {1,..., N} such that (,_, U;, # 0. Itis
denoted N (U).

3-simplex

~___

/

2-simplex

X092 =], cx B(2,0.2) is covered by U = {B(2,0.2) ,z € X'}



Nerves 10/16 (10/12)

Definition: Let X be a topological space, and U = {U;}1<;<n a cover of X, thatis, a
collection of subsets U; C X such that

) ui=x

1<i<N

The nerve of U is the simplicial complex with vertex set {1,..., N} and whose
m-simplices are the subsets {i1, ..., } C {1,..., N} such that (,_, U;, # 0. Itis
denoted N (U).

X3 =J,cx B(x,0.3) is covered by U = {BB(2,0.3),z € X}



Nerves 10/16 (11/12)

Definition: Let X be a topological space, and U = {U;}1<;<n a cover of X, thatis, a
collection of subsets U; C X such that

) ui=x

1<i<N

The nerve of U is the simplicial complex with vertex set {1,..., N} and whose
m-simplices are the subsets {i1, ..., } C {1,..., N} such that (,_, U;, # 0. Itis
denoted N (U).

6-simplex ~.

5-simplex
~
4-simplex
—»
| /
3-simplex

X3 =J,cx B(x,0.3) is covered by U = {BB(2,0.3),z € X}



Nerves 10/16 (12/12)

Definition: Let X be a topological space, and U = {U;}1<;<n a cover of X, thatis, a
collection of subsets U; C X such that

U U, = X.

1<i<N

The nerve of U is the simplicial complex with vertex set {1,..., N} and whose
m-simplices are the subsets {i1, ..., } C {1,..., N} such that (,_, U;, # 0. Itis
denoted N (U).

Nerve theorem: Consider X C R™. Suppose that each U; are balls (or more generally,
closed and convex). Then N (i) is homotopy equivalent to X.

Q




Cech complex 11/16 (1/2)

Let X be a finite subset of R™, and ¢ > 0. Consider the collection
VP ={B(z,t),x € X}.

This is a cover of the thickening X, and each components are closed balls.
By Nerve Theorem, its nerve N (V') has the homotopy type of X*.

Definition: This nerve is denoted Cecht(X) and is called the Cech complex of X at
time t.




Cech complex 11/16 (2/2)

Let X be a finite subset of R™, and ¢ > 0. Consider the collection
VP ={B(z,t),x € X}.

This is a cover of the thickening X, and each components are closed balls.
By Nerve Theorem, its nerve N (V') has the homotopy type of X*.

Definition: This nerve is denoted Cecht(X) and is called the Cech complex of X at
time t.

— The Question 2 (How to compute the homology groups of X*?) is solved.



II1 - Rips complex



Computation of the Cech complex 13/16 (1/3)

Let X = {z1,...,xn} C R” be finite, let t > 0 and consider the ¢-thickening

Xt = U B(z,t).

reX

o s ot v . . .
By definition, its nerve, Cech (X), the Cech complex at time ¢, is a simplicial complex
on the vertices {1,..., N} whose simplices are the subsets {i1,...,%,,} such that

ﬂ E(xiwt) 7& 0.

1<k<m



Computation of the Cech complex 13/16 (2/3)

Let X = {z1,...,xn} C R” be finite, let t > 0 and consider the ¢-thickening

Xt = U B(z,t).

reX

o .t y . . o
By definition, its nerve, Cech (X), the Cech complex at time ¢, is a simplicial complex
on the vertices {1,..., N} whose simplices are the subsets {i1,...,%,,} such that

ﬂ B(ﬂ?ik,t> 7& @
1<k<m
Therefore, computing the Cech complex relies on the following geometric predicate:
Given m closed balls of R™, do they intersect?

This problem is known as the smallest circle problem.
It can can be solved in O(m) time, where m is the number of points.



Computation of the Cech complex 13/16 (3/3)

Let X = {z1,...,xn} C R” be finite, let t > 0 and consider the ¢-thickening

Xt = U B(z,t).

reX

o .t y . . o
By definition, its nerve, Cech (X), the Cech complex at time ¢, is a simplicial complex
on the vertices {1,..., N} whose simplices are the subsets {i1,...,%,,} such that

ﬂ B(ﬂ?ik,t> 7& @
1<k<m
Therefore, computing the Cech complex relies on the following geometric predicate:
Given m closed balls of R™, do they intersect?

This problem is known as the smallest circle problem.
It can can be solved in O(m) time, where m is the number of points.

+ in practice, we prefer a more simple version



Clique complex 14/16 (1/6)

Let G be a graph.
We call a clique of G a set of vertices vy, ..., v, such that for every i, j € [1, m] with
i # j, the edge |v;, v;] belongs to G.




Clique complex 14/16 (2/6)

Let G be a graph.
We call a clique of G a set of vertices vy, ..., v, such that for every i, j € [1, m] with
i # j, the edge |v;, v;] belongs to G.

2-clique



Clique complex 14/16 (3/6)

Let G be a graph.
We call a clique of G a set of vertices vy, ..., v, such that for every i, j € [1, m] with
i # j, the edge |v;, v;] belongs to G.

3-clique



Clique complex 14/16 (4/6)

Let G be a graph.
We call a clique of G a set of vertices vy, ..., v, such that for every i, j € [1, m] with
i # j, the edge |v;, v;] belongs to G.

-
- - o

______

4-clique



Clique complex 14/16 (5/6)

Let G be a graph.
We call a clique of G a set of vertices v1, ..., v, such that for every i, 5 € [1, m] with
i # j, the edge |v;, v;] belongs to G.

Definition: Given a graph G, the corresponding clique complex is the simplicial complex
whose

e vertices are the vertices of G,

e simplices are the sets of vertices of the cliques of G.




Clique complex 14/16 (6/6)

Let G be a graph.
We call a clique of G a set of vertices v1, ..., v, such that for every i, 5 € [1, m] with
i # j, the edge |v;, v;] belongs to G.

Definition: Given a graph G, the corresponding clique complex is the simplicial complex
whose

e vertices are the vertices of G,

e simplices are the sets of vertices of the cliques of G.

3-simplex 2-simplex

Prove that the clique complex of a graph is a simplicial complex.



Rips complex 15/16 (1/6)

Let X = {z1,...,2ny} CR™ and t > 0.

Consider the graph G* whose vertex set is {1,..., N}, and whose edges are the pairs
(¢,7) such that ||z; — z;|| < 2t.

Alternatively, G* can be seen as the 1-skeleton of the Cech complex Cecht(X).



Rips complex 15/16 (2/6)
Let X = {z1,...,2ny} CR™ and t > 0.

Consider the graph G* whose vertex set is {1,..., N}, and whose edges are the pairs
(¢,7) such that ||z; — z;|| < 2t.

Alternatively, G* can be seen as the 1-skeleton of the Cech complex Cecht(X).

X Gt Xt 4

Definition: The Rips complex of X at time t is the clique complex of the graph G*. We
denote it Rips’(X).

Gt Rips’(X)



Rips complex 15/16 (3/6)
Let X = {z1,...,2ny} CR™ and t > 0.

Consider the graph G* whose vertex set is {1,..., N}, and whose edges are the pairs
(¢,7) such that ||z; — z;|| < 2t.

Alternatively, G* can be seen as the 1-skeleton of the Cech complex Cecht(X).

X Gt Xt 4

Definition: The Rips complex of X at time t is the clique complex of the graph G*. We
denote it Rips’(X).

Gt Rips’(X) Cech’ (X)



Rips complex 15/16 (4/6)
Let X = {z1,...,2ny} CR™ and t > 0.

Consider the graph G* whose vertex set is {1,..., N}, and whose edges are the pairs
(¢,7) such that ||z; — z;|| < 2t.

Alternatively, G* can be seen as the 1-skeleton of the Cech complex Cecht(X).

X Gt Xt 4

Definition: The Rips complex of X at time t is the clique complex of the graph G*. We

denote it Rips’(X).

o=

Gt Rips’(X) Cech’ (X)




Rips complex 15/16 (5/6)

Proposition: For every t > 0, we have
Cecht(X) C Rips’(X) C CeCth(X).

Cech' (X) Rips'(X) Cech”™ (X)



Rips complex 15/16 (6/6)

Proposition: For every t > 0, we have

Cecht(X) C Rips’(X) C CeCth(X).

Cech' (X) Rips'(X) Cech”™ (X)

Let t > 0. The first inclusion follows from the fact that Rips’(X) is the clique
complex of Cecht(X).

To prove the second one, choose a simplex o € Ripst(X). Let us prove that

w € Cech™ (X).

Let x € o be any vertex. Note that Vy € o, we have ||z — y|| < 2t by definition of the
Rips complex. Hence

T € ﬂg(y,%).

yeo

The intersection being non-empty, we deduce o € Cech2t(X).



Conclusion

We considered the problem of topological inference, and studied the solution by
thickenings.

We've seen that a nice thickening exists, and that its homology can be computed via
the Cech complex.

For computational reasons, we introduced the Rips complex.

Homework: Exercise 37
Facultative: Exercises 39, 40, 41
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Let X and M be subsets of R". Suppose that M has positive reach, and that
du (X, M) < t=reach (M).
Then X* and M are homotopic equivalent, provided that

t € [4dy (X, M) ,reach (M) — 3dyg (X, M)).

Let X and M be subsets of R"™, with M a submanifold, and X a finite subset of M.

Suppose that M has positive reach.
Then X! and M are homotopic equivalent, provided that

t € [2dH (X, M), \/greach (M)) .
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Let X and M be subsets of R". Suppose that M has positive reach, and that
du (X, M) < t=reach (M).
Then X* and M are homotopic equivalent, provided that unknown in practice

te @@ 3dy (X, M)) .

Let X and M be subsets of R"™, with M a submanifold, and X a finite subset of M.

Suppose that M has positive reach.
Then X! and M are homotopic equivalent, provided that

e [y T o).



Conclusion
We considered the problem of topological inference, and studied the solution by
thickenings.

We've seen that a nice thickening exists, and that its homology can be computed via
the Cech complex.

For computational reasons, we introduced the Rips complex.

Homework: Exercise 37
Facultative: Exercises 39, 40, 41

Merci !



