EMAp Summer Course

Topological Data Analysis with Persistent Homology

https://raphaeltinarrage.github.io/EMAp.html

Lesson 7: Topological inference

Introduction

In real life, we are often given datasets that are subsets of the Euclidean space: $X \subset \mathbb{R}^{n}$.

Of course, X is finite.

Introduction

In real life, we are often given datasets that are subsets of the Euclidean space: $X \subset \mathbb{R}^{n}$.

Of course, X is finite.

In Topological Data Analysis, we think of X as being a sample of an underlying continuous object, $\mathcal{M} \subset \mathbb{R}^{n}$.

Understanding the topology of \mathcal{M} would give us interesting insights about our dataset.

I - Thickenings

II - Čech complex

III - Rips complex

The Topological Inference problem

Let $\mathcal{M} \subset \mathbb{R}^{n}$ be a bounded subset.
Suppose that we are given a finite sample $X \subset \mathcal{M}$.
Estimate the homology groups of \mathcal{M} from X.

The Topological Inference problem

Let $\mathcal{M} \subset \mathbb{R}^{n}$ be a bounded subset.
Suppose that we are given a finite sample $X \subset \mathcal{M}$.
Estimate the homology groups of \mathcal{M} from X.

We cannot use X directly. Its homology is disapointing:

The Topological Inference problem

Let $\mathcal{M} \subset \mathbb{R}^{n}$ be a bounded subset.
Suppose that we are given a finite sample $X \subset \mathcal{M}$.
Estimate the homology groups of \mathcal{M} from X.

We cannot use X directly.

Idea: Thicken X.

Definition: For every $t \geq 0$, the t-thickening of the set X, denoted X^{t}, is the set of points of the ambient space with distance at most t from X :

$$
X^{t}=\left\{y \in \mathbb{R}^{n}, \exists x \in X,\|x-y\| \leq t\right\}
$$

The Topological Inference problem

Let $\mathcal{M} \subset \mathbb{R}^{n}$ be a bounded subset.
Suppose that we are given a finite sample $X \subset \mathcal{M}$.
Estimate the homology groups of \mathcal{M} from X.

We cannot use X directly.

Idea: Thicken X.

Definition: For every $t \geq 0$, the t-thickening of the set X, denoted X^{t}, is the set of points of the ambient space with distance at most t from X :

$$
X^{t}=\left\{y \in \mathbb{R}^{n}, \exists x \in X,\|x-y\| \leq t\right\}
$$

The Topological Inference problem

Let $\mathcal{M} \subset \mathbb{R}^{n}$ be a bounded subset.
Suppose that we are given a finite sample $X \subset \mathcal{M}$.
Estimate the homology groups of \mathcal{M} from X.

We cannot use X directly.

Idea: Thicken X.

Definition: For every $t \geq 0$, the t-thickening of the set X, denoted X^{t}, is the set of points of the ambient space with distance at most t from X :

$$
X^{t}=\left\{y \in \mathbb{R}^{n}, \exists x \in X,\|x-y\| \leq t\right\}
$$

The Topological Inference problem

Let $\mathcal{M} \subset \mathbb{R}^{n}$ be a bounded subset.
Suppose that we are given a finite sample $X \subset \mathcal{M}$.
Estimate the homology groups of \mathcal{M} from X.

We cannot use X directly.

Idea: Thicken X.

Definition: For every $t \geq 0$, the t-thickening of the set X, denoted X^{t}, is the set of points of the ambient space with distance at most t from X :

$$
X^{t}=\left\{y \in \mathbb{R}^{n}, \exists x \in X,\|x-y\| \leq t\right\}
$$

The Topological Inference problem

Let $\mathcal{M} \subset \mathbb{R}^{n}$ be a bounded subset.
Suppose that we are given a finite sample $X \subset \mathcal{M}$.
Estimate the homology groups of \mathcal{M} from X.

We cannot use X directly.

Idea: Thicken X.

Definition: For every $t \geq 0$, the t-thickening of the set X, denoted X^{t}, is the set of points of the ambient space with distance at most t from X :

$$
X^{t}=\left\{y \in \mathbb{R}^{n}, \exists x \in X,\|x-y\| \leq t\right\}
$$

The Topological Inference problem

Let $\mathcal{M} \subset \mathbb{R}^{n}$ be a bounded subset.
Suppose that we are given a finite sample $X \subset \mathcal{M}$.
Estimate the homology groups of \mathcal{M} from X.

M

We cannot use X directly.

Idea: Thicken X.

Definition: For every $t \geq 0$, the t-thickening of the set X, denoted X^{t}, is the set of points of the ambient space with distance at most t from X :

$$
X^{t}=\left\{y \in \mathbb{R}^{n}, \exists x \in X,\|x-y\| \leq t\right\}
$$

The Topological Inference problem

Let $\mathcal{M} \subset \mathbb{R}^{n}$ be a bounded subset.
Suppose that we are given a finite sample $X \subset \mathcal{M}$.
Estimate the homology groups of \mathcal{M} from X.

We cannot use X directly.

Idea: Thicken X.

Definition: For every $t \geq 0$, the t-thickening of the set X, denoted X^{t}, is the set of points of the ambient space with distance at most t from X :

$$
X^{t}=\left\{y \in \mathbb{R}^{n}, \exists x \in X,\|x-y\| \leq t\right\}
$$

The Topological Inference problem

Idea: Thicken X.

Definition: For every $t \geq 0$, the t-thickening of the set X, denoted X^{t}, is the set of points of the ambient space with distance at most t from X :

$$
X^{t}=\left\{y \in \mathbb{R}^{n}, \exists x \in X,\|x-y\| \leq t\right\}
$$

The Topological Inference problem

Some thickenings are homotopy equivalent to \mathcal{M}.

Hence we can recover the homology of \mathcal{M} :

$$
\begin{aligned}
& \beta_{0}(\mathcal{M})=\beta_{0}\left(X^{0.3}\right) \\
& \beta_{1}(\mathcal{M})=\beta_{1}\left(X^{0.3}\right) \\
& \beta_{2}(\mathcal{M})=\beta_{2}\left(X^{0.3}\right)
\end{aligned}
$$

The Topological Inference problem

Some thickenings are homotopy equivalent to \mathcal{M}.

Hence we can recover the homology of \mathcal{M} :

$$
\begin{aligned}
& \beta_{0}(\mathcal{M})=\beta_{0}\left(X^{0.3}\right) \\
& \beta_{1}(\mathcal{M})=\beta_{1}\left(X^{0.3}\right) \\
& \beta_{2}(\mathcal{M})=\beta_{2}\left(X^{0.3}\right)
\end{aligned}
$$

Question 1: How to select a t such that $X^{t} \approx \mathcal{M}$?
Question 2: How to compute the homology groups of X^{t} ?

The Topological Inference problem

Some thickenings are homotopy equivalent to \mathcal{M}.

M

Hence we can recover the homology of \mathcal{M} :

$$
\begin{aligned}
& \beta_{0}(\mathcal{M})=\beta_{0}\left(X^{0.3}\right) \\
& \beta_{1}(\mathcal{M})=\beta_{1}\left(X^{0.3}\right) \\
& \beta_{2}(\mathcal{M})=\beta_{2}\left(X^{0.3}\right)
\end{aligned}
$$

Question 1: How to select a t such that $X^{t} \approx \mathcal{M}$?

Question 2: How to compute the homology groups of X^{t} ?

Hausdorff distance

Let X be any subset of \mathbb{R}^{n}. The function distance to X is the map

$$
\begin{aligned}
\operatorname{dist}(\cdot, X): \mathbb{R}^{n} & \longrightarrow \mathbb{R} \\
y & \longmapsto \operatorname{dist}(y, X)=\inf \{\|y-x\|, x \in X\}
\end{aligned}
$$

A projection of $y \in \mathbb{R}^{n}$ on X is a point $x \in X$ which attains this infimum.

Hausdorff distance

Let X be any subset of \mathbb{R}^{n}. The function distance to X is the map

$$
\begin{aligned}
\operatorname{dist}(\cdot, X): \mathbb{R}^{n} & \longrightarrow \mathbb{R} \\
y & \longmapsto \operatorname{dist}(y, X)=\inf \{\|y-x\|, x \in X\}
\end{aligned}
$$

A projection of $y \in \mathbb{R}^{n}$ on X is a point $x \in X$ which attains this infimum.
Definition: Let $Y \subset \mathbb{R}^{n}$ be another subset. The Hausdorff distance between X and Y is

$$
\begin{aligned}
\mathrm{d}_{\mathrm{H}}(X, Y) & =\max \left\{\sup _{y \in Y} \operatorname{dist}(y, X), \sup _{x \in X} \operatorname{dist}(x, Y)\right\} \\
& =\max \left\{\sup _{y \in Y} \inf _{x \in X}\|x-y\|, \sup _{x \in X} \inf _{y \in Y}\|x-y\|\right\} .
\end{aligned}
$$

Hausdorff distance

Let X be any subset of \mathbb{R}^{n}. The function distance to X is the map

$$
\begin{aligned}
\operatorname{dist}(\cdot, X): \mathbb{R}^{n} & \longrightarrow \mathbb{R} \\
y & \longmapsto \operatorname{dist}(y, X)=\inf \{\|y-x\|, x \in X\}
\end{aligned}
$$

A projection of $y \in \mathbb{R}^{n}$ on X is a point $x \in X$ which attains this infimum.
Definition: Let $Y \subset \mathbb{R}^{n}$ be another subset. The Hausdorff distance between X and Y is

$$
\begin{aligned}
\mathrm{d}_{\mathrm{H}}(X, Y) & =\max \left\{\sup _{y \in Y} \operatorname{dist}(y, X), \sup _{x \in X} \operatorname{dist}(x, Y)\right\} \\
& =\max \left\{\sup _{y \in Y} \inf _{x \in X}\|x-y\|, \sup _{x \in X} \inf _{y \in Y}\|x-y\|\right\} .
\end{aligned}
$$

Exercise: Show that the Hausdorff distance is equal to $\inf \left\{t \geq 0, X \subset Y^{t}\right.$ and $\left.Y \subset X^{t}\right\}$.

Medial axis and reach

The medial axis of X is the subset $\operatorname{med}(X) \subset \mathbb{R}^{n}$ which consists of points $y \in \mathbb{R}^{n}$ that admit at least two projections on X :

$$
\operatorname{med}(X)=\left\{y \in \mathbb{R}^{n}, \exists x, x^{\prime} \in X, x \neq x^{\prime},\|y-x\|=\left\|y-x^{\prime}\right\|=\operatorname{dist}(y, X)\right\}
$$

Medial axis and reach

The medial axis of X is the subset med $(X) \subset \mathbb{R}^{n}$ which consists of points $y \in \mathbb{R}^{n}$ that admit at least two projections on X :

$$
\operatorname{med}(X)=\left\{y \in \mathbb{R}^{n}, \exists x, x^{\prime} \in X, x \neq x^{\prime},\|y-x\|=\left\|y-x^{\prime}\right\|=\operatorname{dist}(y, X)\right\}
$$

Examples:

The medial axis of the unit circle is the origin

Medial axis and reach

The medial axis of X is the subset med $(X) \subset \mathbb{R}^{n}$ which consists of points $y \in \mathbb{R}^{n}$ that admit at least two projections on X :

$$
\operatorname{med}(X)=\left\{y \in \mathbb{R}^{n}, \exists x, x^{\prime} \in X, x \neq x^{\prime},\|y-x\|=\left\|y-x^{\prime}\right\|=\operatorname{dist}(y, X)\right\}
$$

Examples:

The medial axis of the unit circle is the origin

The medial axis of an ellipse is a segment

Medial axis and reach

The medial axis of X is the subset med $(X) \subset \mathbb{R}^{n}$ which consists of points $y \in \mathbb{R}^{n}$ that admit at least two projections on X :

$$
\operatorname{med}(X)=\left\{y \in \mathbb{R}^{n}, \exists x, x^{\prime} \in X, x \neq x^{\prime},\|y-x\|=\left\|y-x^{\prime}\right\|=\operatorname{dist}(y, X)\right\}
$$

Examples:

The medial axis of the unit circle is the origin

The medial axis of an ellipse is a segment

The medial axis of a point is the empty set

Medial axis and reach

The medial axis of X is the subset med $(X) \subset \mathbb{R}^{n}$ which consists of points $y \in \mathbb{R}^{n}$ that admit at least two projections on X :

$$
\operatorname{med}(X)=\left\{y \in \mathbb{R}^{n}, \exists x, x^{\prime} \in X, x \neq x^{\prime},\|y-x\|=\left\|y-x^{\prime}\right\|=\operatorname{dist}(y, X)\right\}
$$

Examples:

The medial axis of the unit circle is the origin

The medial axis of an ellipse is a segment

The medial axis of a point is the empty set

The medial axis of two points is their bisector

Medial axis and reach

The medial axis of X is the subset med $(X) \subset \mathbb{R}^{n}$ which consists of points $y \in \mathbb{R}^{n}$ that admit at least two projections on X :

$$
\operatorname{med}(X)=\left\{y \in \mathbb{R}^{n}, \exists x, x^{\prime} \in X, x \neq x^{\prime},\|y-x\|=\left\|y-x^{\prime}\right\|=\operatorname{dist}(y, X)\right\}
$$

The reach of X is

$$
\begin{aligned}
\operatorname{reach}(X) & =\inf \{\operatorname{dist}(y, X), y \in \operatorname{med}(X)\} \\
& =\inf \{\|x-y\|, x \in X, y \in \operatorname{med}(X)\} .
\end{aligned}
$$

Medial axis and reach

The medial axis of X is the subset med $(X) \subset \mathbb{R}^{n}$ which consists of points $y \in \mathbb{R}^{n}$ that admit at least two projections on X :

$$
\operatorname{med}(X)=\left\{y \in \mathbb{R}^{n}, \exists x, x^{\prime} \in X, x \neq x^{\prime},\|y-x\|=\left\|y-x^{\prime}\right\|=\operatorname{dist}(y, X)\right\}
$$

The reach of X is

$$
\begin{aligned}
\operatorname{reach}(X) & =\inf \{\operatorname{dist}(y, X), y \in \operatorname{med}(X)\} \\
& =\inf \{\|x-y\|, x \in X, y \in \operatorname{med}(X)\}
\end{aligned}
$$

Medial axis and reach

The medial axis of X is the subset med $(X) \subset \mathbb{R}^{n}$ which consists of points $y \in \mathbb{R}^{n}$ that admit at least two projections on X :

$$
\operatorname{med}(X)=\left\{y \in \mathbb{R}^{n}, \exists x, x^{\prime} \in X, x \neq x^{\prime},\|y-x\|=\left\|y-x^{\prime}\right\|=\operatorname{dist}(y, X)\right\}
$$

The reach of X is

$$
\begin{aligned}
\operatorname{reach}(X) & =\inf \{\operatorname{dist}(y, X), y \in \operatorname{med}(X)\} \\
& =\inf \{\|x-y\|, x \in X, y \in \operatorname{med}(X)\}
\end{aligned}
$$

Proposition: For every $t \in[0$, reach $(X))$, the spaces X and X^{t} are homotopy equivalent.

Medial axis and reach

The medial axis of X is the subset med $(X) \subset \mathbb{R}^{n}$ which consists of points $y \in \mathbb{R}^{n}$ that admit at least two projections on X :

$$
\operatorname{med}(X)=\left\{y \in \mathbb{R}^{n}, \exists x, x^{\prime} \in X, x \neq x^{\prime},\|y-x\|=\left\|y-x^{\prime}\right\|=\operatorname{dist}(y, X)\right\}
$$

The reach of X is

$$
\begin{aligned}
\operatorname{reach}(X) & =\inf \{\operatorname{dist}(y, X), y \in \operatorname{med}(X)\} \\
& =\inf \{\|x-y\|, x \in X, y \in \operatorname{med}(X)\}
\end{aligned}
$$

Proposition: For every $t \in[0$, reach $(X))$, the spaces X and X^{t} are homotopy equivalent.

Medial axis and reach

The medial axis of X is the subset med $(X) \subset \mathbb{R}^{n}$ which consists of points $y \in \mathbb{R}^{n}$ that admit at least two projections on X :

$$
\operatorname{med}(X)=\left\{y \in \mathbb{R}^{n}, \exists x, x^{\prime} \in X, x \neq x^{\prime},\|y-x\|=\left\|y-x^{\prime}\right\|=\operatorname{dist}(y, X)\right\}
$$

The reach of X is

$$
\begin{aligned}
\operatorname{reach}(X) & =\inf \{\operatorname{dist}(y, X), y \in \operatorname{med}(X)\} \\
& =\inf \{\|x-y\|, x \in X, y \in \operatorname{med}(X)\}
\end{aligned}
$$

Proposition: For every $t \in[0$, reach $(X))$, the spaces X and X^{t} are homotopy equivalent.
If $t \geq \operatorname{reach}(X)$, the sets X and X^{t} may not be homotopy equivalent.

Medial axis and reach

Proposition: For every $t \in[0$, reach $(X))$, the spaces X and X^{t} are homotopy equivalent.

Proof: For every $t \in[0$, reach $(X))$, the thickening X^{t} deform retracts onto X. A homotopy is given by the following map:

$$
\begin{aligned}
X^{t} \times[0,1] & \longrightarrow X^{t} \\
(x, t) & \longmapsto(1-t) x+t \cdot \operatorname{proj}(x, X) .
\end{aligned}
$$

Indeed, the projection $\operatorname{proj}(x, X)$ is well defined (it is unique).

Selection of the parameter t

Remember Question 1: How to select a t such that $X^{t} \approx \mathcal{M}$?

Theorem (Frédéric Chazal, David Cohen-Steiner, and André Lieutier, 2009):
Let X and \mathcal{M} be subsets of \mathbb{R}^{n}. Suppose that \mathcal{M} has positive reach, and that $\mathrm{d}_{\mathrm{H}}(X, \mathcal{M}) \leq \frac{1}{17} \operatorname{reach}(\mathcal{M})$.
Then X^{t} and \mathcal{M} are homotopic equivalent, provided that

$$
t \in\left[4 \mathrm{~d}_{\mathrm{H}}(X, \mathcal{M}), \operatorname{reach}(\mathcal{M})-3 \mathrm{~d}_{\mathrm{H}}(X, \mathcal{M})\right)
$$

Selection of the parameter t

Remember Question 1: How to select a t such that $X^{t} \approx \mathcal{M}$?

Theorem (Frédéric Chazal, David Cohen-Steiner, and André Lieutier, 2009):
Let X and \mathcal{M} be subsets of \mathbb{R}^{n}. Suppose that \mathcal{M} has positive reach, and that $\mathrm{d}_{\mathrm{H}}(X, \mathcal{M}) \leq \frac{1}{17} \operatorname{reach}(\mathcal{M})$.
Then X^{t} and \mathcal{M} are homotopic equivalent, provided that

$$
t \in\left[4 \mathrm{~d}_{\mathrm{H}}(X, \mathcal{M}), \operatorname{reach}(\mathcal{M})-3 \mathrm{~d}_{\mathrm{H}}(X, \mathcal{M})\right)
$$

Theorem (Partha Niyogi, Stephen Smale, and Shmuel Weinberger, 2008):

Let X and \mathcal{M} be subsets of \mathbb{R}^{n}, with \mathcal{M} a submanifold, and X a finite subset of \mathcal{M}.
Suppose that \mathcal{M} has positive reach.
Then X^{t} and \mathcal{M} are homotopic equivalent, provided that

$$
t \in\left[2 \mathrm{~d}_{\mathrm{H}}(X, \mathcal{M}), \sqrt{\frac{3}{5}} \operatorname{reach}(\mathcal{M})\right)
$$

I - Thickenings

II - Čech complex

> III - Rips complex

(Weak) triangulations

Let us consider Question 2: How to compute the homology groups of X^{t} ?
We must a triangulation of X^{t}, that is: a simplicial complex K homeomorphic to X.
Actually, we will define something weaker: a simplicial complex K that is homotopy equivalent to X.

(Weak) triangulations

Let us consider Question 2: How to compute the homology groups of X^{t} ?
We must a triangulation of X^{t}, that is: a simplicial complex K homeomorphic to X.
Actually, we will define something weaker: a simplicial complex K that is homotopy equivalent to X.
weak triangulation

Either case, we will have $\beta_{i}(X)=\beta_{i}(K)$ for all $i \geq 0$.

Nerves

10/16 (1/12)
Definition: Let X be a topological space, and $\mathcal{U}=\left\{U_{i}\right\}_{1 \leq i \leq N}$ a cover of X, that is, a collection of subsets $U_{i} \subset X$ such that

$$
\bigcup_{1 \leq i \leq N} U_{i}=X
$$

The nerve of \mathcal{U} is the simplicial complex with vertex set $\{1, \ldots, N\}$ and whose m-simplices are the subsets $\left\{i_{1}, \ldots, i_{m}\right\} \subset\{1, \ldots, N\}$ such that $\bigcap_{k=0}^{m} U_{i_{k}} \neq \emptyset$. It is denoted $\mathcal{N}(\mathcal{U})$.

Nerves

10/16 (2/12)

Definition: Let X be a topological space, and $\mathcal{U}=\left\{U_{i}\right\}_{1 \leq i \leq N}$ a cover of X, that is, a collection of subsets $U_{i} \subset X$ such that

$$
\bigcup_{1 \leq i \leq N} U_{i}=X
$$

The nerve of \mathcal{U} is the simplicial complex with vertex set $\{1, \ldots, N\}$ and whose m-simplices are the subsets $\left\{i_{1}, \ldots, i_{m}\right\} \subset\{1, \ldots, N\}$ such that $\bigcap_{k=0}^{m} U_{i_{k}} \neq \emptyset$. It is denoted $\mathcal{N}(\mathcal{U})$.

Nerves

10/16 (3/12)
Definition: Let X be a topological space, and $\mathcal{U}=\left\{U_{i}\right\}_{1 \leq i \leq N}$ a cover of X, that is, a collection of subsets $U_{i} \subset X$ such that

$$
\bigcup_{1 \leq i \leq N} U_{i}=X
$$

The nerve of \mathcal{U} is the simplicial complex with vertex set $\{1, \ldots, N\}$ and whose m-simplices are the subsets $\left\{i_{1}, \ldots, i_{m}\right\} \subset\{1, \ldots, N\}$ such that $\bigcap_{k=0}^{m} U_{i_{k}} \neq \emptyset$. It is denoted $\mathcal{N}(\mathcal{U})$.

4

Nerves

10/16 (4/12)
Definition: Let X be a topological space, and $\mathcal{U}=\left\{U_{i}\right\}_{1 \leq i \leq N}$ a cover of X, that is, a collection of subsets $U_{i} \subset X$ such that

$$
\bigcup_{\leq i \leq N} U_{i}=X
$$

The nerve of \mathcal{U} is the simplicial complex with vertex set $\{1, \ldots, N\}$ and whose m-simplices are the subsets $\left\{i_{1}, \ldots, i_{m}\right\} \subset\{1, \ldots, N\}$ such that $\bigcap_{k=0}^{m} U_{i_{k}} \neq \emptyset$. It is denoted $\mathcal{N}(\mathcal{U})$.

Nerves

$10 / 16(5 / 12)$
Definition: Let X be a topological space, and $\mathcal{U}=\left\{U_{i}\right\}_{1 \leq i \leq N}$ a cover of X, that is, a collection of subsets $U_{i} \subset X$ such that

$$
\bigcup_{1 \leq i \leq N} U_{i}=X
$$

The nerve of \mathcal{U} is the simplicial complex with vertex set $\{1, \ldots, N\}$ and whose m-simplices are the subsets $\left\{i_{1}, \ldots, i_{m}\right\} \subset\{1, \ldots, N\}$ such that $\bigcap_{k=0}^{m} U_{i_{k}} \neq \emptyset$. It is denoted $\mathcal{N}(\mathcal{U})$.

Nerves

10/16 (6/12)
Definition: Let X be a topological space, and $\mathcal{U}=\left\{U_{i}\right\}_{1 \leq i \leq N}$ a cover of X, that is, a collection of subsets $U_{i} \subset X$ such that

$$
\bigcup_{1 \leq i \leq N} U_{i}=X
$$

The nerve of \mathcal{U} is the simplicial complex with vertex set $\{1, \ldots, N\}$ and whose m-simplices are the subsets $\left\{i_{1}, \ldots, i_{m}\right\} \subset\{1, \ldots, N\}$ such that $\bigcap_{k=0}^{m} U_{i_{k}} \neq \emptyset$. It is denoted $\mathcal{N}(\mathcal{U})$.

Nerves

10/16 (7/12)
Definition: Let X be a topological space, and $\mathcal{U}=\left\{U_{i}\right\}_{1 \leq i \leq N}$ a cover of X, that is, a collection of subsets $U_{i} \subset X$ such that

$$
\bigcup_{1 \leq i \leq N} U_{i}=X
$$

The nerve of \mathcal{U} is the simplicial complex with vertex set $\{1, \ldots, N\}$ and whose m-simplices are the subsets $\left\{i_{1}, \ldots, i_{m}\right\} \subset\{1, \ldots, N\}$ such that $\bigcap_{k=0}^{m} U_{i_{k}} \neq \emptyset$. It is denoted $\mathcal{N}(\mathcal{U})$.

Nerves

Definition: Let X be a topological space, and $\mathcal{U}=\left\{U_{i}\right\}_{1 \leq i \leq N}$ a cover of X, that is, a collection of subsets $U_{i} \subset X$ such that

$$
\bigcup_{1 \leq i \leq N} U_{i}=X
$$

The nerve of \mathcal{U} is the simplicial complex with vertex set $\{1, \ldots, N\}$ and whose m-simplices are the subsets $\left\{i_{1}, \ldots, i_{m}\right\} \subset\{1, \ldots, N\}$ such that $\bigcap_{k=0}^{m} U_{i_{k}} \neq \emptyset$. It is denoted $\mathcal{N}(\mathcal{U})$.

$$
X^{0.2}=\bigcup_{x \in X} \overline{\mathcal{B}}(x, 0.2) \text { is covered by } \mathcal{U}=\{\overline{\mathcal{B}}(x, 0.2), x \in X\}
$$

Nerves

Definition: Let X be a topological space, and $\mathcal{U}=\left\{U_{i}\right\}_{1 \leq i \leq N}$ a cover of X, that is, a collection of subsets $U_{i} \subset X$ such that

$$
\bigcup_{1 \leq i \leq N} U_{i}=X
$$

The nerve of \mathcal{U} is the simplicial complex with vertex set $\{1, \ldots, N\}$ and whose m-simplices are the subsets $\left\{i_{1}, \ldots, i_{m}\right\} \subset\{1, \ldots, N\}$ such that $\bigcap_{k=0}^{m} U_{i_{k}} \neq \emptyset$. It is denoted $\mathcal{N}(\mathcal{U})$.

$$
X^{0.2}=\bigcup_{x \in X} \overline{\mathcal{B}}(x, 0.2) \text { is covered by } \mathcal{U}=\{\overline{\mathcal{B}}(x, 0.2), x \in X\}
$$

Nerves

Definition: Let X be a topological space, and $\mathcal{U}=\left\{U_{i}\right\}_{1 \leq i \leq N}$ a cover of X, that is, a collection of subsets $U_{i} \subset X$ such that

$$
\bigcup_{1 \leq i \leq N} U_{i}=X
$$

The nerve of \mathcal{U} is the simplicial complex with vertex set $\{1, \ldots, N\}$ and whose m-simplices are the subsets $\left\{i_{1}, \ldots, i_{m}\right\} \subset\{1, \ldots, N\}$ such that $\bigcap_{k=0}^{m} U_{i_{k}} \neq \emptyset$. It is denoted $\mathcal{N}(\mathcal{U})$.

$$
X^{0.3}=\bigcup_{x \in X} \overline{\mathcal{B}}(x, 0.3) \text { is covered by } \mathcal{U}=\{\overline{\mathcal{B}}(x, 0.3), x \in X\}
$$

Nerves

Definition: Let X be a topological space, and $\mathcal{U}=\left\{U_{i}\right\}_{1 \leq i \leq N}$ a cover of X, that is, a collection of subsets $U_{i} \subset X$ such that

$$
\bigcup_{1 \leq i \leq N} U_{i}=X
$$

The nerve of \mathcal{U} is the simplicial complex with vertex set $\{1, \ldots, N\}$ and whose m-simplices are the subsets $\left\{i_{1}, \ldots, i_{m}\right\} \subset\{1, \ldots, N\}$ such that $\bigcap_{k=0}^{m} U_{i_{k}} \neq \emptyset$. It is denoted $\mathcal{N}(\mathcal{U})$.

$$
X^{0.3}=\bigcup_{x \in X} \overline{\mathcal{B}}(x, 0.3) \text { is covered by } \mathcal{U}=\{\overline{\mathcal{B}}(x, 0.3), x \in X\}
$$

Nerves

Definition: Let X be a topological space, and $\mathcal{U}=\left\{U_{i}\right\}_{1 \leq i \leq N}$ a cover of X, that is, a collection of subsets $U_{i} \subset X$ such that

$$
\bigcup_{\leq i \leq N} U_{i}=X
$$

The nerve of \mathcal{U} is the simplicial complex with vertex set $\{1, \ldots, N\}$ and whose m-simplices are the subsets $\left\{i_{1}, \ldots, i_{m}\right\} \subset\{1, \ldots, N\}$ such that $\bigcap_{k=0}^{m} U_{i_{k}} \neq \emptyset$. It is denoted $\mathcal{N}(\mathcal{U})$.

Nerve theorem: Consider $X \subset \mathbb{R}^{n}$. Suppose that each U_{i} are balls (or more generally, closed and convex). Then $\mathcal{N}(\mathcal{U})$ is homotopy equivalent to X.

Čech complex

Let X be a finite subset of \mathbb{R}^{n}, and $t \geq 0$. Consider the collection

$$
\mathcal{V}^{t}=\{\overline{\mathcal{B}}(x, t), x \in X\} .
$$

This is a cover of the thickening X^{t}, and each components are closed balls. By Nerve Theorem, its nerve $\mathcal{N}\left(\mathcal{V}^{t}\right)$ has the homotopy type of X^{t}.

Definition: This nerve is denoted Čech ${ }^{t}(X)$ and is called the Čech complex of X at time t.

Čech complex

Let X be a finite subset of \mathbb{R}^{n}, and $t \geq 0$. Consider the collection

$$
\mathcal{V}^{t}=\{\overline{\mathcal{B}}(x, t), x \in X\} .
$$

This is a cover of the thickening X^{t}, and each components are closed balls. By Nerve Theorem, its nerve $\mathcal{N}\left(\mathcal{V}^{t}\right)$ has the homotopy type of X^{t}.

Definition: This nerve is denoted Cech $^{t}(X)$ and is called the Čech complex of X at time t.

\longrightarrow The Question 2 (How to compute the homology groups of X^{t} ?) is solved.

I - Thickenings

II - Čech complex

III - Rips complex

Computation of the Čech complex

Let $X=\left\{x_{1}, \ldots, x_{N}\right\} \subset \mathbb{R}^{n}$ be finite, let $t \geq 0$ and consider the t-thickening

$$
X^{t}=\bigcup_{x \in X} \overline{\mathcal{B}}(x, t) .
$$

By definition, its nerve, Čech ${ }^{t}(X)$, the Čech complex at time t, is a simplicial complex on the vertices $\{1, \ldots, N\}$ whose simplices are the subsets $\left\{i_{1}, \ldots, i_{m}\right\}$ such that

$$
\bigcap_{1 \leq k \leq m} \overline{\mathcal{B}}\left(x_{i_{k}}, t\right) \neq \emptyset
$$

Computation of the Čech complex

Let $X=\left\{x_{1}, \ldots, x_{N}\right\} \subset \mathbb{R}^{n}$ be finite, let $t \geq 0$ and consider the t-thickening

$$
X^{t}=\bigcup_{x \in X} \overline{\mathcal{B}}(x, t) .
$$

By definition, its nerve, Čech $^{t}(X)$, the Čech complex at time t, is a simplicial complex on the vertices $\{1, \ldots, N\}$ whose simplices are the subsets $\left\{i_{1}, \ldots, i_{m}\right\}$ such that

$$
\bigcap_{1 \leq k \leq m} \overline{\mathcal{B}}\left(x_{i_{k}}, t\right) \neq \emptyset
$$

Therefore, computing the Čech complex relies on the following geometric predicate:
Given m closed balls of \mathbb{R}^{n}, do they intersect?
This problem is known as the smallest circle problem. It can can be solved in $O(m)$ time, where m is the number of points.

Computation of the Čech complex

Let $X=\left\{x_{1}, \ldots, x_{N}\right\} \subset \mathbb{R}^{n}$ be finite, let $t \geq 0$ and consider the t-thickening

$$
X^{t}=\bigcup_{x \in X} \overline{\mathcal{B}}(x, t) .
$$

By definition, its nerve, Čech $^{t}(X)$, the Čech complex at time t, is a simplicial complex on the vertices $\{1, \ldots, N\}$ whose simplices are the subsets $\left\{i_{1}, \ldots, i_{m}\right\}$ such that

$$
\bigcap_{1 \leq k \leq m} \overline{\mathcal{B}}\left(x_{i_{k}}, t\right) \neq \emptyset
$$

Therefore, computing the Čech complex relies on the following geometric predicate:
Given m closed balls of \mathbb{R}^{n}, do they intersect?
This problem is known as the smallest circle problem. It can can be solved in $O(m)$ time, where m is the number of points.
\longrightarrow in practice, we prefer a more simple version

Clique complex

Let G be a graph.
We call a clique of G a set of vertices v_{1}, \ldots, v_{m} such that for every $i, j \in \llbracket 1, m \rrbracket$ with $i \neq j$, the edge $\left[v_{i}, v_{j}\right]$ belongs to G.

Clique complex

Let G be a graph.
We call a clique of G a set of vertices v_{1}, \ldots, v_{m} such that for every $i, j \in \llbracket 1, m \rrbracket$ with $i \neq j$, the edge $\left[v_{i}, v_{j}\right]$ belongs to G.

Clique complex

Let G be a graph.
We call a clique of G a set of vertices v_{1}, \ldots, v_{m} such that for every $i, j \in \llbracket 1, m \rrbracket$ with $i \neq j$, the edge $\left[v_{i}, v_{j}\right]$ belongs to G.

Clique complex

Let G be a graph.
We call a clique of G a set of vertices v_{1}, \ldots, v_{m} such that for every $i, j \in \llbracket 1, m \rrbracket$ with $i \neq j$, the edge $\left[v_{i}, v_{j}\right]$ belongs to G.

Clique complex

Let G be a graph.
We call a clique of G a set of vertices v_{1}, \ldots, v_{m} such that for every $i, j \in \llbracket 1, m \rrbracket$ with $i \neq j$, the edge $\left[v_{i}, v_{j}\right]$ belongs to G.

Definition: Given a graph G, the corresponding clique complex is the simplicial complex whose

- vertices are the vertices of G,
- simplices are the sets of vertices of the cliques of G.

Clique complex

Let G be a graph.
We call a clique of G a set of vertices v_{1}, \ldots, v_{m} such that for every $i, j \in \llbracket 1, m \rrbracket$ with $i \neq j$, the edge $\left[v_{i}, v_{j}\right]$ belongs to G.

Definition: Given a graph G, the corresponding clique complex is the simplicial complex whose

- vertices are the vertices of G,
- simplices are the sets of vertices of the cliques of G.

Exercise: Prove that the clique complex of a graph is a simplicial complex.

Rips complex

Let $X=\left\{x_{1}, \ldots, x_{N}\right\} \subset \mathbb{R}^{n}$ and $t \geq 0$.
Consider the graph G^{t} whose vertex set is $\{1, \ldots, N\}$, and whose edges are the pairs (i, j) such that $\left\|x_{i}-x_{j}\right\| \leq 2 t$.
Alternatively, G^{t} can be seen as the 1-skeleton of the Čech complex Čech ${ }^{t}(X)$.

Rips complex

Let $X=\left\{x_{1}, \ldots, x_{N}\right\} \subset \mathbb{R}^{n}$ and $t \geq 0$.
Consider the graph G^{t} whose vertex set is $\{1, \ldots, N\}$, and whose edges are the pairs (i, j) such that $\left\|x_{i}-x_{j}\right\| \leq 2 t$.
Alternatively, G^{t} can be seen as the 1-skeleton of the Čech complex Čech ${ }^{t}(X)$.

Definition: The Rips complex of X at time t is the clique complex of the graph G^{t}. We denote it $\operatorname{Rips}^{t}(X)$.

$\operatorname{Rips}^{t}(X)$

Rips complex

Let $X=\left\{x_{1}, \ldots, x_{N}\right\} \subset \mathbb{R}^{n}$ and $t \geq 0$.
Consider the graph G^{t} whose vertex set is $\{1, \ldots, N\}$, and whose edges are the pairs (i, j) such that $\left\|x_{i}-x_{j}\right\| \leq 2 t$.
Alternatively, G^{t} can be seen as the 1-skeleton of the Čech complex Čech ${ }^{t}(X)$.

Definition: The Rips complex of X at time t is the clique complex of the graph G^{t}. We denote it $\operatorname{Rips}^{t}(X)$.

Rips complex

Let $X=\left\{x_{1}, \ldots, x_{N}\right\} \subset \mathbb{R}^{n}$ and $t \geq 0$.
Consider the graph G^{t} whose vertex set is $\{1, \ldots, N\}$, and whose edges are the pairs (i, j) such that $\left\|x_{i}-x_{j}\right\| \leq 2 t$.
Alternatively, G^{t} can be seen as the 1-skeleton of the Čech complex Čech ${ }^{t}(X)$.

Definition: The Rips complex of X at time t is the clique complex of the graph G^{t}. We denote it $\operatorname{Rips}^{t}(X)$.

Rips complex

Proposition: For every $t \geq 0$, we have

$$
\check{\operatorname{Cech}}^{t}(X) \subset \operatorname{Rips}^{t}(X) \subset \operatorname{Cech}^{2 t}(X)
$$

都

Čech $^{2 t}(X)$

Rips complex

Proposition: For every $t \geq 0$, we have

$$
\check{\operatorname{Cech}}^{t}(X) \subset \operatorname{Rips}^{t}(X) \subset \operatorname{Cech}^{2 t}(X)
$$

Proof: Let $t \geq 0$. The first inclusion follows from the fact that $\operatorname{Rips}^{t}(X)$ is the clique complex of $\operatorname{Cech}^{t}(X)$.
To prove the second one, choose a simplex $\sigma \in \operatorname{Rips}^{t}(X)$. Let us prove that $\omega \in$ Cech $^{2 t}(X)$.
Let $x \in \sigma$ be any vertex. Note that $\forall y \in \sigma$, we have $\|x-y\| \leq 2 t$ by definition of the Rips complex. Hence

$$
x \in \bigcap_{y \in \sigma} \overline{\mathcal{B}}(y, 2 t)
$$

The intersection being non-empty, we deduce $\sigma \in$ Čech $^{2 t}(X)$.

Conclusion

We considered the problem of topological inference, and studied the solution by thickenings.

We've seen that a nice thickening exists, and that its homology can be computed via the Čech complex.

For computational reasons, we introduced the Rips complex.

Homework: Exercise 37
Facultative: Exercises 39, 40, 41

Conclusion

We considered the problem of topological inference, and studied the solution by thickenings.

We've seen that a nice thickening exists, and that its homology can be computed via the Čech complex.

For computational reasons, we introduced the Rips complex.

Theorem (Frédéric Chazal, David Cohen-Steiner, and André Lieutier, 2009):

Let X and \mathcal{M} be subsets of \mathbb{R}^{n}. Suppose that \mathcal{M} has positive reach, and that $\mathrm{d}_{\mathrm{H}}(X, \mathcal{M}) \leq \frac{1}{17} \operatorname{reach}(\mathcal{M})$.
Then X^{t} and \mathcal{M} are homotopic equivalent, provided that

$$
t \in\left[4 \mathrm{~d}_{\mathrm{H}}(X, \mathcal{M}), \operatorname{reach}(\mathcal{M})-3 \mathrm{~d}_{\mathrm{H}}(X, \mathcal{M})\right)
$$

Theorem (Partha Niyogi, Stephen Smale, and Shmuel Weinberger, 2008):
Let X and \mathcal{M} be subsets of \mathbb{R}^{n}, with \mathcal{M} a submanifold, and X a finite subset of \mathcal{M}.
Suppose that \mathcal{M} has positive reach.
Then X^{t} and \mathcal{M} are homotopic equivalent, provided that

$$
t \in\left[2 \mathrm{~d}_{\mathrm{H}}(X, \mathcal{M}), \sqrt{\frac{3}{5}} \operatorname{reach}(\mathcal{M})\right) .
$$

Conclusion

We considered the problem of topological inference, and studied the solution by thickenings.
We've seen that a nice thickening exists, and that its homology can be computed via the Czech complex.

For computational reasons, we introduced the Rips complex.

Theorem (Frédéric Chazal, David Cohen-Steiner, and André Lieutier, 2009):
Let X and \mathcal{M} be subsets of \mathbb{R}^{n}. Suppose that \mathcal{M} has positive reach, and that $\mathrm{d}_{\mathrm{H}}(X, \mathcal{M}) \leq \frac{1}{17} \operatorname{reach}(\mathcal{M})$.
Then X^{t} and \mathcal{M} are homotopic equivalent, provided that

$$
t \in\left[\mathrm{~d}_{\mathrm{H}}(X, \mathcal{M}) \text { reach }(\mathcal{M})-3 \mathrm{~d}_{\mathrm{H}}(X, \mathcal{M})\right) \text {. }
$$

Theorem (Partha Niyogi, Stephen Smale, and Shmuel Weinberger, 2008):
Let X and \mathcal{M} be subsets of \mathbb{R}^{n}, with \mathcal{M} a submanifold, and X a finite subset of \mathcal{M}.
Suppose that \mathcal{M} has positive reach.
Then X^{t} and \mathcal{M} are homotopic equivalent, provided that

$$
t \in\left[2\left(\mathrm{~d}_{\mathrm{H}}(X, \mathcal{M}), \sqrt{\frac{3}{5}} \text { reach }(\mathcal{M})\right) .\right.
$$

Conclusion

We considered the problem of topological inference, and studied the solution by thickenings.

We've seen that a nice thickening exists, and that its homology can be computed via the Čech complex.

For computational reasons, we introduced the Rips complex.

Homework: Exercise 37
Facultative: Exercises 39, 40, 41

Merci !

