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2/15 (1/2)Introduction

Yesterday we have defined

. . .
∂n+2

−−−−−→Cn+1(K)
∂n+1

−−−−−→Cn(K)
∂n

−−−−−→Cn−1(K)
∂n−1

−−−−−→ . . .

Zn(K) = Ker(∂n)

Bn(K) = Im(∂n+1)

Hn(K) = Zn(K)/Bn(K)

chain complex

n-cycles

n-boundaries

nth homology group
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Hn(K) = Zn(K)/Bn(K)

chain complex

n-cycles

n-boundaries

nth homology group

Today’s objectives: what do they represent?how to compute them?
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I - Incremental algorithm

II - Applications

III - Matrix algorithm



4/15Ordering the simplicial complex

Let K be a simplicial complex with n simplices. Choose a total order of the simplices

σ1 < σ2 < ... < σn

such that
∀σ, τ ∈ K, τ ( σ =⇒ τ < σ.

In other words, a face of a simplex is lower than the simplex itself.
For every i ≤ n, consider the simplicial complex

Ki = {σ1, ..., σi}.

We have ∀i ≤ n,Ki+1 = Ki ∪
{
σi+1

}
, and Kn = K. They form an inscreasing

sequence of simplicial complexes

K1 ⊂ K2 ⊂ ... ⊂ Kn.

K1 K2 K3 K4 K5 K6 K7 K8

K K

K9 K10

K1 K2 K3 K4 K5 K6 K7 K8 K9 K10



5/15 (1/8)Positivity of simplices

Let k ≥ 0. We will compute the homology groups of Ki incrementally:

K1 K2 K3 K4 K5 K6 K7 K8 K9 K10

Hk(K1), Hk(K2), Hk(K3), Hk(K4), Hk(K5), Hk(K6), Hk(K7), Hk(K8), Hk(K9), Hk(K10)



5/15 (2/8)Positivity of simplices

Let k ≥ 0. We will compute the homology groups of Ki incrementally:

K1 K2 K3 K4 K5 K6 K7 K8 K9 K10

Hk(K1), Hk(K2), Hk(K3), Hk(K4), Hk(K5), Hk(K6), Hk(K7), Hk(K8), Hk(K9), Hk(K10)

Definition: Let i ∈ J1, nK, and d = dim(σi). Recall that Ki = Ki−1 ∪ {σi}.
The simplex σi is positive if there exists a cycle c ∈ Zd(Ki) that contains σi.
In other words, there exist c =

∑
σ∈Ki

(n)
εσ · σ ∈ Cn(Ki) such that εσi = 1 and

∂n(c) = 0. Otherwise, σi is negative.

Example:
σ1 ∈ K1 is positive because it is included in the cycle c = σ1 (indeed, ∂0(σ1) = 0).



5/15 (3/8)Positivity of simplices

Let k ≥ 0. We will compute the homology groups of Ki incrementally:

K1 K2 K3 K4 K5 K6 K7 K8 K9 K10

Hk(K1), Hk(K2), Hk(K3), Hk(K4), Hk(K5), Hk(K6), Hk(K7), Hk(K8), Hk(K9), Hk(K10)

Definition: Let i ∈ J1, nK, and d = dim(σi). Recall that Ki = Ki−1 ∪ {σi}.
The simplex σi is positive if there exists a cycle c ∈ Zd(Ki) that contains σi.
In other words, there exist c =

∑
σ∈Ki

(n)
εσ · σ ∈ Cn(Ki) such that εσi = 1 and

∂n(c) = 0. Otherwise, σi is negative.

Example:
σ1 ∈ K1 is positive because it is included in the cycle c = σ1 (indeed, ∂0(σ1) = 0).

σ2 ∈ K2 is positive because it is included in the cycle c = σ2 (indeed, ∂0(σ2) = 0).



5/15 (4/8)Positivity of simplices

Let k ≥ 0. We will compute the homology groups of Ki incrementally:

K1 K2 K3 K4 K5 K6 K7 K8 K9 K10

Hk(K1), Hk(K2), Hk(K3), Hk(K4), Hk(K5), Hk(K6), Hk(K7), Hk(K8), Hk(K9), Hk(K10)

Definition: Let i ∈ J1, nK, and d = dim(σi). Recall that Ki = Ki−1 ∪ {σi}.
The simplex σi is positive if there exists a cycle c ∈ Zd(Ki) that contains σi.
In other words, there exist c =

∑
σ∈Ki

(n)
εσ · σ ∈ Cn(Ki) such that εσi = 1 and

∂n(c) = 0. Otherwise, σi is negative.

Example:
σ1 ∈ K1 is positive because it is included in the cycle c = σ1 (indeed, ∂0(σ1) = 0).

σ2 ∈ K2 is positive because it is included in the cycle c = σ2 (indeed, ∂0(σ2) = 0).

σ6 ∈ K5 is negative because it is not included in a cycle Z1(K5). Indeed, C1(K5)
only contains 0 and σ5, and ∂1(σ5) = σ1 + σ2 6= 0.



5/15 (5/8)Positivity of simplices

Let k ≥ 0. We will compute the homology groups of Ki incrementally:

K1 K2 K3 K4 K5 K6 K7 K8 K9 K10

Hk(K1), Hk(K2), Hk(K3), Hk(K4), Hk(K5), Hk(K6), Hk(K7), Hk(K8), Hk(K9), Hk(K10)

Definition: Let i ∈ J1, nK, and d = dim(σi). Recall that Ki = Ki−1 ∪ {σi}.
The simplex σi is positive if there exists a cycle c ∈ Zd(Ki) that contains σi.
In other words, there exist c =

∑
σ∈Ki

(n)
εσ · σ ∈ Cn(Ki) such that εσi = 1 and

∂n(c) = 0. Otherwise, σi is negative.

Example:
σ1 ∈ K1 is positive because it is included in the cycle c = σ1 (indeed, ∂0(σ1) = 0).

σ2 ∈ K2 is positive because it is included in the cycle c = σ2 (indeed, ∂0(σ2) = 0).

σ6 ∈ K5 is negative because it is not included in a cycle Z1(K5). Indeed, C1(K5)
only contains 0 and σ5, and ∂1(σ5) = σ1 + σ2 6= 0.

σ8 ∈ K8 is positive because it is included in the cycle c = σ5 + σ6 + σ7 + σ8

(indeed, ∂1(c) = 2σ1 + 2σ2 + 2σ3 + 2σ4 = 0).



5/15 (6/8)Positivity of simplices

Definition: Let i ∈ J1, nK, and d = dim(σi). Recall that Ki = Ki−1 ∪ {σi}.
The simplex σi is positive if there exists a cycle c ∈ Zd(Ki) that contains σi.
Otherwise, σi is negative.

Remark: By adding σi in the simplicial complex, the only groups that may change are
Zd(K

i) and Bd−1(Ki).



5/15 (7/8)Positivity of simplices

Definition: Let i ∈ J1, nK, and d = dim(σi). Recall that Ki = Ki−1 ∪ {σi}.
The simplex σi is positive if there exists a cycle c ∈ Zd(Ki) that contains σi.
Otherwise, σi is negative.

Lemma: If σi is positive, then βd(K
i) = βd(K

i−1) + 1,
and for all d′ 6= d, βd′(K

i) = βd′(K
i−1).

Proof: We start by proving the following fact: if c ∈ Zd(Ki) is a cycle that contains σi,
then c is not homologous (in Ki) to a cycle of c′ ∈ Zd(Ki−1).

By contradiction: if c = c′ + b with c′ ∈ Zd(Ki−1) and b ∈ Bd(Ki), then
c− c′ = b ∈ Bd(Ki). This is absurd because we just added σi: it cannot appear in a
boundary of Ki.

As a consequence, dimZd(K
i) = dimZd(K

i−1) + 1.

We conclude by using the relation βd(K
i) = dimZd(K

i)− dimBd(K
i).

Remark: By adding σi in the simplicial complex, the only groups that may change are
Zd(K

i) and Bd−1(Ki).
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Definition: Let i ∈ J1, nK, and d = dim(σi). Recall that Ki = Ki−1 ∪ {σi}.
The simplex σi is positive if there exists a cycle c ∈ Zd(Ki) that contains σi.
Otherwise, σi is negative.

Remark: By adding σi in the simplicial complex, the only groups that may change are
Zd(K

i) and Bd−1(Ki).

Lemma: If σi is negative, then βd−1(Ki) = βd−1(Ki−1)− 1,
and for all d′ 6= d− 1, βd′(K

i) = βd′(K
i−1).

Proof: We start by proving the following fact: ∂d(σ
i) is not a boundary of Ki−1.

Otherwise, we would have ∂d(σ
i) = ∂d(c) with c ∈ Cd(Ki−1), i.e. ∂d(σ

i + c) = 0.
Hence σi + c would be a cycle of Ki that contains c, contradicting the negativity of σi.

As a consequence, dimBd−1(Ki) = dimBd−1(Ki−1) + 1.

We conclude by using the relation βd−1(Ki) = dimZd−1(Ki)− dimBd−1(Ki).



6/15 (1/2)Incremental algorithm

We deduce the following algorithm:

Lemma: If σi is positive, then βd(K
i) = βd(K

i−1) + 1,
and for all d′ 6= d, βd′(K

i) = βd′(K
i−1).

Lemma: If σi is negative, then βd−1(Ki) = βd−1(Ki−1)− 1,
and for all d′ 6= d− 1, βd′(K

i) = βd′(K
i−1).



6/15 (2/2)Incremental algorithm

We deduce the following algorithm:

K1 K2 K3 K4 K5 K6 K7 K8 K9 K10

Positivity

β0(Ki)

β1(Ki)

0 0 0 0 1 11 1 1 2

1 2 3 4 1 13 2 1 1

Dimension

0 0 0 0 1 20 0 0 1

+ + + + + +− − − −
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8/15 (1/3)Number of connected components

Proposition: Let X be a (triangulable) topological space. Then its 0th Betti number,
β0(X), is equal to the number of connected components of X.

K

Let K be a triangulation of X.



8/15 (2/3)Number of connected components

Proposition: Let X be a (triangulable) topological space. Then its 0th Betti number,
β0(X), is equal to the number of connected components of X.

First, a definition: say that a simplicial complex L is combinatorially connected of for
every vertex v, w of L, there exists a sequence of edges that connects v and w:

[v, v1], [v1, v2], [v2, v3], ..., [vn, w].

Let m be the number of connected components X, and let K be triangulation of X.
We accept the following equivalent statement: there exists m disjoint, non-empty and
combinatorially connected simplicial sub-complex L1, ..., Lm of K such that

K =
⋃

1≤i≤m

Li.

K

Let K be a triangulation of X.



8/15 (3/3)Number of connected components

Proposition: Let X be a (triangulable) topological space. Then its 0th Betti number,
β0(X), is equal to the number of connected components of X.

Proof: Let T be a spanning forest of K, that is, a union of spanning trees. It admits m
combinatorially connected components.

Consider an ordering of the simplices of K that begins with an ordering of T .

Apply the incremental algorithm. Each vertex increases β0 by 1.

Since T is a tree, all its edges are negative simplices (T has no cycles), hence decrease
β0. Each tree of the forest contains k − 1 edges, where k is the number of vertices of
the corresponding component.

Since T is a spanning tree, each other edges of K is positive, hence β0 does not change.
Similarly, the other simplices of K do not change β0. We deduce the result.

K T

Let K be a triangulation of X.



9/15 (1/3)Homology of spheres

For any n ≥ 1, consider the vertex set V = {0, . . . , n}, and the simplicial complex

∆n = {S ⊂ V, S 6= ∅}.

We call it the simplicial standard n-simplex. Define its boundary as

∂∆n = ∆n \ V.

The simplicial complex ∂∆n is a triangulation of the (n− 1)-sphere Sn−1 ⊂ Rn.

As a consequence, for all i ≥ 0, Hi(Sn) = Hi(∂∆n+1).

∂∆2 ∆3∆2
∂∆3



9/15 (2/3)Homology of spheres

For any n ≥ 1, consider the vertex set V = {0, . . . , n}, and the simplicial complex

∆n = {S ⊂ V, S 6= ∅}.

We call it the simplicial standard n-simplex. Define its boundary as

∂∆n = ∆n \ V.

The simplicial complex ∂∆n is a triangulation of the (n− 1)-sphere Sn−1 ⊂ Rn.

As a consequence, for all i ≥ 0, Hi(Sn) = Hi(∂∆n+1).

∂∆2 ∆3

Proposition: The Betti numbers of Sn are:
• βi(Sn) = 1 for i = 0 or n,
• βi(Sn) = 0 else.

∆2
∂∆3



9/15 (3/3)Homology of spheres

∂∆2 ∆3

Proposition: The Betti numbers of Sn are:
• βi(Sn) = 1 for i = 0 or n,
• βi(Sn) = 0 else.

Proof: Consider the simplicial standard n-simplex ∆n. It is homotopy equivalent to a
point (its topological realization deform retracts on any point of it). Hence ∆n has the
same Betti numbers as the point:
• β1(∆n) = 1,
• βi(∆n) = 0 for i > 0.

Now, if we run the incremental algorithm for homology on ∆n, but stopping before
adding the n-simplex V , we would obtain the Betti numbers of ∂∆n.

Note that the n-simplex is negative. Hence
• βn(∂∆n) = βn(∆n) + 1,
• βi(∂∆n) = βi(∆n) for i 6= n.

∆2
∂∆3



10/15Invariance of domain

Theorem (Invariance of Domain): For every integers m,n such that m 6= n, the spaces
Rn and Rm are not homeomorphic.

Proof: Let m,n such that m 6= n. By contradiction, suppose that Rn and Rm are
homeomorphic via f .

Let 0 denote the origin of Rn. By restriction, we get a homeomorphism

Rn \ {0} → Rm \ {f(0)}.

We deduce the following weaker statement: Rn \ {0} and Rm \ {f(0)} are homotopic
equivalent.

We deduce that the sphere Sn−1 and Sm−1 are homotopic equivalent.

Hence Sn−1 and Sm−1 must admit the same homology groups. This contradict the
previous proposition.



11/15 (1/2)Euler characteristic

Proposition: Let X be a (triangulable) topological space. Then its Euler characteristic is
equal to

χ(X) =
∑

0≤i≤n

(−1)i · βi(X)

where n is the maximal integer such that βi(X) 6= 0.

Reminder: the Euler characteristic of a simplicial complex K is

χ(K) =
∑

0≤i≤n

(−1)i · (number of simplices of dimension i).



11/15 (2/2)Euler characteristic

Proof: Let K be a triangulation of X. Pick an ordering K1 ⊂ · · · ⊂ Kn = K of K,
with Ki = Ki−1 ∪ {σi} for all 2 ≤ i ≤ n.

By induction, let us show that, for all 1 ≤ m ≤ n,∑
0≤i≤m

(−1)i · βi(Km) =
∑

0≤i≤m

(−1)i · (number of simplices of dimension i of Km).

Proposition: Let X be a (triangulable) topological space. Then its Euler characteristic is
equal to

χ(X) =
∑

0≤i≤n

(−1)i · βi(X)

where n is the maximal integer such that βi(X) 6= 0.

For m = 1, σm is a 0-simplex, and the equality reads 1 = 1.

Now, suppose that the equality is true for 1 ≤ m < n, and consider the simplex σm+1.
Let d = dimσm+1. The right-hand side of the Equation is increased by (−1)d.

If σm+1 is positive, then βd(K
m+1) = βd(K

m) + 1, hence the left-hand side of the
Equation is increased by (−1)d.

Otherwise, it is negative, and βd−1(Km+1) = βd−1(Km)− 1, hence the left-hand side
of the Equation is increased by −(−1)d−1 = (−1)d.
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13/15 (1/8)Boundary matrix

σ1 σ2

σ3σ4

σ8

σ5

σ6

σ7

σ9

σ10



0 0 0 0 1 0 0 1 0 0
0 0 0 0 1 1 0 0 1 0
0 0 0 0 0 1 1 0 0 0
0 0 0 0 0 0 1 1 1 0
0 0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0 0 0



σ1 σ2 σ3 σ4 σ5 σ6 σ7 σ8 σ9 σ10

σ1

σ2

σ3

σ4

σ5

σ6

σ7

σ8

σ9

σ10

σ1 σ2 σ3 σ4 σ5 σ6 σ7 σ8 σ9 σ10

The only thing missing to apply the incremental algorithm is to determine whether a
simplex is positive or negative.

Let K be a simplicial complex, and σ1 < σ2 < · · · < σn and ordering of its simplices.

Define the boundary matrix of K, denoted ∆, as follows: ∆ is a n× n matrix, whose
(i, j)-entry (ith row, jth column is)

∆i,j = 1 if σi is a face of σj and |σi| = |σj | − 1

0 else.



13/15 (2/8)Boundary matrix

By adding columns one to the others, we create chains.
If we were able to reduce a column to zero, then we found a cycle.



0 0 0 0 1 0 0 1 0 0
0 0 0 0 1 1 0 0 1 0
0 0 0 0 0 1 1 0 0 0
0 0 0 0 0 0 1 1 1 0
0 0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0 0 0



σ1 σ2 σ3 σ4 σ5 σ6 σ7 σ8 σ9 σ10

σ1

σ2

σ3

σ4

σ5

σ6

σ7

σ8

σ9

σ10

∂1(σ6) = σ2 + σ3



0 0 0 0 1 0 0 0 0 0
0 0 0 0 1 1 0 0 1 0
0 0 0 0 0 1 1 0 0 0
0 0 0 0 0 0 1 0 1 0
0 0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0 0 0



σ1 σ2 σ3 σ4 σ5 σ6 σ7 σ8 σ9 σ10

σ1

σ2

σ3

σ4

σ5

σ6

σ7

σ8

σ9

σ10

∂1(σ5 + σ6 + σ7 + σ8) = 0

σ
5 +

σ
6 +

σ
7 +

σ
8



13/15 (3/8)Boundary matrix

The process of reducing columns to zero is called Gauss reduction.
For any j ∈ J1, nK, define

If ∆i,j = 0 for all j, then δ(j) is undefined.

We say that the boundary matrix ∆ is reduced if the map δ is injective on its domain of
definition.



0 0 0 0 1 0 0 0 0 0
0 0 0 0 1 1 0 0 0 0
0 0 0 0 0 1 1 0 0 0
0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0 0 0



σ1 σ2 σ3 σ4 σ5 σ6 σ7 σ8 σ9 σ10

σ1

σ2

σ3

σ4

σ5

σ6

σ7

σ8

σ9

σ10

σ
9 +

σ
6 +

σ
7

σ
5 +

σ
6 +

σ
7 +

σ
8

δ(j) = max{i ∈ J1, nK,∆i,j 6= 0}.



13/15 (4/8)Boundary matrix



0 0 0 0 1 0 0 1 0 0
0 0 0 0 1 1 0 0 1 0
0 0 0 0 0 1 1 0 0 0
0 0 0 0 0 0 1 1 1 0
0 0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0 0 0



σ1 σ2 σ3 σ4 σ5 σ6 σ7 σ8 σ9 σ10

σ1

σ2

σ3

σ4

σ5

σ6

σ7

σ8

σ9

σ10



0 0 0 0 1 0 0 1 0 0
0 0 0 0 1 1 0 0 1 0
0 0 0 0 0 1 1 1 0 0
0 0 0 0 0 0 1 0 1 0
0 0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0 0 0



σ1 σ2 σ3 σ4 σ5 σ6 σ7 σ8 σ9 σ10

σ1

σ2

σ3

σ4

σ5

σ6

σ7

σ8

σ9

σ10

σ
8 +

σ
7

j



13/15 (5/8)Boundary matrix

j



0 0 0 0 1 0 0 1 0 0
0 0 0 0 1 1 0 1 1 0
0 0 0 0 0 1 1 0 0 0
0 0 0 0 0 0 1 0 1 0
0 0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0 0 0



σ1 σ2 σ3 σ4 σ5 σ6 σ7 σ8 σ9 σ10

σ1

σ2

σ3

σ4

σ5

σ6

σ7

σ8

σ9

σ10

σ
8 +

σ
7 +

σ
6



0 0 0 0 1 0 0 1 0 0
0 0 0 0 1 1 0 0 1 0
0 0 0 0 0 1 1 1 0 0
0 0 0 0 0 0 1 0 1 0
0 0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0 0 0



σ1 σ2 σ3 σ4 σ5 σ6 σ7 σ8 σ9 σ10

σ1

σ2

σ3

σ4

σ5

σ6

σ7

σ8

σ9

σ10

σ
8 +

σ
7



13/15 (6/8)Boundary matrix

j



0 0 0 0 1 0 0 0 0 0
0 0 0 0 1 1 0 0 1 0
0 0 0 0 0 1 1 0 0 0
0 0 0 0 0 0 1 0 1 0
0 0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0 0 0



σ1 σ2 σ3 σ4 σ5 σ6 σ7 σ8 σ9 σ10

σ1

σ2

σ3

σ4

σ5

σ6

σ7

σ8

σ9

σ10

σ
8 +

σ
7 +

σ
6 +

σ
5



0 0 0 0 1 0 0 1 0 0
0 0 0 0 1 1 0 1 1 0
0 0 0 0 0 1 1 0 0 0
0 0 0 0 0 0 1 0 1 0
0 0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0 0 0



σ1 σ2 σ3 σ4 σ5 σ6 σ7 σ8 σ9 σ10

σ1

σ2

σ3

σ4

σ5

σ6

σ7

σ8

σ9

σ10

σ
8 +

σ
7 +

σ
6



13/15 (7/8)Boundary matrix

j



0 0 0 0 1 0 0 0 0 0
0 0 0 0 1 1 0 0 1 0
0 0 0 0 0 1 1 0 0 0
0 0 0 0 0 0 1 0 1 0
0 0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0 0 0



σ1 σ2 σ3 σ4 σ5 σ6 σ7 σ8 σ9 σ10

σ1

σ2

σ3

σ4

σ5

σ6

σ7

σ8

σ9

σ10

σ
8 +

σ
7 +

σ
6 +

σ
5



0 0 0 0 1 0 0 0 0 0
0 0 0 0 1 1 0 0 0 0
0 0 0 0 0 1 1 0 0 0
0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0 0 0



σ1 σ2 σ3 σ4 σ5 σ6 σ7 σ8 σ9 σ10

σ1

σ2

σ3

σ4

σ5

σ6

σ7

σ8

σ9

σ10

σ
9 +

σ
6 +

σ
7

σ
5 +

σ
6 +

σ
7 +

σ
8



13/15 (8/8)Boundary matrix

Lemma: Suppose that the boundary
matrix is reduced. Let j ∈ J1, nK.
If δ(j) is defined, then the simplex σj is
negative.
Otherwise, it is positive.



0 0 0 0 1 0 0 0 0 0
0 0 0 0 1 1 0 0 0 0
0 0 0 0 0 1 1 0 0 0
0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0 0 0



σ1 σ2 σ3 σ4 σ5 σ6 σ7 σ8 σ9 σ10

σ1

σ2

σ3

σ4

σ5

σ6

σ7

σ8

σ9

σ10

σ
9 +

σ
6 +

σ
7

σ
5 +

σ
6 +

σ
7 +

σ
8

σ1 σ2 σ3 σ4 σ5 σ6 σ7 σ8 σ9 σ10

+ + + + − − − + + −

j
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Incremental computation of the homology

Gauss reduction of the boundary matrix
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Conclusion
We defined the standard algorithm for (persistent homology).

It works incrementally, by using the predicate ‘test of positivity of a simplex’.

Using the algorithm, we have been able to compute the homology groups of the
spheres, and as a consequence we proved the Invariance of Domain.

Homework: Exercises 31, 34

Facultative: Exercises 33



15/15 (2/2)

Conclusion
We defined the standard algorithm for (persistent homology).

It works incrementally, by using the predicate ‘test of positivity of a simplex’.

Using the algorithm, we have been able to compute the homology groups of the
spheres, and as a consequence we proved the Invariance of Domain.

Homework: Exercises 31, 34

Facultative: Exercises 33

Merci !


