EMAp Summer Course

Topological Data Analysis with Persistent Homology

https://raphaeltinarrage.github.io/EMAp.html

Lesson 6: Incremental algorithm

Introduction

Yesterday we have defined
chain complex

$$
\ldots \xrightarrow{\partial_{n+2}} C_{n+1}(K) \xrightarrow{\partial_{n+1}} C_{n}(K) \xrightarrow{\partial_{n}} C_{n-1}(K) \xrightarrow{\partial_{n-1}} \ldots
$$

n-cycles

$$
Z_{n}(K)=\operatorname{Ker}\left(\partial_{n}\right)
$$

n-boundaries

$$
B_{n}(K)=\operatorname{Im}\left(\partial_{n+1}\right)
$$

$n^{\text {th }}$ homology group $\quad H_{n}(K)=Z_{n}(K) / B_{n}(K)$

Introduction

Yesterday we have defined
chain complex

$$
\ldots \xrightarrow{\partial_{n+2}} C_{n+1}(K) \xrightarrow{\partial_{n+1}} C_{n}(K) \xrightarrow{\partial_{n}} C_{n-1}(K) \xrightarrow{\partial_{n-1}} \ldots
$$

n-cycles

$$
Z_{n}(K)=\operatorname{Ker}\left(\partial_{n}\right)
$$

n-boundaries

$$
B_{n}(K)=\operatorname{Im}\left(\partial_{n+1}\right)
$$

$n^{\text {th }}$ homology group

$$
H_{n}(K)=Z_{n}(K) / B_{n}(K)
$$

Today's objectives:

how to compute them?
what do they represent?

I - Incremental algorithm

II - Applications

III - Matrix algorithm

Ordering the simplicial complex

Let K be a simplicial complex with n simplices. Choose a total order of the simplices

$$
\sigma^{1}<\sigma^{2}<\ldots<\sigma^{n}
$$

such that

$$
\forall \sigma, \tau \in K, \tau \subsetneq \sigma \Longrightarrow \tau<\sigma
$$

In other words, a face of a simplex is lower than the simplex itself.
For every $i \leq n$, consider the simplicial complex

$$
K^{i}=\left\{\sigma^{1}, \ldots, \sigma^{i}\right\}
$$

We have $\forall i \leq n, K^{i+1}=K^{i} \cup\left\{\sigma^{i+1}\right\}$, and $K^{n}=K$. They form an inscreasing sequence of simplicial complexes

$$
K^{1} \subset K^{2} \subset \ldots \subset K^{n}
$$

Positivity of simplices

Let $k \geq 0$. We will compute the homology groups of K^{i} incrementally: $H_{k}\left(K^{1}\right), H_{k}\left(K^{2}\right), H_{k}\left(K^{3}\right), H_{k}\left(K^{4}\right), H_{k}\left(K^{5}\right), H_{k}\left(K^{6}\right), H_{k}\left(K^{7}\right), H_{k}\left(K^{8}\right), H_{k}\left(K^{9}\right), H_{k}\left(K^{10}\right)$

Positivity of simplices

Let $k \geq 0$. We will compute the homology groups of K^{i} incrementally: $H_{k}\left(K^{1}\right), H_{k}\left(K^{2}\right), H_{k}\left(K^{3}\right), H_{k}\left(K^{4}\right), H_{k}\left(K^{5}\right), H_{k}\left(K^{6}\right), H_{k}\left(K^{7}\right), H_{k}\left(K^{8}\right), H_{k}\left(K^{9}\right), H_{k}\left(K^{10}\right)$

Definition: Let $i \in \llbracket 1, n \rrbracket$, and $d=\operatorname{dim}\left(\sigma^{i}\right)$. Recall that $K^{i}=K^{i-1} \cup\left\{\sigma_{i}\right\}$.
The simplex σ^{i} is positive if there exists a cycle $c \in Z_{d}\left(K^{i}\right)$ that contains σ^{i}. In other words, there exist $c=\sum_{\sigma \in K_{(n)}^{i}} \epsilon_{\sigma} \cdot \sigma \in C_{n}\left(K^{i}\right)$ such that $\epsilon_{\sigma^{i}}=1$ and $\partial_{n}(c)=0$. Otherwise, σ^{i} is negative.

Example:

- $\sigma^{1} \in K^{1}$ is positive because it is included in the cycle $c=\sigma^{1}$ (indeed, $\partial_{0}\left(\sigma^{1}\right)=0$).

Positivity of simplices

Let $k \geq 0$. We will compute the homology groups of K^{i} incrementally: $H_{k}\left(K^{1}\right), H_{k}\left(K^{2}\right), H_{k}\left(K^{3}\right), H_{k}\left(K^{4}\right), H_{k}\left(K^{5}\right), H_{k}\left(K^{6}\right), H_{k}\left(K^{7}\right), H_{k}\left(K^{8}\right), H_{k}\left(K^{9}\right), H_{k}\left(K^{10}\right)$

Definition: Let $i \in \llbracket 1, n \rrbracket$, and $d=\operatorname{dim}\left(\sigma^{i}\right)$. Recall that $K^{i}=K^{i-1} \cup\left\{\sigma_{i}\right\}$.
The simplex σ^{i} is positive if there exists a cycle $c \in Z_{d}\left(K^{i}\right)$ that contains σ^{i}. In other words, there exist $c=\sum_{\sigma \in K_{(n)}^{i}} \epsilon_{\sigma} \cdot \sigma \in C_{n}\left(K^{i}\right)$ such that $\epsilon_{\sigma^{i}}=1$ and $\partial_{n}(c)=0$. Otherwise, σ^{i} is negative.

Example:

- $\sigma^{1} \in K^{1}$ is positive because it is included in the cycle $c=\sigma^{1}$ (indeed, $\partial_{0}\left(\sigma^{1}\right)=0$).
- $\sigma^{2} \in K^{2}$ is positive because it is included in the cycle $c=\sigma^{2}$ (indeed, $\partial_{0}\left(\sigma^{2}\right)=0$).

Positivity of simplices

Let $k \geq 0$. We will compute the homology groups of K^{i} incrementally: $H_{k}\left(K^{1}\right), H_{k}\left(K^{2}\right), H_{k}\left(K^{3}\right), H_{k}\left(K^{4}\right), H_{k}\left(K^{5}\right), H_{k}\left(K^{6}\right), H_{k}\left(K^{7}\right), H_{k}\left(K^{8}\right), H_{k}\left(K^{9}\right), H_{k}\left(K^{10}\right)$

Definition: Let $i \in \llbracket 1, n \rrbracket$, and $d=\operatorname{dim}\left(\sigma^{i}\right)$. Recall that $K^{i}=K^{i-1} \cup\left\{\sigma_{i}\right\}$. The simplex σ^{i} is positive if there exists a cycle $c \in Z_{d}\left(K^{i}\right)$ that contains σ^{i}. In other words, there exist $c=\sum_{\sigma \in K_{(n)}^{i}} \epsilon_{\sigma} \cdot \sigma \in C_{n}\left(K^{i}\right)$ such that $\epsilon_{\sigma^{i}}=1$ and $\partial_{n}(c)=0$. Otherwise, σ^{i} is negative.

Example:

- $\sigma^{1} \in K^{1}$ is positive because it is included in the cycle $c=\sigma^{1}$ (indeed, $\partial_{0}\left(\sigma^{1}\right)=0$).
- $\sigma^{2} \in K^{2}$ is positive because it is included in the cycle $c=\sigma^{2}$ (indeed, $\partial_{0}\left(\sigma^{2}\right)=0$).
- $\sigma^{6} \in K^{5}$ is negative because it is not included in a cycle $Z_{1}\left(K^{5}\right)$. Indeed, $C_{1}\left(K^{5}\right)$ only contains 0 and σ_{5}, and $\partial_{1}\left(\sigma^{5}\right)=\sigma^{1}+\sigma^{2} \neq 0$.

Positivity of simplices

Let $k \geq 0$. We will compute the homology groups of K^{i} incrementally: $H_{k}\left(K^{1}\right), H_{k}\left(K^{2}\right), H_{k}\left(K^{3}\right), H_{k}\left(K^{4}\right), H_{k}\left(K^{5}\right), H_{k}\left(K^{6}\right), H_{k}\left(K^{7}\right), H_{k}\left(K^{8}\right), H_{k}\left(K^{9}\right), H_{k}\left(K^{10}\right)$

Definition: Let $i \in \llbracket 1, n \rrbracket$, and $d=\operatorname{dim}\left(\sigma^{i}\right)$. Recall that $K^{i}=K^{i-1} \cup\left\{\sigma_{i}\right\}$.
The simplex σ^{i} is positive if there exists a cycle $c \in Z_{d}\left(K^{i}\right)$ that contains σ^{i}. In other words, there exist $c=\sum_{\sigma \in K_{(n)}^{i}} \epsilon_{\sigma} \cdot \sigma \in C_{n}\left(K^{i}\right)$ such that $\epsilon_{\sigma^{i}}=1$ and $\partial_{n}(c)=0$. Otherwise, σ^{i} is negative.

Example:

- $\sigma^{1} \in K^{1}$ is positive because it is included in the cycle $c=\sigma^{1}$ (indeed, $\partial_{0}\left(\sigma^{1}\right)=0$).
- $\sigma^{2} \in K^{2}$ is positive because it is included in the cycle $c=\sigma^{2}$ (indeed, $\partial_{0}\left(\sigma^{2}\right)=0$).
- $\sigma^{6} \in K^{5}$ is negative because it is not included in a cycle $Z_{1}\left(K^{5}\right)$. Indeed, $C_{1}\left(K^{5}\right)$ only contains 0 and σ_{5}, and $\partial_{1}\left(\sigma^{5}\right)=\sigma^{1}+\sigma^{2} \neq 0$.
- $\sigma^{8} \in K^{8}$ is positive because it is included in the cycle $c=\sigma^{5}+\sigma^{6}+\sigma^{7}+\sigma^{8}$ (indeed, $\partial_{1}(c)=2 \sigma^{1}+2 \sigma^{2}+2 \sigma^{3}+2 \sigma^{4}=0$).

Positivity of simplices

Definition: Let $i \in \llbracket 1, n \rrbracket$, and $d=\operatorname{dim}\left(\sigma_{i}\right)$. Recall that $K^{i}=K^{i-1} \cup\left\{\sigma_{i}\right\}$. The simplex σ_{i} is positive if there exists a cycle $c \in Z_{d}\left(K^{i}\right)$ that contains σ_{i}. Otherwise, σ_{i} is negative.

Remark: By adding σ^{i} in the simplicial complex, the only groups that may change are $Z_{d}\left(K^{i}\right)$ and $B_{d-1}\left(K^{i}\right)$.

Positivity of simplices

Definition: Let $i \in \llbracket 1, n \rrbracket$, and $d=\operatorname{dim}\left(\sigma_{i}\right)$. Recall that $K^{i}=K^{i-1} \cup\left\{\sigma_{i}\right\}$.
The simplex σ_{i} is positive if there exists a cycle $c \in Z_{d}\left(K^{i}\right)$ that contains σ_{i}. Otherwise, σ_{i} is negative.

Remark: By adding σ^{i} in the simplicial complex, the only groups that may change are $Z_{d}\left(K^{i}\right)$ and $B_{d-1}\left(K^{i}\right)$.

Lemma: If σ^{i} is positive, then $\beta_{d}\left(K^{i}\right)=\beta_{d}\left(K^{i-1}\right)+1$, and for all $d^{\prime} \neq d, \beta_{d^{\prime}}\left(K^{i}\right)=\beta_{d^{\prime}}\left(K^{i-1}\right)$.

Proof: We start by proving the following fact: if $c \in Z_{d}\left(K^{i}\right)$ is a cycle that contains σ_{i}, then c is not homologous (in K^{i}) to a cycle of $c^{\prime} \in Z_{d}\left(K^{i-1}\right)$.
By contradiction: if $c=c^{\prime}+b$ with $c^{\prime} \in Z_{d}\left(K^{i-1}\right)$ and $b \in B_{d}\left(K^{i}\right)$, then $c-c^{\prime}=b \in B_{d}\left(K^{i}\right)$. This is absurd because we just added σ_{i} : it cannot appear in a boundary of K^{i}.

As a consequence, $\operatorname{dim} Z_{d}\left(K^{i}\right)=\operatorname{dim} Z_{d}\left(K^{i-1}\right)+1$.
We conclude by using the relation $\beta_{d}\left(K^{i}\right)=\operatorname{dim} Z_{d}\left(K^{i}\right)-\operatorname{dim} B_{d}\left(K^{i}\right)$.

Positivity of simplices

Definition: Let $i \in \llbracket 1, n \rrbracket$, and $d=\operatorname{dim}\left(\sigma_{i}\right)$. Recall that $K^{i}=K^{i-1} \cup\left\{\sigma_{i}\right\}$.
The simplex σ_{i} is positive if there exists a cycle $c \in Z_{d}\left(K^{i}\right)$ that contains σ_{i}. Otherwise, σ_{i} is negative.

Remark: By adding σ^{i} in the simplicial complex, the only groups that may change are $Z_{d}\left(K^{i}\right)$ and $B_{d-1}\left(K^{i}\right)$.

Lemma: If σ^{i} is negative, then $\beta_{d-1}\left(K^{i}\right)=\beta_{d-1}\left(K^{i-1}\right)-1$, and for all $d^{\prime} \neq d-1, \beta_{d^{\prime}}\left(K^{i}\right)=\beta_{d^{\prime}}\left(K^{i-1}\right)$.

Proof: We start by proving the following fact: $\partial_{d}\left(\sigma^{i}\right)$ is not a boundary of K^{i-1}.
Otherwise, we would have $\partial_{d}\left(\sigma^{i}\right)=\partial_{d}(c)$ with $c \in C_{d}\left(K^{i-1}\right)$, i.e. $\partial_{d}\left(\sigma^{i}+c\right)=0$. Hence $\sigma^{i}+c$ would be a cycle of K^{i} that contains c, contradicting the negativity of σ^{i}.

As a consequence, $\operatorname{dim} B_{d-1}\left(K^{i}\right)=\operatorname{dim} B_{d-1}\left(K^{i-1}\right)+1$.
We conclude by using the relation $\beta_{d-1}\left(K^{i}\right)=\operatorname{dim} Z_{d-1}\left(K^{i}\right)-\operatorname{dim} B_{d-1}\left(K^{i}\right)$.

Incremental algorithm

Lemma: If σ^{i} is positive, then $\beta_{d}\left(K^{i}\right)=\beta_{d}\left(K^{i-1}\right)+1$, and for all $d^{\prime} \neq d, \beta_{d^{\prime}}\left(K^{i}\right)=\beta_{d^{\prime}}\left(K^{i-1}\right)$.

Lemma: If σ^{i} is negative, then $\beta_{d-1}\left(K^{i}\right)=\beta_{d-1}\left(K^{i-1}\right)-1$, and for all $d^{\prime} \neq d-1, \beta_{d^{\prime}}\left(K^{i}\right)=\beta_{d^{\prime}}\left(K^{i-1}\right)$.

We deduce the following algorithm:

```
Input: an increasing sequence of simplicial complexes \(K^{1} \subset \cdots \subset K^{n}=K\)
Output: the Betti numbers \(\beta_{0}(K), \ldots \beta_{d}(K)\)
\(\beta_{0} \leftarrow 0, \ldots, \beta_{d} \leftarrow 0 ;\)
for \(i \leftarrow 1\) to \(n\) do
    \(d=\operatorname{dim}\left(\sigma^{i}\right) ;\)
    if \(\sigma^{i}\) is positive then
        \(\beta_{k}\left(K^{i}\right) \leftarrow \beta_{k}\left(K^{i}\right)+1 ;\)
    else if \(d>0\) then
        \(\beta_{k-1}\left(K^{i}\right) \leftarrow \beta_{k-1}\left(K^{i-1}\right)-1 ;\)
```


Incremental algorithm

	K^{1}	K^{2}	K^{3}	K^{4}	K^{5}	K^{6}	K^{7}	K^{8}	K	K
Dimension	0	0	0	0	1	1	1	1	1	2
Positivity	+	+	+	+	-	-	-	+	+	-
$\beta_{0}\left(K^{i}\right)$	1	2	3	4	3	2	1	1	1	1
$\beta_{1}\left(K^{i}\right)$	0	0	0	0	0	0	0	1	2	1

We deduce the following algorithm:

```
Input: an increasing sequence of simplicial complexes \(K^{1} \subset \cdots \subset K^{n}=K\)
Output: the Betti numbers \(\beta_{0}(K), \ldots \beta_{d}(K)\)
\(\beta_{0} \leftarrow 0, \ldots, \beta_{d} \leftarrow 0 ;\)
for \(i \leftarrow 1\) to \(n\) do
    \(d=\operatorname{dim}\left(\sigma^{i}\right) ;\)
    if \(\sigma^{i}\) is positive then
        \(\beta_{k}\left(K^{i}\right) \leftarrow \beta_{k}\left(K^{i}\right)+1 ;\)
    else if \(d>0\) then
        \(\beta_{k-1}\left(K^{i}\right) \leftarrow \beta_{k-1}\left(K^{i-1}\right)-1 ;\)
```


I - Incremental algorithm

II - Applications

III - Matrix algorithm

Number of connected components

Proposition: Let X be a (triangulable) topological space. Then its $0^{\text {th }}$ Betti number, $\beta_{0}(X)$, is equal to the number of connected components of X.

Let K be a triangulation of X.

Number of connected components

Proposition: Let X be a (triangulable) topological space. Then its $0^{\text {th }}$ Betti number, $\beta_{0}(X)$, is equal to the number of connected components of X.

Let K be a triangulation of X.

First, a definition: say that a simplicial complex L is combinatorially connected of for every vertex v, w of L, there exists a sequence of edges that connects v and w :

$$
\left[v, v_{1}\right], \quad\left[v_{1}, v_{2}\right], \quad\left[v_{2}, v_{3}\right], \quad \ldots, \quad\left[v_{n}, w\right]
$$

Let m be the number of connected components X, and let K be triangulation of X. We accept the following equivalent statement: there exists m disjoint, non-empty and combinatorially connected simplicial sub-complex L_{1}, \ldots, L_{m} of K such that

$$
K=\bigcup_{1 \leq i \leq m} L_{i} .
$$

Number of connected components

Proposition: Let X be a (triangulable) topological space. Then its $0^{\text {th }}$ Betti number, $\beta_{0}(X)$, is equal to the number of connected components of X.

Let K be a triangulation of X.

Proof: Let T be a spanning forest of K, that is, a union of spanning trees. It admits m combinatorially connected components.

Consider an ordering of the simplices of K that begins with an ordering of T.
Apply the incremental algorithm. Each vertex increases β_{0} by 1 .
Since T is a tree, all its edges are negative simplices (T has no cycles), hence decrease β_{0}. Each tree of the forest contains $k-1$ edges, where k is the number of vertices of the corresponding component.
Since T is a spanning tree, each other edges of K is positive, hence β_{0} does not change. Similarly, the other simplices of K do not change β_{0}. We deduce the result.

Homology of spheres

For any $n \geq 1$, consider the vertex set $V=\{0, \ldots, n\}$, and the simplicial complex

$$
\Delta_{n}=\{S \subset V, S \neq \emptyset\} .
$$

We call it the simplicial standard n-simplex. Define its boundary as

$$
\partial \Delta_{n}=\Delta_{n} \backslash V
$$

The simplicial complex $\partial \Delta_{n}$ is a triangulation of the $(n-1)$-sphere $\mathbb{S}_{n-1} \subset \mathbb{R}^{n}$. As a consequence, for all $i \geq 0, H_{i}\left(\mathbb{S}_{n}\right)=H_{i}\left(\partial \Delta_{n+1}\right)$.

Δ_{2}

$\partial \Delta_{2}$

Δ_{3}

Homology of spheres

For any $n \geq 1$, consider the vertex set $V=\{0, \ldots, n\}$, and the simplicial complex

$$
\Delta_{n}=\{S \subset V, S \neq \emptyset\} .
$$

We call it the simplicial standard n-simplex. Define its boundary as

$$
\partial \Delta_{n}=\Delta_{n} \backslash V
$$

The simplicial complex $\partial \Delta_{n}$ is a triangulation of the $(n-1)$-sphere $\mathbb{S}_{n-1} \subset \mathbb{R}^{n}$.
As a consequence, for all $i \geq 0, H_{i}\left(\mathbb{S}_{n}\right)=H_{i}\left(\partial \Delta_{n+1}\right)$.

Δ_{2}

$\partial \Delta_{2}$

Δ_{3}

Proposition: The Betti numbers of \mathbb{S}_{n} are:

- $\beta_{i}\left(\mathbb{S}_{n}\right)=1$ for $i=0$ or n,
- $\beta_{i}\left(\mathbb{S}_{n}\right)=0$ else.

Homology of spheres

Proof: Consider the simplicial standard n-simplex Δ_{n}. It is homotopy equivalent to a point (its topological realization deform retracts on any point of it). Hence Δ_{n} has the same Betti numbers as the point:

- $\beta_{1}\left(\Delta_{n}\right)=1$,
- $\beta_{i}\left(\Delta_{n}\right)=0$ for $i>0$.

Now, if we run the incremental algorithm for homology on Δ_{n}, but stopping before adding the n-simplex V, we would obtain the Betti numbers of $\partial \Delta_{n}$.

Note that the n-simplex is negative. Hence

- $\beta_{n}\left(\partial \Delta_{n}\right)=\beta_{n}\left(\Delta_{n}\right)+1$,
- $\beta_{i}\left(\partial \Delta_{n}\right)=\beta_{i}\left(\Delta_{n}\right)$ for $i \neq n$.

Δ_{2}

$\partial \Delta_{2}$

Δ_{3}

Proposition: The Betti numbers of \mathbb{S}_{n} are:

- $\beta_{i}\left(\mathbb{S}_{n}\right)=1$ for $i=0$ or n,
- $\beta_{i}\left(\mathbb{S}_{n}\right)=0$ else.

Invariance of domain

Theorem (Invariance of Domain): For every integers m, n such that $m \neq n$, the spaces \mathbb{R}^{n} and \mathbb{R}^{m} are not homeomorphic.

Proof: Let m, n such that $m \neq n$. By contradiction, suppose that \mathbb{R}^{n} and \mathbb{R}^{m} are homeomorphic via f.

Let 0 denote the origin of \mathbb{R}^{n}. By restriction, we get a homeomorphism

$$
\mathbb{R}^{n} \backslash\{0\} \rightarrow \mathbb{R}^{m} \backslash\{f(0)\}
$$

We deduce the following weaker statement: $\mathbb{R}^{n} \backslash\{0\}$ and $\mathbb{R}^{m} \backslash\{f(0)\}$ are homotopic equivalent.

We deduce that the sphere \mathbb{S}_{n-1} and \mathbb{S}_{m-1} are homotopic equivalent.
Hence \mathbb{S}_{n-1} and \mathbb{S}_{m-1} must admit the same homology groups. This contradict the previous proposition.

Euler characteristic

Reminder: the Euler characteristic of a simplicial complex K is

$$
\chi(K)=\sum_{0 \leq i \leq n}(-1)^{i} \cdot(\text { number of simplices of dimension } i)
$$

Proposition: Let X be a (triangulable) topological space. Then its Euler characteristic is equal to

$$
\chi(X)=\sum_{0 \leq i \leq n}(-1)^{i} \cdot \beta_{i}(X)
$$

where n is the maximal integer such that $\beta_{i}(X) \neq 0$.

Euler characteristic

Proposition: Let X be a (triangulable) topological space. Then its Euler characteristic is equal to

$$
\chi(X)=\sum_{0 \leq i \leq n}(-1)^{i} \cdot \beta_{i}(X)
$$

where n is the maximal integer such that $\beta_{i}(X) \neq 0$.
Proof: Let K be a triangulation of X. Pick an ordering $K^{1} \subset \cdots \subset K^{n}=K$ of K, with $K^{i}=K^{i-1} \cup\left\{\sigma^{i}\right\}$ for all $2 \leq i \leq n$.

By induction, let us show that, for all $1 \leq m \leq n$,

$$
\sum_{0 \leq i \leq m}(-1)^{i} \cdot \beta_{i}\left(K^{m}\right)=\sum_{0 \leq i \leq m}(-1)^{i} \cdot\left(\text { number of simplices of dimension } i \text { of } K^{m}\right)
$$

For $m=1, \sigma^{m}$ is a 0 -simplex, and the equality reads $1=1$.
Now, suppose that the equality is true for $1 \leq m<n$, and consider the simplex σ^{m+1}. Let $d=\operatorname{dim} \sigma^{m+1}$. The right-hand side of the Equation is increased by $(-1)^{d}$.
If σ^{m+1} is positive, then $\beta_{d}\left(K^{m+1}\right)=\beta_{d}\left(K^{m}\right)+1$, hence the left-hand side of the Equation is increased by $(-1)^{d}$.
Otherwise, it is negative, and $\beta_{d-1}\left(K^{m+1}\right)=\beta_{d-1}\left(K^{m}\right)-1$, hence the left-hand side of the Equation is increased by $-(-1)^{d-1}=(-1)^{d}$.

I - Incremental algorithm

II - Applications

III - Matrix algorithm

Boundary matrix

The only thing missing to apply the incremental algorithm is to determine whether a simplex is positive or negative.

Let K be a simplicial complex, and $\sigma^{1}<\sigma^{2}<\cdots<\sigma^{n}$ and ordering of its simplices. Define the boundary matrix of K, denoted Δ, as follows: Δ is a $n \times n$ matrix, whose (i, j)-entry ($i^{\text {th }}$ row, $j^{\text {th }}$ column is)

$$
\begin{aligned}
\Delta_{i, j}= & 1 \text { if } \sigma^{i} \text { is a face of } \sigma^{j} \text { and }\left|\sigma^{i}\right|=\left|\sigma^{j}\right|-1 \\
& 0 \text { else. }
\end{aligned}
$$

$\left.\begin{array}{c} \\ \sigma^{1} \\ \sigma^{2} \\ \sigma^{3} \\ \sigma^{4} \\ \sigma^{5} \\ \sigma^{6} \\ \sigma^{7} \\ \sigma^{8} \\ \sigma^{9} \\ \sigma^{10}\end{array} \begin{array}{cccccccccc}\sigma^{1} & \sigma^{2} & \sigma^{3} & \sigma^{4} & \sigma^{5} & \sigma^{6} & \sigma^{7} & \sigma^{8} & \sigma^{9} & \sigma^{10} \\ 0 & 0 & 0 & 0 & 1 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 1 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 1 & 1 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0\end{array}\right)$

Boundary matrix

By adding columns one to the others, we create chains. If we were able to reduce a column to zero, then we found a cycle.

$$
\partial_{1}\left(\sigma^{6}\right)=\sigma^{2}+\sigma^{3}
$$

\qquad

$$
\partial_{1}\left(\sigma^{5}+\sigma^{6}+\sigma^{7}+\sigma^{8}\right)=0
$$

$$
\begin{aligned}
& \begin{array}{llllllllll}
\sigma^{1} & \sigma^{2} & \sigma^{3} & \sigma^{4} & \sigma^{5} & \sigma^{6} & \sigma^{7} & \sigma^{8} & \sigma^{9} & \sigma^{10}
\end{array} \\
& \left.\begin{array}{c}
\sigma^{1} \\
\sigma^{2} \\
\sigma^{3} \\
\sigma^{4} \\
\sigma^{5} \\
\sigma^{6} \\
\sigma^{7} \\
\sigma^{8} \\
\sigma^{9} \\
\sigma^{10}
\end{array} \begin{array}{ccccc|c|cccc}
0 & 0 & 0 & 0 & 1 & 0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & 1 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 0 & 1 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 1 & 1 & 1 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 \\
0
\end{array}\right)
\end{aligned}
$$

Boundary matrix

The process of reducing columns to zero is called Gauss reduction.
For any $j \in \llbracket 1, n \rrbracket$, define

$$
\delta(j)=\max \left\{i \in \llbracket 1, n \rrbracket, \Delta_{i, j} \neq 0\right\} .
$$

If $\Delta_{i, j}=0$ for all j, then $\delta(j)$ is undefined.
We say that the boundary matrix Δ is reduced if the map δ is injective on its domain of definition.

$$
\begin{gathered}
\sigma^{1} \\
\sigma^{2} \\
\sigma^{3} \\
\sigma^{4} \\
\sigma^{5} \\
\sigma^{1} \\
\sigma^{6} \\
\sigma^{7} \\
\sigma^{7} \\
\sigma^{2} \\
\sigma^{8} \\
\sigma^{9} \\
\sigma^{9} \\
0
\end{gathered} \sigma^{3}
$$

Boundary matrix

Algorithm 2: Reduction of the boundary matrix
Input: a boundary matrix Δ
Output: a reduced matrix $\widetilde{\Delta}$
for $j \leftarrow 1$ to n do
while there exists $i<j$ with $\delta(i)=\delta(j)$ do
add column i to column j ;
σ^{1}
σ^{2}
σ^{3}
σ^{4}
σ^{5}
σ^{6}
σ^{1}
σ^{7}
σ^{8}
σ^{2}
σ^{2}
σ^{9}
σ^{9}
$\sigma^{10}$$\left(\begin{array}{lllllllll}\sigma^{4} & \sigma^{5} & \sigma^{6} & \sigma^{7} & \sigma^{8} & \sigma^{9} & \sigma^{10} \\ 0 & 0 & 0 & 0 & 0 & 1 & 0 & 1 & 0 \\ & 1 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 1 & 1 & 1 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0\end{array}\right)$
σ^{1}
σ^{2}
σ^{3}
σ^{4}
σ^{5}
σ^{6}
σ^{7}
σ^{7}
σ^{8}
σ^{9}
$\sigma^{10}$$\left(\begin{array}{ccccccccccccc}\sigma^{1} & \sigma^{2} & \sigma^{3} & \sigma^{4} & \sigma^{5} & \sigma^{6} & \sigma^{7} & \sigma^{8} x^{\alpha^{\hat{c}}} \\ 0 & 0 & 0 & 0 & 1 & 0 & 0 & 1 & 0 & 0 \\ \sigma^{9} & \sigma^{10} \\ 0 & 0 & 0 & 0 & 1 & 1 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 & 1 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 & 0\end{array}\right)$

Boundary matrix

Algorithm 2: Reduction of the boundary matrix
Input: a boundary matrix Δ
Output: a reduced matrix $\widetilde{\Delta}$
for $j \leftarrow 1$ to n do
while there exists $i<j$ with $\delta(i)=\delta(j)$ do
add column i to column j ;

$$
\begin{gathered}
\sigma^{1} \\
\sigma^{2} \\
\sigma^{3} \\
\sigma^{4} \\
\sigma^{5} \\
\sigma^{6} \\
\sigma^{7} \\
\sigma^{8} \\
\sigma^{9} \\
\sigma^{10}
\end{gathered}
$$

$$
\begin{aligned}
& \begin{array}{llllllllllllllll}
\sigma^{1} & \sigma^{2} & \sigma^{3} & \sigma^{4} & \sigma^{5} & \sigma^{6} & \sigma^{7} & 8^{8} \times{ }^{\hat{0}} \\
\sigma^{9} & \sigma^{10}
\end{array} \\
& \begin{array}{c}
\sigma^{1} \\
\sigma^{2} \\
\sigma^{3} \\
\sigma^{4} \\
\sigma^{5} \\
\sigma^{6} \\
\sigma^{7} \\
\sigma^{8} \\
\sigma^{9} \\
\sigma^{10}
\end{array}\left(\begin{array}{llllllllll}
0 & 0 & 0 & 0 & 1 & 0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & 1 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 1 & 1 & 1 & 1 \\
0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0
\end{array}\right)
\end{aligned}
$$

Boundary matrix

Algorithm 2: Reduction of the boundary matrix
Input: a boundary matrix Δ
Output: a reduced matrix $\widetilde{\Delta}$
for $j \leftarrow 1$ to n do
while there exists $i<j$ with $\delta(i)=\delta(j)$ do add column i to column j ;

Boundary matrix

Algorithm 2: Reduction of the boundary matrix
Input: a boundary matrix Δ
Output: a reduced matrix $\widetilde{\Delta}$
for $j \leftarrow 1$ to n do
while there exists $i<j$ with $\delta(i)=\delta(j)$ do
add column i to column j ;

$$
\begin{aligned}
& \begin{array}{l}
\sigma^{1} \\
\sigma^{2} \\
\sigma^{3} \\
\sigma^{4} \\
\sigma^{5} \\
\sigma^{6} \\
\sigma^{7} \\
\sigma^{8} \\
\sigma^{9} \\
\sigma^{10}
\end{array}\left(\begin{array}{llllllllll}
0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 1 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0
\end{array}\right)
\end{aligned}
$$

Boundary matrix

Algorithm 2: Reduction of the boundary matrix
Input: a boundary matrix Δ
Output: a reduced matrix $\widetilde{\Delta}$
for $j \leftarrow 1$ to n do
while there exists $i<j$ with $\delta(i)=\delta(j)$ do add column i to column j ;

$$
\begin{aligned}
& \begin{array}{c}
\sigma^{1} \\
\sigma^{2} \\
\sigma^{3} \\
\sigma^{4} \\
\sigma^{5} \\
\sigma^{6} \\
\sigma^{7} \\
\sigma^{8} \\
\sigma^{9} \\
\sigma^{10}
\end{array}\left(\begin{array}{llllllllll}
0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 1 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
1 \\
0 & 0 & 0 & 0 & 0 & 0 & 0
\end{array}\right) \\
& \sigma^{1} \sigma^{2} \sigma^{3} \sigma^{4}\left(\sigma ^ { 5 } (\sigma ^ { 6 }) \left(\sigma^{7} \sigma^{8} \sigma^{9} \sigma^{10}\right.\right. \\
& ++++-\quad-\quad+\quad-
\end{aligned}
$$

Algorithm for homology

Incremental computation of the homology

```
Input: an increasing sequence of simplicial complexes \(K^{1} \subset \cdots \subset K^{n}=K\)
Output: the Betti numbers \(\beta_{0}(K), \ldots \beta_{d}(K)\)
\(\beta_{0} \leftarrow 0, \ldots, \beta_{d} \leftarrow 0 ;\)
for \(i \leftarrow 1\) to \(n\) do
    \(d=\operatorname{dim}\left(\sigma^{i}\right) ;\)
    if \(\sigma^{i}\) is positive then
        \(\beta_{k}\left(K^{i}\right) \leftarrow \beta_{k}\left(K^{i}\right)+1 ;\)
    else if \(d>0\) then
        \(\beta_{k-1}\left(K^{i}\right) \leftarrow \beta_{k-1}\left(K^{i-1}\right)-1 ;\)
```

Gauss reduction of the boundary matrix

```
Input: a boundary matrix \(\Delta\)
Output: a reduced matrix \(\widetilde{\Delta}\)
for \(i \leftarrow 1 j\) o \(n\) do
        while there exists \(i<j\) with \(\delta(i)=\delta(j)\) do
            add column \(i\) to column j ;
```


Conclusion

We defined the standard algorithm for (persistent homology).
It works incrementally, by using the predicate 'test of positivity of a simplex'.
Using the algorithm, we have been able to compute the homology groups of the spheres, and as a consequence we proved the Invariance of Domain.

Homework: Exercises 31, 34
Facultative: Exercises 33

Conclusion

We defined the standard algorithm for (persistent homology).
It works incrementally, by using the predicate 'test of positivity of a simplex'.
Using the algorithm, we have been able to compute the homology groups of the spheres, and as a consequence we proved the Invariance of Domain.

Homework: Exercises 31, 34

Facultative: Exercises 33

Merci !

