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Introduction 2/15 (1/2)

Yesterday we have defined

8n_|_2 8n_|_1 15) 8n—l

chain complex i3 Cpi 1 (K) ——— O (K) ———— Ch 1 (K) ——— ..
n-cycles Zn(K) = Ker(0,)
n-boundaries B, (K) =1m(0p41)

nt™ homology group H,(K) = Z,(K)/B,(K)



Introduction 2/15 (2/2)

Yesterday we have defined

] 8n+2 8n_|_1 On an—l
chain complex i — O (K) ———— Cp(K) ———— Cp 1 (K) ——— . ..
n-cycles Zn(K) = Ker(0,)
n-boundaries B, (K) =1m(0p41)

nt™ homology group | Hn(K) = Z,(K)/B,(K)

Today's objectives: how to compute them? what do they represent?



I - Incremental algorithm



Ordering the simplicial complex 4/15

Let K be a simplicial complex with n simplices. Choose a total order of the simplices
ol <ot <. <o”

such that
Vo,re K, TC 0o — 7 <o.

In other words, a face of a simplex is lower than the simplex itself.
For every 1 < n, consider the simplicial complex

K'={o', .. 0"}

We have Vi < n, K"t = K*U {o"*t'}, and K™ = K. They form an inscreasing
sequence of simplicial complexes

K' c K? ¢ ... ¢ K"

B Y N N N A (0 ) 4




Positivity of simplices 5/15 (1/8)

R I PSS A (B B (p % .«

Kl K2 K3 K4 K5 K6 K? K8 K9 KlO

Let £ > 0. We will compute the homology groups of K* incrementally:
Hy(K'), He(K?), Hy(K?), H(K?"), Hi(K°), He(K®), Hy(K"), Hi(K®), Hi(K"), Hp(K'")



Positivity of simplices 5/15 (2/8)
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Let £ > 0. We will compute the homology groups of K* incrementally:
Hy(K'), He(K?), Hy(K?), H(K?"), Hi(K°), He(K®), Hy(K"), Hi(K®), Hi(K"), Hp(K'")

Definition: Let i € [1,n], and d = dim(c*). Recall that K* = K*~' U {0;}.
The simplex o is positive if there exists a cycle ¢ € Z4(K") that contains .

In other words, there exist ¢ = Zong €50 E C,(K") such that €,: = 1 and

On(c) = 0. Otherwise, o' is negative.

Example:
e 0! € K is positive because it is included in the cycle c = ¢! (indeed, 9y(c!) = 0).



Positivity of simplices 5/15 (3/8)
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Let £ > 0. We will compute the homology groups of K* incrementally:
Hy(K'), He(K?), Hy(K?), H(K?"), Hi(K°), He(K®), Hy(K"), Hi(K®), Hi(K"), Hp(K'")

Definition: Let i € [1,n], and d = dim(c*). Recall that K* = K*~' U {0;}.
The simplex o is positive if there exists a cycle ¢ € Z4(K") that contains .

In other words, there exist ¢ = Zong €50 E C,(K") such that €,: = 1 and

On(c) = 0. Otherwise, o' is negative.

Example:
e 0! € K is positive because it is included in the cycle c = ¢! (indeed, 9y(c!) = 0).

e 0% € K? is positive because it is included in the cycle ¢ = 02 (indeed, 9y(c?) = 0).



Positivity of simplices 5/15 (4/8)
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Let £ > 0. We will compute the homology groups of K* incrementally:
Hy(K'), He(K?), Hy(K?), H(K?"), Hi(K°), He(K®), Hy(K"), Hi(K®), Hi(K"), Hp(K'")

Definition: Let i € [1,n], and d = dim(c*). Recall that K* = K*~' U {0;}.
The simplex o is positive if there exists a cycle ¢ € Z4(K") that contains .

In other words, there exist ¢ = Zong €50 E C,(K") such that €,: = 1 and

On(c) = 0. Otherwise, o' is negative.
Example:
e 0! € K is positive because it is included in the cycle c = ¢! (indeed, 9y(c!) = 0).

e 0% € K? is positive because it is included in the cycle ¢ = 02 (indeed, 9y(c?) = 0).

e 0% € K® is negative because it is not included in a cycle Z;(K?). Indeed, C1(K?)
only contains 0 and o5, and 91(c°) = 0! + o2 # 0.



Positivity of simplices 5/15 (5/8)
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Let £ > 0. We will compute the homology groups of K* incrementally:
Hy(K'), He(K?), Hy(K?), H(K?"), Hi(K°), He(K®), Hy(K"), Hi(K®), Hi(K"), Hp(K'")

Definition: Let i € [1,n], and d = dim(c*). Recall that K* = K*~' U {0;}.
The simplex o is positive if there exists a cycle ¢ € Z4(K") that contains .

In other words, there exist ¢ = Zong €50 E C,(K") such that €,: = 1 and

On(c) = 0. Otherwise, o' is negative.

Example:
e 0! € K is positive because it is included in the cycle c = ¢! (indeed, 9y(c!) = 0).

e 0% € K? is positive because it is included in the cycle ¢ = 02 (indeed, 9y(c?) = 0).
e 0% € K® is negative because it is not included in a cycle Z;(K?). Indeed, C1(K?)
only contains 0 and o5, and 91(c°) = 0! + o2 # 0.

e 0% € K8 is positive because it is included in the cycle c = 0® + 0% + 07 4+ ¢°
(indeed, 91(c) = 20! + 202 + 203 + 20* = 0).



Positivity of simplices 5/15 (6/8)

Definition: Let i € [1,n], and d = dim(o;). Recall that K* = K*~1 U {o;}.
The simplex o; is positive if there exists a cycle ¢ € Z;(K") that contains o;.
Otherwise, o; is negative.

Remark: By adding ¢ in the simplicial complex, the only groups that may change are
Zd(KZ) and Bd_l(Ki).



Positivity of simplices 5/15 (7/8)

Definition: Let i € [1,n], and d = dim(o;). Recall that K* = K*~1 U {o;}.
The simplex o; is positive if there exists a cycle ¢ € Z;(K") that contains o;.
Otherwise, o; is negative.

Remark: By adding ¢ in the simplicial complex, the only groups that may change are
Zd(KZ) and Bd_l(Ki).

If 0% is positive, then 84(K") = B4(K*™1) +1,
and for all d’ # d, By (K*) = By (K™ 1).

Proof: We start by proving the following fact: if c € Z;(K") is a cycle that contains o,
then c is not homologous (in K*) to a cycle of ¢/ € Zz(K*™1).

By contradiction: if c = ¢ + b with ¢/ € Zy(K* ') and b € By(K"), then
c—c =be By(K"). This is absurd because we just added o;: it cannot appear in a
boundary of K*.

As a consequence, dim Z4(K*) = dim Z4(K*™1) + 1.
We conclude by using the relation 34(K*) = dim Z4(K"*) — dim By (K*).



Positivity of simplices 5/15 (8/8)

Definition: Let i € [1,n], and d = dim(o;). Recall that K* = K*~1 U {o;}.
The simplex o; is positive if there exists a cycle ¢ € Z;(K") that contains o;.
Otherwise, o; is negative.

Remark: By adding ¢ in the simplicial complex, the only groups that may change are
Zd(KZ) and Bd_l(Ki).

If 0% is negative, then B4_1(K*) = Bg_1 (K" 1) — 1,
and for all d #d — 1, By (K") = By (K 1).
Proof: We start by proving the following fact: d4(c") is not a boundary of K1,

Otherwise, we would have d4(0*) = 9a(c) with ¢ € Cy(K*™'), i.e. dy(0* +¢) =0.
Hence o + ¢ would be a cycle of K* that contains ¢, contradicting the negativity of o*.

As a consequence, dim By_1(K*) = dim By_{ (K" 1) + 1.
We conclude by using the relation 8;_1(K*) = dim Z;_1(K"*) — dim By_1(K").



Incremental algorithm 6/15 (1/2)

If o' is positive, then B4(K*) = Bq(K*™1) +1,
and for all d’ # d, By (K*) = By (K1).

If 0% is negative, then B4_1(K") = Bq_1 (K" 1) —1,
and forall d' #d—1, B4(K*) = Bg (K 1).

We deduce the following algorithm:

Input: an increasing sequence of simplicial complexes K! C --- C K" = K
Output: the Betti numbers [y(K),...34(K)
/80 < 0, ey Bd. — 0,
for i + 1 to n do

d = dim(o?);

if o' is positive then

| Br(KY) « Bp(K") + 1

else if d > 0 then

| Broa(KY) = B (K — 1




Dimension

Positivity

Bo(K*)
B1(K")

Incremental algorithm

6/15 (2/2)
® ® ® ® *—o ‘—I :j I:I Z
o ® o

Kl K2 K3 K4 K5 K6 K? KS K9 KlO
0 0 0 0 1 1 1 1 1 2

+ + + + — — — + + —

1 2 3 4 3 2 1 1 1 1

0 0 0 0 0 0 0 1 2 1

We deduce the following algorithm:
Input: an increasing sequence of simplicial complexes K! C --- C K" = K

Output: the Betti numbers [y(K),...34(K)
/80 — 0? seey ﬁd. — 0:
for i + 1 to n do

d = dim(o?);
if o' is positive then

| Be(K?) = Br(K*) + 1;
else if d > 0 then

| Bro1(K*) « Bpo1 (K1) — 1




I1 - Applications



Number of connected components g5 (13

Proposition: Let X be a (triangulable) topological space. Then its 0" Betti number,
Bo(X), is equal to the number of connected components of X.

Let K be a triangulation of X.

N 40V



Number of connected components /15 (53

Proposition: Let X be a (triangulable) topological space. Then its 0" Betti number,
Bo(X), is equal to the number of connected components of X.

Let K be a triangulation of X.

First, a definition: say that a simplicial complex L is combinatorially connected of for
every vertex v, w of L, there exists a sequence of edges that connects v and w:

v, v1], [v1,v2], |v2,vs3], ..., |vn,w].

Let m be the number of connected components X, and let K be triangulation of X.
We accept the following equivalent statement: there exists m disjoint, non-empty and
combinatorially connected simplicial sub-complex L1, ..., L,, of K such that



Number of connected components g5 (33

Proposition: Let X be a (triangulable) topological space. Then its 0" Betti number,
Bo(X), is equal to the number of connected components of X.

Let K be a triangulation of X.

K

Proof: Let 1" be a spanning forest of K, that is, a union of spanning trees. It admits m
combinatorially connected components.

Consider an ordering of the simplices of K that begins with an ordering of T'.
Apply the incremental algorithm. Each vertex increases 3y by 1.

Since T is a tree, all its edges are negative simplices (7" has no cycles), hence decrease
By. Each tree of the forest contains k& — 1 edges, where k is the number of vertices of
the corresponding component.

Since T' is a spanning tree, each other edges of K is positive, hence 5y does not change.
Similarly, the other simplices of K do not change 5,. We deduce the result.



Homology of spheres 9/15 (1/3)

For any n > 1, consider the vertex set V = {0,...,n}, and the simplicial complex
A,={SCV,S+#0}.
We call it the simplicial standard n-simplex. Define its boundary as
0A, = A, \ V.

The simplicial complex 0A,, is a triangulation of the (n — 1)-sphere S,,_; C R".
As a consequence, for all ¢ > 0, H;(S,) = H;(0A,11).

A /NSO

Ag 0As




Homology of spheres 9/15 (2/3)

For any n > 1, consider the vertex set V = {0,...,n}, and the simplicial complex
A,={SCV,S+#0}.
We call it the simplicial standard n-simplex. Define its boundary as
0A, = A, \ V.

The simplicial complex 0A,, is a triangulation of the (n — 1)-sphere S,,_; C R".
As a consequence, for all ¢ > 0, H;(S,) = H;(0A,11).

A /NSO

Ao 00,
Proposition: The Betti numbers of S,, are:
o 5,(S,)=1fori=0orn,
o 5,(S,) =0 else.




Homology of spheres 9/15 (3/3)

Proof: Consider the simplicial standard n-simplex A,,. |t is homotopy equivalent to a
point (its topological realization deform retracts on any point of it). Hence A,, has the

same Betti numbers as the point:

L 51(An) —
o Bi(An) =0 fori > 0.

Now, if we run the incremental algorithm for homology on A,,, but stopping before
adding the n-simplex V', we would obtain the Betti numbers of 0A,,.

Note that the n-simplex is negative. Hence

* Bn(0A,) = Bn( n) +
o 5,(0A,) = Bi(A for ? 7é n.

A LSO

Az Az
Proposition: The Betti numbers of S,, are:
o 5,(S,)=1fori=0orn,
o 5,(S,) =0 else.




Invariance of domain 10/15

For every integers m, n such that m # n, the spaces
R™ and R™ are not homeomorphic.

Proof: Let m,n such that m # n. By contradiction, suppose that R” and R"* are
homeomorphic via f.

Let O denote the origin of R™. By restriction, we get a homeomorphism

R™\ {0} = R™\ {f(0)}.

We deduce the following weaker statement: R™ \ {0} and R™ \ {f(0)} are homotopic
equivalent.

We deduce that the sphere S,,_1 and S,,,_1 are homotopic equivalent.

Hence S,,_1 and S,,,_1 must admit the same homology groups. This contradict the
previous proposition.



Euler characteristic 11/15 (1/2)

Reminder: the Euler characteristic of a simplicial complex K is

X(K) = Z (—=1)* - (number of simplices of dimension 7).
0<<n

Proposition: Let X be a (triangulable) topological space. Then its Euler characteristic is
equal to

X(X) = Z (—1)"- Bi(X)

0<i<n

where n is the maximal integer such that 3;(X) # 0.



Euler characteristic 11/15 (2/2)

Proposition: Let X be a (triangulable) topological space. Then its Euler characteristic is
equal to

X(X) = Z (—1)" - Bi(X)

0<i<n

where n is the maximal integer such that 3;(X) # 0.

Proof: Let K be a triangulation of X. Pick an ordering K! C --- C K" = K of K,
with K = K"t U {o'} forall 2 < i < n.
By induction, let us show that, for all 1 < m <n,
Z (=1)"- Bi(K™) = Z (—1)* - (number of simplices of dimension i of K™).
0<i<m 0<i<m
For m =1, 0™ is a 0-simplex, and the equality reads 1 = 1.

Now, suppose that the equality is true for 1 < m < n, and consider the simplex o™ 1.
Let d = dim o™, The right-hand side of the Equation is increased by (—1)¢.

If 0™t is positive, then Bq(K™T!) = B4(K™) + 1, hence the left-hand side of the

Equation is increased by (—1)<.

Otherwise, it is negative, and By_1 (K™%!) = 84 1(K™) — 1, hence the left-hand side
of the Equation is increased by —(—1)471 = (—1)4.



I11 - Matrix algorithm



Boundary matrix

The only thing missing to apply the incremental algorithm is to determine whether a

simplex is positive or negative.

13/15 (1/8)

Let K be a simplicial complex, and ¢! < 0% < --- < ¢™ and ordering of its simplices.
p p g

Define the boundary matrix of K, denoted A, as follows: A is a n X n matrix, whose

(7, 7)-entry (i row, j* column is)

6

A;; = 1 if 0" isa face of 07 and |0"| = |o?| — 1
0 else. g2 g3 A o g
o! (o 0 0 0 0
10 0 0 O
o 10 0 0 0 O
o4 10 0 0 0 0 O
o 10 0 0 0 0 O
o 10 0 0 0 0 O
o 10 0 0 0 0 O
o 10 0 0 0 0 O
& 10 0 0 0 0 O
20 \0 0 0 0 0 0

oSO O O O O

o O

OO OO OO

o = O

OO O O O O




13/15 (2/8)

Boundary matrix

By adding columns one to the others, we create chains.

If we were able to reduce a column to zero, then we found a cycle.

O.l 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 0.10

~ N
OO OO —-H OO —-H - O
O O - OO OO OO
OO OO o oo o oo
OO —H - O OO O OO
O —A - O O OO O OO
— — O O O OO O OO
OO OO oo oo o oo
OO O OO o oo o oo
OO OO o oo o oo
OO OO o oo o oo
~_ -
— &N 0NN | o0 © I~ 0 o o
B b b b b b b b 010
yl TN
OO OO —-H OO —-H - O
O O - OO O OO
——N O O - OO OO OO
OO - 14 OO OO O O
OlH)I—I OO O O O O O O
— — O O O OO O OO
OO OO oo o o oo
OO OO o oo o oo
OO OO o oo o oo
OO OO o oo o oo
N~ -
— &N Mo < 0 © >~ o0 o O
B b b b b b b b 010

O1(c®>+ 0%+ 0" +0%) =0

01(0%) = 0% + 03



Boundary matrix 13/15 (3/8)

The process of reducing columns to zero is called Gauss reduction.
For any j € [1,n], define 5(j) = max{i € [1,n], A, ; # 0},
If A;; =0 for all j, then §(j) is undefined.

We say that the boundary matrix A is reduced if the map d is injective on its domain of

definition. &
14X 4

@XO@XO

ol 62 o3 ot 55 56 o7 gxoéaxgm
01(0000100000\
210 00011 0 0 0 0
10 00 0 0()1 0 0 0
410 0 00O OO 0 O
510 0 00O O OO0 0 1
10 0 0 0 0 0O O0OO0OTO0O
710 0 0 0 00O 0O O0O0O0
10 0 0 00OO O OO0 1
910 0 0 0 0 0 0 0 011
Lo \0 00 0O0O0O0GO0O0 0



13/15 (4/8)

5(j) do

Boundary matrix

Input: a boundary matrix é
while there exists i < j with 6(7)
L add column 7 to column j;

Output: a reduced matrix A

for <1 ton do

Algorithm 2: Reduction of the boundary matrix

9 0.10

Yo ©

ol 0% o3 ot o° 0% of

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 0.10

)

0

1

1
o0 0 0 0 0 1/]0|1 O

0O 0,1 0 O
1 0,01 O

0000000001
000000000 0
0000000000 0
000000000 1
0000000001
\0 0000000 0 0

0 0 0 0 1
0 0 0 0 1
0 0 0 0 0 1

[

0_1
0_2
0_3
0_4
0_5
0_6
0_7
08
0_9
0_10

0
0
1 0 0 O
1)1 0

o0 0 0 0 0 0 0 1
0O 0 0 0 0 0 0 0 0
o0 0 0 0 0 0 0 0
0O 000 0 0 0 0 01

0000 0C(
\0 00000000 0

0O 0 0 0 0 1

0

0

o 0 0 0 0 0 0 0 0 1

0
0




13/15 (5/8)

Boundary matrix

Algorithm 2: Reduction of the boundary matrix

—

Output: a reduced matrix A

for <1 ton do

Input: a boundary matrix A

5(j) do

while there exists i < j with 6(7)

L add column 7 to column j;

9 0.10

0 0
Lo

1100 O

Yo

Yo ©

ol 0% o3 ot o° 0% of

A
0
o

X
o)
ol 02 03 o4 g% o8 o7 & o9 10

(0000100100\

1

0 0 0 0 1 0 01
0O 0 0 0 1 1 O

[

0 0 0 0 0 1

o0 0 0 0 0 1/]0|1 O

0O 00 0 0 0 000 1

o 00 0 0 0 0 00 O
o 0o 0 0 0 0 0 0/0 O
0O 000 0 0 000 1

\0 0000000 0 0

0O 00 0 0 0 000 1

2

0_1
o

0_3

0_4

0_5

0_6

0_7

08

0_9
0_10

0O 000 1 1 00 1 0

0O 0 0 0 0C(1)1

0

0

1

o0 0 0 0 0 1 0 1 0

0
0
0

o0 0 0 0 0 0 0 1
0O 0 0 0 0 0 0 0 0
o0 0 0 0 0 0 0 0

000000000 1
000000000 1
\0 00000000 0

— ™
b b

™

b b b b b b

<t 0 © b~ 0

o
i

(@)
© %



13/15 (6/8)

Boundary matrix

Algorithm 2: Reduction of the boundary matrix

—

Output: a reduced matrix A

for <1 ton do

Input: a boundary matrix A

5(j) do

while there exists i < j with 6(7)
L add column 7 to column j;

Yo ©

ot 02 o3 ot o® 0% o

~ N
OO OO - OO - - O
O — O O OO o oo
OO OO o oo o oo
OO - - OO OO O O
O - - OO OO O OO
—— — O OO OO OO
OO OO o oo o oo
OO OO o oo o oo
OO OO OO oo o oo
OO OO oo oo o oo
~ -
- o4 o < 0 © >~ o0 o o
B b b b b b b o) 010
~ N
OO OO - OO - - O
O — O O OO o oo
—l— O OO OO O OO
OO - - OO OO o O
O r— - OO OO OO
——O O O OO OO
OO OO o oo o oo
OO OO o oo o oo
O O OO OO o o oo
OO OO O oo o oo
~ -
— o o < 0 © >~ o0 O

(o
o

o
o
o
o
o
o
o
0_10



13/15 (7/8)

Boundary matrix

Algorithm 2: Reduction of the boundary matrix

Input: a boundary matrix A

—

Output: a reduced matrix A

for <1 ton do

X M ma
vo ©°
X X
6,00/0
X
Yo
b~
o
Ne)
o}
10
o
<
o}
(ap)
b
(@]
o}
Lo
o}
Q
o
2 ol
= " S
| Co S
<> X o
> «oxa
<= o
N g ©
s 8 -
'~ = 5
o
V O ©
- o X
St
..Tb.n...u 0
m o o
o = <
-~ o)
S o
S .
o) o}
=2 ~
- |
< b
2 — _
] S

)

0O 0 0 0 O
1 0 0 0 0

0000011000
0 000O00O0TO0O0 0
0 000O00O0GO0O0O0 1
0 000O00O0O0O0 O
0 000O00O0O0O0 O
0 000O0DO0GO0O0 0 1
0 000O00O0GO0O OO0 1
\0 000 0O0O0O0 0 0

0O 0 0 0 1
0O 0 0 0 1

|

0_2
0_3
0_4

n © M~ o O
B © b b b

0_10

)
1 0 0 O

0O 0 0 0 O
1 0 01 O

0O 0 0 0 0(1)0(C1)O0
o0 0 0 0 0 0 0 1
O 0 0 0 0 0 0 0 0
o0 0 0 0 0 0 0 0
0O 00 0 0 0 0 0 01

000000000 1
\0 00000000 0

0O 0 0 0 1
0 0 0 0 1
0O 0 0 0 0 1

(
0
0
0
0




Boundary matrix 13/15 (8/8)

Algorithm 2: Reduction of the boundary matrix Suppose that the boundary
Input: a boundary matrix A matrix is reduced. Let j € [1,n].
Output: a reduced matrix A If 5(j) is defined, then the simplex o7 is

for <1 ton do

_ o _ . negative.
L while there exists i < j with 6(i) = 0(j) do

| add column i to column j; Otherwise, it is positive.

b
6

6X§6XX6\

6 ¢

ol 02 o3 ot o5 o5 o7 gDXOQXUm
01(0000100000\
210 00 0()1 0 0 0 O
s 10 0 0 0 01 0 0 0
10 0 0 0 0 00 0O
s 10 00 00O OO0 O0 1
510 0000 OO OO0 O
710 0 0 0 0 0 0 0 0 O
s10 00 00 0 OO0 0 1
o210 0 0 00O OO0 O0CC
o \0 00000000 0

—_
DN
w
W
(@)
(@)
~
(02¢)
Ne)
=
@)

Q
Q
)
)
)
Q
Q
)

n
+ 9
+ 9
n
|
|
|
n
n
|



Algorithm for homology 14/15

Incremental computation of the homology

Input: an increasing sequence of simplicial complexes K! C --- C K" = K
Output: the Betti numbers [y(K),...04(K)
By < 0,..., 85 < 0;
for 1 +— 1 to n do
d = dim(c?);
if o’ is positive then
| Br(K") + Bp(K') + 1;
else if d > 0 then
| Bro1(K*) « Bp—1 (K1) — 1

Gauss reduction of the boundary matrix

Input: a boundary matrix A
Output: a reduced matrix A
for i1 < 1 Jo ndo
while there exists i < j with 6(i) = 0(j) do
L L add column 7 to column j;




Conclusion
We defined the standard algorithm for (persistent homology).
It works incrementally, by using the predicate ‘test of positivity of a simplex’.

Using the algorithm, we have been able to compute the homology groups of the
spheres, and as a consequence we proved the Invariance of Domain.

Homework: Exercises 31, 34

Facultative: Exercises 33



Conclusion
We defined the standard algorithm for (persistent homology).
It works incrementally, by using the predicate ‘test of positivity of a simplex’.

Using the algorithm, we have been able to compute the homology groups of the
spheres, and as a consequence we proved the Invariance of Domain.

Homework: Exercises 31, 34

Facultative: Exercises 33

Merci !



