EMAp Summer Course

Topological Data Analysis with Persistent Homology

https://raphaeltinarrage.github.io/EMAp.html

Lesson 6: Incremental algorithm

Last update: February 2, 2021

Introduction

2/15 (1/2)

Yesterday we have defined

chain complex
$$\dots \xrightarrow{\partial_{n+2}} C_{n+1}(K) \xrightarrow{\partial_{n+1}} C_n(K) \xrightarrow{\partial_n} C_{n-1}(K) \xrightarrow{\partial_{n-1}} \dots$$

n-cycles $Z_n(K) = \operatorname{Ker}(\partial_n)$

n-boundaries $B_n(K) = \operatorname{Im}(\partial_{n+1})$

 n^{th} homology group $H_n(K) = Z_n(K)/B_n(K)$

Introduction

2/15 (2/2)

Yesterday we have defined

I - Incremental algorithm

II - Applications

III - Matrix algorithm

Ordering the simplicial complex

4/15

Let K be a simplicial complex with n simplices. Choose a total order of the simplices

$$\sigma^1 < \sigma^2 < \ldots < \sigma^n$$

such that

$$\forall \sigma, \tau \in K, \ \tau \subsetneq \sigma \implies \tau < \sigma.$$

In other words, a face of a simplex is lower than the simplex itself. For every $i \leq n$, consider the simplicial complex

$$K^i = \{\sigma^1, ..., \sigma^i\}.$$

We have $\forall i \leq n, K^{i+1} = K^i \cup \{\sigma^{i+1}\}$, and $K^n = K$. They form an inscreasing sequence of simplicial complexes

$$K^1 \subset K^2 \subset \dots \subset K^n.$$

Let $k \ge 0$. We will compute the homology groups of K^i incrementally: $H_k(K^1), \ H_k(K^2), \ H_k(K^3), \ H_k(K^4), \ H_k(K^5), \ H_k(K^6), \ H_k(K^7), \ H_k(K^8), \ H_k(K^9), \ H_k(K^{10})$

5/15 (2/8)

Let $k \ge 0$. We will compute the homology groups of K^i incrementally: $H_k(K^1), \ H_k(K^2), \ H_k(K^3), \ H_k(K^4), \ H_k(K^5), \ H_k(K^6), \ H_k(K^7), \ H_k(K^8), \ H_k(K^9), \ H_k(K^{10})$

Definition: Let $i \in [\![1, n]\!]$, and $d = \dim(\sigma^i)$. Recall that $K^i = K^{i-1} \cup \{\sigma_i\}$. The simplex σ^i is *positive* if there exists a cycle $c \in Z_d(K^i)$ that contains σ^i . In other words, there exist $c = \sum_{\sigma \in K_{(n)}^i} \epsilon_{\sigma} \cdot \sigma \in C_n(K^i)$ such that $\epsilon_{\sigma^i} = 1$ and $\partial_n(c) = 0$. Otherwise, σ^i is *negative*.

Example:

• $\sigma^1 \in K^1$ is **positive** because it is included in the cycle $c = \sigma^1$ (indeed, $\partial_0(\sigma^1) = 0$).

5/15 (3/8)

Let $k \ge 0$. We will compute the homology groups of K^i incrementally: $H_k(K^1), \ H_k(K^2), \ H_k(K^3), \ H_k(K^4), \ H_k(K^5), \ H_k(K^6), \ H_k(K^7), \ H_k(K^8), \ H_k(K^9), \ H_k(K^{10})$

Definition: Let $i \in [\![1, n]\!]$, and $d = \dim(\sigma^i)$. Recall that $K^i = K^{i-1} \cup \{\sigma_i\}$. The simplex σ^i is *positive* if there exists a cycle $c \in Z_d(K^i)$ that contains σ^i . In other words, there exist $c = \sum_{\sigma \in K_{(n)}^i} \epsilon_{\sigma} \cdot \sigma \in C_n(K^i)$ such that $\epsilon_{\sigma^i} = 1$ and $\partial_n(c) = 0$. Otherwise, σ^i is *negative*.

Example:

- $\sigma^1 \in K^1$ is **positive** because it is included in the cycle $c = \sigma^1$ (indeed, $\partial_0(\sigma^1) = 0$).
- $\sigma^2 \in K^2$ is **positive** because it is included in the cycle $c = \sigma^2$ (indeed, $\partial_0(\sigma^2) = 0$).

5/15 (4/8)

Let $k \ge 0$. We will compute the homology groups of K^i incrementally: $H_k(K^1), \ H_k(K^2), \ H_k(K^3), \ H_k(K^4), \ H_k(K^5), \ H_k(K^6), \ H_k(K^7), \ H_k(K^8), \ H_k(K^9), \ H_k(K^{10})$

Definition: Let $i \in [\![1, n]\!]$, and $d = \dim(\sigma^i)$. Recall that $K^i = K^{i-1} \cup \{\sigma_i\}$. The simplex σ^i is *positive* if there exists a cycle $c \in Z_d(K^i)$ that contains σ^i . In other words, there exist $c = \sum_{\sigma \in K_{(n)}^i} \epsilon_{\sigma} \cdot \sigma \in C_n(K^i)$ such that $\epsilon_{\sigma^i} = 1$ and $\partial_n(c) = 0$. Otherwise, σ^i is *negative*.

Example:

- $\sigma^1 \in K^1$ is **positive** because it is included in the cycle $c = \sigma^1$ (indeed, $\partial_0(\sigma^1) = 0$).
- $\sigma^2 \in K^2$ is **positive** because it is included in the cycle $c = \sigma^2$ (indeed, $\partial_0(\sigma^2) = 0$).

• $\sigma^6 \in K^5$ is **negative** because it is not included in a cycle $Z_1(K^5)$. Indeed, $C_1(K^5)$ only contains 0 and σ_5 , and $\partial_1(\sigma^5) = \sigma^1 + \sigma^2 \neq 0$.

5/15 (5/8)

Let $k \ge 0$. We will compute the homology groups of K^i incrementally: $H_k(K^1), \ H_k(K^2), \ H_k(K^3), \ H_k(K^4), \ H_k(K^5), \ H_k(K^6), \ H_k(K^7), \ H_k(K^8), \ H_k(K^9), \ H_k(K^{10})$

Definition: Let $i \in [\![1, n]\!]$, and $d = \dim(\sigma^i)$. Recall that $K^i = K^{i-1} \cup \{\sigma_i\}$. The simplex σ^i is *positive* if there exists a cycle $c \in Z_d(K^i)$ that contains σ^i . In other words, there exist $c = \sum_{\sigma \in K_{(n)}^i} \epsilon_{\sigma} \cdot \sigma \in C_n(K^i)$ such that $\epsilon_{\sigma^i} = 1$ and $\partial_n(c) = 0$. Otherwise, σ^i is *negative*.

Example:

- $\sigma^1 \in K^1$ is **positive** because it is included in the cycle $c = \sigma^1$ (indeed, $\partial_0(\sigma^1) = 0$).
- $\sigma^2 \in K^2$ is **positive** because it is included in the cycle $c = \sigma^2$ (indeed, $\partial_0(\sigma^2) = 0$).

• $\sigma^6 \in K^5$ is **negative** because it is not included in a cycle $Z_1(K^5)$. Indeed, $C_1(K^5)$ only contains 0 and σ_5 , and $\partial_1(\sigma^5) = \sigma^1 + \sigma^2 \neq 0$.

• $\sigma^8 \in K^8$ is **positive** because it is included in the cycle $c = \sigma^5 + \sigma^6 + \sigma^7 + \sigma^8$ (indeed, $\partial_1(c) = 2\sigma^1 + 2\sigma^2 + 2\sigma^3 + 2\sigma^4 = 0$).

5/15 (6/8)

Definition: Let $i \in [\![1, n]\!]$, and $d = \dim(\sigma_i)$. Recall that $K^i = K^{i-1} \cup \{\sigma_i\}$. The simplex σ_i is *positive* if there exists a cycle $c \in Z_d(K^i)$ that contains σ_i . Otherwise, σ_i is *negative*.

Remark: By adding σ^i in the simplicial complex, the only groups that may change are $Z_d(K^i)$ and $B_{d-1}(K^i)$.

5/15 (7/8)

Definition: Let $i \in [\![1, n]\!]$, and $d = \dim(\sigma_i)$. Recall that $K^i = K^{i-1} \cup \{\sigma_i\}$. The simplex σ_i is *positive* if there exists a cycle $c \in Z_d(K^i)$ that contains σ_i . Otherwise, σ_i is *negative*.

Remark: By adding σ^i in the simplicial complex, the only groups that may change are $Z_d(K^i)$ and $B_{d-1}(K^i)$.

Lemma: If σ^i is positive, then $\beta_d(K^i) = \beta_d(K^{i-1}) + 1$, and for all $d' \neq d$, $\beta_{d'}(K^i) = \beta_{d'}(K^{i-1})$.

Proof: We start by proving the following fact: if $c \in Z_d(K^i)$ is a cycle that contains σ_i , then c is not homologous (in K^i) to a cycle of $c' \in Z_d(K^{i-1})$.

By contradiction: if c = c' + b with $c' \in Z_d(K^{i-1})$ and $b \in B_d(K^i)$, then $c - c' = b \in B_d(K^i)$. This is absurd because we just added σ_i : it cannot appear in a boundary of K^i .

As a consequence, $\dim Z_d(K^i) = \dim Z_d(K^{i-1}) + 1$.

We conclude by using the relation $\beta_d(K^i) = \dim Z_d(K^i) - \dim B_d(K^i)$.

5/15 (8/8)

Definition: Let $i \in [\![1, n]\!]$, and $d = \dim(\sigma_i)$. Recall that $K^i = K^{i-1} \cup \{\sigma_i\}$. The simplex σ_i is *positive* if there exists a cycle $c \in Z_d(K^i)$ that contains σ_i . Otherwise, σ_i is *negative*.

Remark: By adding σ^i in the simplicial complex, the only groups that may change are $Z_d(K^i)$ and $B_{d-1}(K^i)$.

Lemma: If σ^i is negative, then $\beta_{d-1}(K^i) = \beta_{d-1}(K^{i-1}) - 1$, and for all $d' \neq d - 1$, $\beta_{d'}(K^i) = \beta_{d'}(K^{i-1})$.

Proof: We start by proving the following fact: $\partial_d(\sigma^i)$ is not a boundary of K^{i-1} .

Otherwise, we would have $\partial_d(\sigma^i) = \partial_d(c)$ with $c \in C_d(K^{i-1})$, i.e. $\partial_d(\sigma^i + c) = 0$. Hence $\sigma^i + c$ would be a cycle of K^i that contains c, contradicting the negativity of σ^i . As a consequence, $\dim B_{d-1}(K^i) = \dim B_{d-1}(K^{i-1}) + 1$.

We conclude by using the relation $\beta_{d-1}(K^i) = \dim Z_{d-1}(K^i) - \dim B_{d-1}(K^i)$.

Incremental algorithm

6/15 (1/2)

Lemma: If σ^i is positive, then $\beta_d(K^i) = \beta_d(K^{i-1}) + 1$, and for all $d' \neq d$, $\beta_{d'}(K^i) = \beta_{d'}(K^{i-1})$.

Lemma: If σ^i is negative, then $\beta_{d-1}(K^i) = \beta_{d-1}(K^{i-1}) - 1$, and for all $d' \neq d - 1$, $\beta_{d'}(K^i) = \beta_{d'}(K^{i-1})$.

We deduce the following algorithm:

Input: an increasing sequence of simplicial complexes $K^1 \subset \cdots \subset K^n = K$ Output: the Betti numbers $\beta_0(K), ... \beta_d(K)$ $\beta_0 \leftarrow 0, ..., \beta_d \leftarrow 0;$ for $i \leftarrow 1$ to n do $d = \dim(\sigma^i);$ if σ^i is positive then $| \beta_k(K^i) \leftarrow \beta_k(K^i) + 1;$ else if d > 0 then $| \beta_{k-1}(K^i) \leftarrow \beta_{k-1}(K^{i-1}) - 1;$

Incremental algorithm

6/15 (2	2/2)
---------	------

	•	• •	•••	•••	• •					
	K^1	K^2	K^3	K^4	K^5	K^6	K^7	K^8	K^9	K^{10}
Dimension	0	0	0	0	1	1	1	1	1	2
Positivity	+	+	+	+	_	_	_	+	+	
$eta_0(K^i)$	1	2	3	4	3	2	1	1	1	1
$eta_1(K^i)$	0	0	0	0	0	0	0	1	2	1

We deduce the following algorithm:

Input: an increasing sequence of simplicial complexes $K^1 \subset \cdots \subset K^n = K$ Output: the Betti numbers $\beta_0(K), \dots \beta_d(K)$ $\beta_0 \leftarrow 0, \dots, \beta_d \leftarrow 0;$ for $i \leftarrow 1$ to n do $d = \dim(\sigma^i);$ if σ^i is positive then $| \beta_k(K^i) \leftarrow \beta_k(K^i) + 1;$ else if d > 0 then $| \beta_{k-1}(K^i) \leftarrow \beta_{k-1}(K^{i-1}) - 1;$ I - Incremental algorithm

II - Applications

III - Matrix algorithm

Number of connected components

8/15 (1/3)

Proposition: Let X be a (triangulable) topological space. Then its 0^{th} Betti number, $\beta_0(X)$, is equal to the number of connected components of X.

Let K be a triangulation of X.

Number of connected components

8/15 (2/3)

Proposition: Let X be a (triangulable) topological space. Then its 0^{th} Betti number, $\beta_0(X)$, is equal to the number of connected components of X.

Let K be a triangulation of X.

First, a definition: say that a simplicial complex L is *combinatorially connected* of for every vertex v, w of L, there exists a sequence of edges that connects v and w:

$$[v, v_1], [v_1, v_2], [v_2, v_3], \dots, [v_n, w].$$

Let m be the number of connected components X, and let K be triangulation of X. We accept the following equivalent statement: there exists m **disjoint**, **non-empty** and **combinatorially connected** simplicial sub-complex $L_1, ..., L_m$ of K such that

$$K = \bigcup_{1 \le i \le m} L_i.$$

Number of connected components

8/15 (3/3)

Proposition: Let X be a (triangulable) topological space. Then its 0^{th} Betti number, $\beta_0(X)$, is equal to the number of connected components of X.

Let K be a triangulation of X.

Proof: Let T be a spanning forest of K, that is, a union of spanning trees. It admits m combinatorially connected components.

Consider an ordering of the simplices of K that begins with an ordering of T.

Apply the incremental algorithm. Each vertex increases β_0 by 1.

Since T is a tree, all its edges are negative simplices (T has no cycles), hence decrease β_0 . Each tree of the forest contains k-1 edges, where k is the number of vertices of the corresponding component.

Since T is a spanning tree, each other edges of K is positive, hence β_0 does not change. Similarly, the other simplices of K do not change β_0 . We deduce the result.

Homology of spheres

9/15 (1/3)

For any $n \ge 1$, consider the vertex set $V = \{0, \ldots, n\}$, and the simplicial complex

 $\Delta_n = \{ S \subset V, S \neq \emptyset \}.$

We call it the *simplicial standard n*-*simplex*. Define its boundary as

$$\partial \Delta_n = \Delta_n \setminus V.$$

The simplicial complex $\partial \Delta_n$ is a triangulation of the (n-1)-sphere $\mathbb{S}_{n-1} \subset \mathbb{R}^n$. As a consequence, for all $i \geq 0$, $H_i(\mathbb{S}_n) = H_i(\partial \Delta_{n+1})$.

Homology of spheres

9/15 (2/3)

For any $n \ge 1$, consider the vertex set $V = \{0, \ldots, n\}$, and the simplicial complex

 $\Delta_n = \{ S \subset V, S \neq \emptyset \}.$

We call it the *simplicial standard n*-*simplex*. Define its boundary as

$$\partial \Delta_n = \Delta_n \setminus V.$$

The simplicial complex $\partial \Delta_n$ is a triangulation of the (n-1)-sphere $\mathbb{S}_{n-1} \subset \mathbb{R}^n$. As a consequence, for all $i \geq 0$, $H_i(\mathbb{S}_n) = H_i(\partial \Delta_{n+1})$.

Homology of spheres

9/15 (3/3)

Proof: Consider the simplicial standard *n*-simplex Δ_n . It is homotopy equivalent to a point (its topological realization deform retracts on any point of it). Hence Δ_n has the same Betti numbers as the point:

- $\beta_1(\Delta_n) = 1$,
- $\beta_i(\Delta_n) = 0$ for i > 0.

Now, if we run the incremental algorithm for homology on Δ_n , but stopping before adding the *n*-simplex V, we would obtain the Betti numbers of $\partial \Delta_n$.

Note that the n-simplex is negative. Hence

- $\beta_n(\partial \Delta_n) = \beta_n(\Delta_n) + 1$,
- $\beta_i(\partial \Delta_n) = \beta_i(\Delta_n)$ for $i \neq n$.

Invariance of domain

10/15

Theorem (Invariance of Domain): For every integers m, n such that $m \neq n$, the spaces \mathbb{R}^n and \mathbb{R}^m are not homeomorphic.

Proof: Let m, n such that $m \neq n$. By contradiction, suppose that \mathbb{R}^n and \mathbb{R}^m are homeomorphic via f.

Let 0 denote the origin of \mathbb{R}^n . By restriction, we get a homeomorphism

 $\mathbb{R}^n \setminus \{0\} \to \mathbb{R}^m \setminus \{f(0)\}.$

We deduce the following weaker statement: $\mathbb{R}^n \setminus \{0\}$ and $\mathbb{R}^m \setminus \{f(0)\}$ are homotopic equivalent.

We deduce that the sphere S_{n-1} and S_{m-1} are homotopic equivalent.

Hence S_{n-1} and S_{m-1} must admit the same homology groups. This contradict the previous proposition.

Euler characteristic

Reminder: the Euler characteristic of a simplicial complex \boldsymbol{K} is

$$\chi(K) = \sum_{0 \le i \le n} (-1)^i \cdot (\text{number of simplices of dimension } i).$$

Proposition: Let X be a (triangulable) topological space. Then its Euler characteristic is equal to

$$\chi(X) = \sum_{0 \le i \le n} (-1)^i \cdot \beta_i(X)$$

where n is the maximal integer such that $\beta_i(X) \neq 0$.

Euler characteristic

11/15 (2/2)

Proposition: Let X be a (triangulable) topological space. Then its Euler characteristic is equal to

$$\chi(X) = \sum_{0 \le i \le n} (-1)^i \cdot \beta_i(X)$$

where n is the maximal integer such that $\beta_i(X) \neq 0$.

Proof: Let K be a triangulation of X. Pick an ordering $K^1 \subset \cdots \subset K^n = K$ of K, with $K^i = K^{i-1} \cup \{\sigma^i\}$ for all $2 \leq i \leq n$.

By induction, let us show that, for all $1 \le m \le n$,

 $\sum_{0 \le i \le m} (-1)^i \cdot \beta_i(K^m) = \sum_{0 \le i \le m} (-1)^i \cdot (\text{number of simplices of dimension } i \text{ of } K^m).$

For m = 1, σ^m is a 0-simplex, and the equality reads 1 = 1.

Now, suppose that the equality is true for $1 \le m < n$, and consider the simplex σ^{m+1} . Let $d = \dim \sigma^{m+1}$. The right-hand side of the Equation is increased by $(-1)^d$.

If σ^{m+1} is positive, then $\beta_d(K^{m+1}) = \beta_d(K^m) + 1$, hence the left-hand side of the Equation is increased by $(-1)^d$.

Otherwise, it is negative, and $\beta_{d-1}(K^{m+1}) = \beta_{d-1}(K^m) - 1$, hence the left-hand side of the Equation is increased by $-(-1)^{d-1} = (-1)^d$.

I - Incremental algorithm

II - Applications

III - Matrix algorithm

13/15 (1/8)

The only thing missing to apply the incremental algorithm is to determine whether a simplex is positive or negative.

Let K be a simplicial complex, and $\sigma^1 < \sigma^2 < \cdots < \sigma^n$ and ordering of its simplices. Define the *boundary matrix* of K, denoted Δ , as follows: Δ is a $n \times n$ matrix, whose (i, j)-entry (i^{th} row, j^{th} column is)

$$\Delta_{i,j} = 1 \text{ if } \sigma^i \text{ is a face of } \sigma^j \text{ and } |\sigma^i| = |\sigma^j| - 1$$

$$0 \text{ else.}$$

$$\sigma^1 \sigma^2 \sigma^3 \sigma^4 \sigma^5 \sigma^6 \sigma^7 \sigma^8 \sigma^9 \sigma^{10}$$

$$\sigma^1 \sigma^5 \sigma^6 \sigma^7 \sigma^3 \sigma^4 \sigma^5 \sigma^6 \sigma^7 \sigma^8 \sigma^9 \sigma^{10}$$

$$\sigma^1 \sigma^7 \sigma^3 \sigma^6 \sigma^7 \sigma^3 \sigma^4 \sigma^5 \sigma^6 \sigma^7 \sigma^8 \sigma^9 \sigma^{10}$$

$$\sigma^1 \sigma^7 \sigma^3 \sigma^7 \sigma^3 \sigma^4 \sigma^5 \sigma^6 \sigma^7 \sigma^8 \sigma^9 \sigma^{10}$$

$$\sigma^1 \sigma^7 \sigma^3 \sigma^7 \sigma^3 \sigma^4 \sigma^5 \sigma^6 \sigma^7 \sigma^8 \sigma^9 \sigma^{10}$$

$$\sigma^1 \sigma^7 \sigma^3 \sigma^7 \sigma^7 \sigma^7 \sigma^8 \sigma^9 \sigma^{10}$$

$$\sigma^1 \sigma^7 \sigma^7 \sigma^7 \sigma^7 \sigma^8 \sigma^9 \sigma^{10}$$

$$\sigma^1 \sigma^7 \sigma^7 \sigma^7 \sigma^8 \sigma^9 \sigma^{10}$$

$$\sigma^1 \sigma^7 \sigma^7 \sigma^8 \sigma^9 \sigma^{10}$$

$$\sigma^1 \sigma^7 \sigma^7 \sigma^7 \sigma^8 \sigma^9 \sigma^{10}$$

$$\sigma^1 \sigma^7 \sigma^8 \sigma^9 \sigma^{10}$$

13/15 (2/8)

By adding columns one to the others, we create chains. If we were able to reduce a column to zero, then we found a cycle.

																					6 ×	σ^{10}	s S
	σ^1	σ^2	σ^3	σ^4	σ^5	σ^6	σ^7	σ^8	σ^9	σ^{10}			σ^1	σ^2	σ^3	σ^4	σ^5	σ^6	σ^7	5 × 0	$\langle \sigma^9 \rangle$	σ^{10}	
σ^1	0	0	0	0	1	0	0	1	0	0		σ^1	(0	0	0	0	1	0	0	0	0	0	
σ^2	0	0	0	0	1	(1)	0	0	1	0		σ^2	0	0	0	0	1	1	0	0	1	0	
σ^3	0	0	0	0	0	(1)	1	0	0	0		σ^3	0	0	0	0	0	1	1	0	0	0	
σ^4	0	0	0	0	0	0	1	1	1	0		σ^4	0	0	0	0	0	0	1	0	1	0	
σ^5	0	0	0	0	0	0	0	0	0	1		σ^5	0	0	0	0	0	0	0	0	0	1	
σ^6	0	0	0	0	0	0	0	0	0	0		σ^6	0	0	0	0	0	0	0	0	0	0	
σ^7	0	0	0	0	0	0	0	0	0	0		σ^7	0	0	0	0	0	0	0	0	0	0	
σ^8	0	0	0	0	0	0	0	0	0	1		σ^8	0	0	0	0	0	0	0	0	0	1	
σ^9	0	0	0	0	0	0	0	0	0	1		σ^9	0	0	0	0	0	0	0	0	0	1	
σ^{10}	$\setminus 0$	0	0	0	0	0	0	0	0	0/		σ^{10}	$\setminus 0$	0	0	0	0	0	0	0	0	0/	
$\partial_1(\sigma^6)$) = 0	σ^2 –	$\vdash \sigma^3$	}			-				$\partial_1($	$\sigma^5 + \sigma$	σ^6 +	σ^7	$+ \alpha$	$\sigma^8)$	= 0	-		ノ		-	

The process of reducing columns to zero is called *Gauss reduction*. For any $j \in [\![1, n]\!]$, define $\delta(j) = \max\{i \in [\![1, n]\!], \Delta_{i,j} \neq 0\}.$

If $\Delta_{i,j} = 0$ for all j, then $\delta(j)$ is *undefined*.

We say that the boundary matrix Δ is *reduced* if the map δ is injective on its domain of definition.

 Algorithm 2: Reduction of the boundary matrix

 Input: a boundary matrix Δ

 Output: a reduced matrix $\widetilde{\Delta}$

 for $j \leftarrow 1$ to n do

 while there exists i < j with $\delta(i) = \delta(j)$ do

add column i to column j;

	σ^1	σ^2	σ^3	σ^4	σ^5	σ^6	σ^7	σ^8	σ^9	σ^{10}
$\sigma^1 \ \sigma^2$	(0)	0	0	0	1	0	0	1	0	0
σ^2	0	0	0	0	1	1	0	0	1	0
σ^3	0	0	0	0	0	1	1	0	0	0
σ^4	0	0	0	0	0	0	(1)	(1)	1	0
σ^5	0	0	0	0	0	0	$\overline{0}$	0	0	1
σ^6	0	0	0	0	0	0	0	0	0	0
σ^7	0	0	0	0	0	0	0	0	0	0
σ^8	0	0	0	0	0	0	0	0	0	1
σ^3 σ^4 σ^5 σ^6 σ^7 σ^8 σ^9 σ^{10}	0	0	0	0	0	0	0	0	0	1
σ^{10}	$\sqrt{0}$	0	0	0	0	0	0	0	0	0/

								,	$\int_{0}^{1} \sigma^{9}$	
	σ^1	σ^2	σ^3	σ^4	σ^5	σ^6	σ^7	ð	σ^9	σ^{10}
σ^1	(0)	0	0	0	1	0	0	1	0	$0 \setminus$
σ^2	0	0	0	0	1	1	0	0	1	0
σ^3	0	0	0	0	0	1	1	1	0	0
σ^4	0	0	0	0	0	0	1	0	1	0
σ^5	0	0	0	0	0	0	0	0	0	1
σ^6	0	0	0	0	0	0	0	0	0	0
σ^7	0	0	0	0	0	0	0	0	0	0
σ^8	0	0	0	0	0	0	0	0	0	1
σ^2 σ^3 σ^4 σ^5 σ^6 σ^7 σ^8 σ^9 σ^{10}	0	0	0	0	0	0	0	0	0	1
σ^{10}	$\setminus 0$	0	0	0	0	0	0	0	0	0/

13/15 (4/8)

Algorithm 2: Reduction of the boundary matrix **Input:** a boundary matrix Δ **Output:** a reduced matrix Δ for $j \leftarrow 1$ to n do while there exists i < j with $\delta(i) = \delta(j)$ do add column i to column j; 1 × 6 $\sigma^{1} \sigma^{2} \sigma^{3} \sigma^{4} \sigma^{5} \sigma^{6} \sigma^{7} \overset{\circ}{\sigma}^{\times} \overset{\circ}{\sigma}^{\circ} \overset{\circ}{\sigma}^{\circ}$ $\sigma^4 \sigma^5 \sigma^6 \sigma^7 \delta^{\circ \times \prime}$ σ^9 σ^9 σ^3 σ^{10} σ^{10} σ^1 σ^1 ()() σ^2 σ^2 $\mathbf{0}$ σ^3 σ^3 () ()(1)() σ^4 σ^4 ()() $\mathbf{0}$ () σ^5 σ^5 ()()()() σ^6 $\left(\right)$ σ^{6} () σ^7 $\left(\right)$ σ^7 () ()() σ^8 () σ^8 () $\mathbf{0}$ σ^9 $\left(\right)$ $\mathbf{0}$ σ^9 σ^{10} σ^{10}

13/15 (5/8)

13/15 (6/8)

Algorithm 2: Reduction of the boundary matrix	-										
Input: a boundary matrix Δ											
Output: a reduced matrix $\widetilde{\Delta}$											
for $j \leftarrow 1$ to n do											
while there exists $i < j$ with $\delta(i) = \delta(j)$ do add column i to column j ;											
$ \begin{array}{c} \ \ \ \ \ \ \ \ \ \ \ \ \ $	-									۶ ×	б б б б
$\sigma^1 \hspace{0.1 cm} \sigma^2 \hspace{0.1 cm} \sigma^3 \hspace{0.1 cm} \sigma^4 \hspace{0.1 cm} \sigma^5 \hspace{0.1 cm} \sigma^6 \hspace{0.1 cm} \sigma^7 \hspace{0.1 cm} \overset{\circ}{\mathfrak{o}} \hspace{0.1 cm} \overset{\circ}{\sigma} \hspace{0.1 cm} \sigma^9 \hspace{0.1 cm} \sigma^{10}$		σ^1	σ^2	σ^3	σ^4	σ^5	σ^6	σ^7	° ×	σ^9	σ^{10}
$\sigma^{1} / 0 \ 0 \ 0 \ 0 \ 1 \ 0 \ 0 \ 1 \ 0 \ 0 \$	σ^1	(0)	0	0	0	1	0	0	0	0	0
$\sigma^2 \begin{bmatrix} 0 & 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & 1 & 1 & 0 \end{bmatrix}$	σ^2	0	0	0	0	1	1	0	0	1	0
$\sigma^3 0 0 0 0 0 1 1 0 0 0$	σ^3	0	0	0	0	0	1	1	0	0	0
σ^4 0 0 0 0 0 0 1 0 1 0	σ^4	0	0	0	0	0	0	1	0	1	0
σ^5 0 0 0 0 0 0 0 0 0 1	σ^5	0	0	0	0	0	0	0	0	0	1
σ^6 0 0 0 0 0 0 0 0 0 0 0	σ^6	0	0	0	0	0	0	0	0	0	0
σ^7 0 0 0 0 0 0 0 0 0 0 0	σ^7	0	0	0	0	0	0	0	0	0	0
σ^8 0 0 0 0 0 0 0 0 0 1	σ^8	0	0	0	0	0	0	0	0	0	1
σ^9 0 0 0 0 0 0 0 0 0 1	σ^9	0	0	0	0	0	0	0	0	0	1
$\sigma^{10} \left(\begin{array}{cccccccccccccccccccccccccccccccccccc$	σ^{10}	$\sqrt{0}$	0	0	0	0	0	0	0	0	0/

13/15 (7/8)

A	lgoi	\mathbf{rith}	m 2	: Re	duct	ion	of th	e b	ound	lary m	atrix										
	Inp	ut:	a bo	unda	ary i	nati	$\operatorname{rix} \Delta$	<u> </u>													
	-				•		rix $\widehat{\Delta}$	-													
	for	$j \leftarrow$	1 to	n d	lo																
	1	whil	e th	ere e	exist	s i <	< j u	vith	$\delta(i)$	$=\delta(j)$) do										
		a	dd c	olun	nn i	to c	olun	ın j	;												e
										5											1 × °1
										σ^{10}										6 ×	$\times^{\circ}_{\sigma^{10}}$
									~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~			1	2	3	4	$\sigma^5$	$\sigma^{6}$	$\sigma^7$	5 ×	$\langle 0 \rangle$	$\times^{\circ}_{10}$
	$\sigma^1$	$\sigma^2$	$\sigma^3$	$\sigma^4$	$\sigma^5$	$\sigma^6$	$\sigma^7$	୪	$\sigma^9$	$\sigma^{10}$		$\sigma^{\perp}$	$\sigma^2$	$\sigma^{\circ}$	$\sigma$ -	$\sigma$	$\sigma^{\circ}$	$\sigma$ '	0	0	$\sigma^{10}$
$\sigma^1$	10	0	0	0	1	0	0	0	0	0	$\sigma^1$	$\langle 0 \rangle$	0	0	0	1	0	0	0	0	0
$\sigma^2$	0	0	0	0	1	1	0	0	1	0	$\sigma^2$	0	0	0	0	1	1	0	0	0	0
$\sigma^3$	$\begin{bmatrix} 0 \\ 0 \end{bmatrix}$	0	0	0	$\hat{0}$	1	1	0	$\hat{0}$	$\begin{bmatrix} 0 \\ 0 \end{bmatrix}$	$\sigma^3$	0	0	0	0	0	1	1	0	0	0
$\sigma^4$	$\begin{bmatrix} 0\\0 \end{bmatrix}$	0	0	0	0	0	(1)	0	(1)	$\begin{bmatrix} 0\\0 \end{bmatrix}$	-	$\begin{bmatrix} 0 \\ 0 \end{bmatrix}$	0	0	0	0	$\hat{0}$	1	0	0	0
		0	-		-	-	$\bigcirc$		$\smile$	Ŭ	$\sigma^4$		Ũ	Ũ	-	0	-		Ũ	0	
$\sigma^5$	$\begin{bmatrix} 0 \\ 0 \end{bmatrix}$	0	0	0	0	0	0	0	0	1	$\sigma^5$	0	0	0	0	0	0	0	0	0	T
$\sigma^6$	0	0	0	0	0	0	0	0	0	0	$\sigma^{6}$	0	0	0	0	0	0	0	0	0	0
$\sigma^7$	0	0	0	0	0	0	0	0	0	0	$\sigma^7$	0	0	0	0	0	0	0	0	0	0
$\sigma^8$	0	0	0	0	0	0	0	0	0	1	$\sigma^8$	0	0	0	0	0	0	0	0	0	1
$\sigma^9$	0	0	0	0	0	0	0	0	0	1		$\begin{bmatrix} 0\\0 \end{bmatrix}$	0	0	0	0	0	0	0	0	1
$\sigma^{10}$	$\setminus 0$	0	0	0	0	0	0	0	0	0/	$\sigma^9$		-		-	0	-	-	-	_	
2	۸ ۱								1	/	$\sigma^{10}$	$\setminus 0$	0	0	0	0	0	0	0	0	0/

Algorithm 2: Reduction of the boundary matrix         Input: a boundary matrix $\Delta$ Output: a reduced matrix $\widetilde{\Delta}$ for $j \leftarrow 1$ to $n$ do         while there exists $i < j$ with $\delta(i) = \delta(j)$ do         add column $i$ to column $j$ ;	Lemma: Suppose that the boundary matrix is reduced. Let $j \in [\![1, n]\!]$ . If $\delta(j)$ is defined, then the simplex $\sigma^j$ is negative. Otherwise, it is positive.
$\begin{array}{c} & & \sigma^{1} \ \sigma^{2} \ \sigma^{3} \ \sigma^{4} \ \sigma^{5} \ \sigma^{6} \\ & \sigma^{1} \\ & \sigma^{2} \\ & \sigma^{3} \\ & \sigma^{4} \\ & \sigma^{5} \\ & \sigma^{5} \\ & \sigma^{6} \\ & \sigma^{7} \\ & \sigma^{8} \\ & \sigma^{9} \\ & \sigma^{10} \end{array} \begin{pmatrix} \sigma^{1} \ \sigma^{2} \ \sigma^{3} \ \sigma^{4} \ \sigma^{5} \ \sigma^{6} \\ & \sigma^{0} \ 0 \ 0 \ 0 \ 0 \ 0 \ 0 \ 0 \ 0 \ 0 \$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$

#### Algorithm for homology

14/15

Incremental computation of the homology

Input: an increasing sequence of simplicial complexes  $K^1 \subset \cdots \subset K^n = K$ Output: the Betti numbers  $\beta_0(K), \dots \beta_d(K)$   $\beta_0 \leftarrow 0, \dots, \beta_d \leftarrow 0;$ for  $i \leftarrow 1$  to n do  $d = \dim(\sigma^i);$ if  $\sigma^i$  is positive then  $| \beta_k(K^i) \leftarrow \beta_k(K^i) + 1;$ else if d > 0 then  $| \beta_{k-1}(K^i) \leftarrow \beta_{k-1}(K^{i-1}) - 1;$ 

Gauss reduction of the boundary matrix

Input: a boundary matrix  $\Delta$ Output: a reduced matrix  $\widetilde{\Delta}$ for  $i \leftarrow 1 \ j \triangleright n \ do$ while there exists i < j with  $\delta(i) = \delta(j) \ do$ add column i to column j;

## Conclusion

We defined the standard algorithm for (persistent homology).

It works incrementally, by using the predicate 'test of positivity of a simplex'.

Using the algorithm, we have been able to compute the homology groups of the spheres, and as a consequence we proved the Invariance of Domain.

Homework: Exercises 31, 34 Facultative: Exercises 33

## Conclusion

We defined the standard algorithm for (persistent homology).

It works incrementally, by using the predicate 'test of positivity of a simplex'.

Using the algorithm, we have been able to compute the homology groups of the spheres, and as a consequence we proved the Invariance of Domain.

Homework: Exercises 31, 34 Facultative: Exercises 33

Merci !