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Algebraic topology



2/19 (2/5)Introduction

Until here, we defined two invariants of topological spaces: number of connected
components and Euler characteristic.

Today we will define a powerful invariant, homology groups, that already contains the
two previous invariants.

Algebraic topology

Homology groups Cohomology algebra Characteristic classes Functor K



2/19 (3/5)Introduction

Until here, we defined two invariants of topological spaces: number of connected
components and Euler characteristic.

Today we will define a powerful invariant, homology groups, that already contains the
two previous invariants.

Algebraic topology

Homology groups Cohomology algebra Characteristic classes Functor K

Singular homology Simplicial homology Cellular homology



2/19 (4/5)Introduction

Until here, we defined two invariants of topological spaces: number of connected
components and Euler characteristic.

Today we will define a powerful invariant, homology groups, that already contains the
two previous invariants.

Algebraic topology

Homology groups Cohomology algebra Characteristic classes Functor K

Singular homology Simplicial homology Cellular homology

Over a finite field Over Z



2/19 (5/5)Introduction

Until here, we defined two invariants of topological spaces: number of connected
components and Euler characteristic.

Today we will define a powerful invariant, homology groups, that already contains the
two previous invariants.

Algebraic topology

Homology groups Cohomology algebra Characteristic classes Functor K

Singular homology Simplicial homology Cellular homology

Over a finite field Over Z

Singular homology over the finite field Z/2Z
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4/19 (1/3)Groups

We recall that a group (G,+) is a set G endowed with an operation

G×G −→ G

(g, h) 7−→ g + h

such that:
• (associativity) ∀a, b, c ∈ G, (a+ b) + c = a+ (b+ c),
• (identity) ∃ 0 ∈ G,∀a ∈ G, a+ 0 = 0 + a = a,
• (inverse) ∀a ∈ G,∃b ∈ G, a+ b = b+ a = 0.
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We recall that a group (G,+) is a set G endowed with an operation

G×G −→ G

(g, h) 7−→ g + h

such that:
• (associativity) ∀a, b, c ∈ G, (a+ b) + c = a+ (b+ c),
• (identity) ∃ 0 ∈ G,∀a ∈ G, a+ 0 = 0 + a = a,
• (inverse) ∀a ∈ G,∃b ∈ G, a+ b = b+ a = 0.

Moreover, we say that G is commutative if ∀a, b ∈ G, a+ b = b+ a. In this course, the
only groups we consider will be commutative.

Example: The set of integers Z = {...,−2,−1, 0, 1, 2, ...} is a group for the addition +.

Example: The group of integers (Z,+) is commutative (1+2=2+1).



5/19 (1/4)Quotient group

A subgroup of (G,+) is a subset H ⊂ G such that

∀a, b ∈ H, a+ b ∈ H.

If H is a subgroup of G, the operation + : G×G→ G restricts to an operation
+ : H ×H → H, making H a group on its own.

Example: For any p ≥ 1, the set pZ = {pn, n ∈ Z} is a subgroup of (Z,+).

Indeed, for any m,n ∈ Z, pn+ pm = p(n+m) ∈ pZ.



5/19 (2/4)Quotient group

A subgroup of (G,+) is a subset H ⊂ G such that

∀a, b ∈ H, a+ b ∈ H.

If H is a subgroup of G, the operation + : G×G→ G restricts to an operation
+ : H ×H → H, making H a group on its own.

Suppose that G is commutative, and that H is a subgroup of H. We define the
following equivalence relation on G: for all a, b ∈ G,

a ∼ b ⇐⇒ a− b ∈ H.

Denote by G/H the quotient set of G under this relation. For any a ∈ G, one shows
that the equivalence class of a is equal to a+H = {a+ h, h ∈ H}.

Example: For any p ≥ 1, the set pZ = {pn, n ∈ Z} is a subgroup of (Z,+).

Indeed, for any m,n ∈ Z, pn+ pm = p(n+m) ∈ pZ.

We have a ∼ b ⇐⇒ a− b ∈ pZ ⇐⇒ p|a− b.
The equivalence class of any a ∈ Z is

{b ∈ Z, p|a− b} = {b ∈ Z,∃n ∈ Z, b = a+ pn} = a+ pZ
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Suppose that G is commutative, and that H is a subgroup of H. We define the
following equivalence relation on G: for all a, b ∈ G,

a ∼ b ⇐⇒ a− b ∈ H.

Denote by G/H the quotient set of G under this relation. For any a ∈ G, one shows
that the equivalence class of a is equal to a+H = {a+ h, h ∈ H}.

Let a0, a1, ..., an be a choice of representants of equivalence classes of the relation ∼.

The quotient set can be written as G/H =
{
0 +H, a1 +H, ..., an +H

}
.

One defines a group structure ⊕ on G/H as follows: for any i, j ∈ J0, nK,

(ai +H)⊕ (aj +H) = (ai + aj) +H.

The group (G/H,⊕) is called the quotient group.



5/19 (4/4)Quotient group

Let a0, a1, ..., an be a choice of representants of equivalence classes of the relation ∼.

The quotient set can be written as G/H =
{
0 +H, a1 +H, ..., an +H

}
.

One defines a group structure ⊕ on G/H as follows: for any i, j ∈ J0, nK,

(ai +H)⊕ (aj +H) = (ai + aj) +H.

The group (G/H,⊕) is called the quotient group.

Example: Consider pZ ⊂ Z. The quotient group Z/pZ admits p classes, with
representants a0 = 0, ..., ap−1 = p− 1.
The classes are

pZ, 1 + pZ, 2 + pZ, ..., p− 1 + pZ.

The quotient group Z/pZ can be seen as follows: its elements are

{0, 1, 2, ..., p− 1}
and the operation is given by

a⊕ b = a+ b (modulo p)

For instance, Z/6Z = {0, 1, 2, 3, 4, 5}, and 4 + 5 = 2 (= 6 + 3).



6/19 (1/2)The group Z/2Z
The subgroup 2Z ⊂ Z consists of all even numbers.
The relation a ∼ b ⇐⇒ a− b ∈ 2Z admits two equivalence classes:

2Z = {2n, n ∈ Z} and 1 + 2Z = {1 + 2n, n ∈ Z}

even numbers odd numbers

The quotient group can be seen as the group Z/2Z = {0, 1} with the operation

0 + 0 = 0
0 + 1 = 1
1 + 0 = 1
1 + 1 = 0



6/19 (2/2)The group Z/2Z
The subgroup 2Z ⊂ Z consists of all even numbers.
The relation a ∼ b ⇐⇒ a− b ∈ 2Z admits two equivalence classes:

2Z = {2n, n ∈ Z} and 1 + 2Z = {1 + 2n, n ∈ Z}

even numbers odd numbers

The quotient group can be seen as the group Z/2Z = {0, 1} with the operation

0 + 0 = 0
0 + 1 = 1
1 + 0 = 1
1 + 1 = 0

For any n ≥ 1, the product group ((Z/2Z)n,+) is the group whose underlying set is

(Z/2Z)n = {(ε1, ..., εn), ε1, ..., εn ∈ Z/2Z}

and whose operation is defined as

(ε1, ..., εn) + (ε′1, ..., ε
′
n) = (ε1 + ε′1, ..., εn + ε′n).

Note that the set (Z/2Z)n has 2n elements.



7/19 (1/4)Vector spaces

Let (F,+,×) be a field. We recall that a vector space over F is a group (V,+) endowed
with an operation

such that
• (compatibility of multiplication) ∀λ, µ ∈ F,∀v ∈ V, λ · (µ · v) = (λ× µ) · v,
• (identity) ∀v ∈ V, 1 · v = v where 1 denotes the unit of F,
• (scalar distributivity) ∀µ, ν ∈ F,∀v ∈ V , (λ+ ν) · v = λ · v + ν · v,
• (vector distributivity) ∀µ ∈ F,∀v, w ∈ V , λ · (u+ v) = λ · v + ν · v.

F× V −→ V

(λ, v) 7−→ λ · v
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Let (F,+,×) be a field. We recall that a vector space over F is a group (V,+) endowed
with an operation

such that
• (compatibility of multiplication) ∀λ, µ ∈ F,∀v ∈ V, λ · (µ · v) = (λ× µ) · v,
• (identity) ∀v ∈ V, 1 · v = v where 1 denotes the unit of F,
• (scalar distributivity) ∀µ, ν ∈ F,∀v ∈ V , (λ+ ν) · v = λ · v + ν · v,
• (vector distributivity) ∀µ ∈ F,∀v, w ∈ V , λ · (u+ v) = λ · v + ν · v.

Let {v1, ..., vn} be a collection of elements of V . We say that it is free if

∀λ1, ..., λn ∈ F,
∑

1≤i≤n

λivi = 0 =⇒ λ1 = ... = λn = 0.

We say that it is spans V if

∀v ∈ V,∃λ1, ..., λn ∈ F,
∑

1≤i≤n

λivi = v.

F× V −→ V

(λ, v) 7−→ λ · v

If the collection {v1, ..., vn} is free and spans V , we say that it is a basis.

Proposition: If the vector space is finite, it admits a basis, and all bases have the same
cardinal, called the dimension of V .



7/19 (3/4)Vector spaces

A linear subspace of (V,+, ·) is a subset W ⊂ V such that

∀u, v ∈W,u+ v ∈W and ∀v ∈W, ∀λ ∈ F, λv ∈W.

Just as for groups, we can define an equivalence relation ∼ on V , and a quotient vector
space V/W .

Proposition: We have dimV/W = dimV − dimW .



7/19 (4/4)Vector spaces

A linear subspace of (V,+, ·) is a subset W ⊂ V such that

∀u, v ∈W,u+ v ∈W and ∀v ∈W, ∀λ ∈ F, λv ∈W.

Just as for groups, we can define an equivalence relation ∼ on V , and a quotient vector
space V/W .

Let (V,+, ·) and (W,+, ·) be two vector spaces. A linear map is a map f : V →W such
that

∀u, v ∈ V, f(u+ v) = f(u) + f(v) and ∀v ∈ V,∀λ ∈ F, f(λv) = λ · f(v).

If f is a bijection, it is called an isomorphism, and we say that V and W are isomorphic.

Proposition: If (V,+, ·) is a vector space of dimension n, one shows that it is isomorphic
to the product vector space Fn.

Proposition: We have dimV/W = dimV − dimW .



8/19 (1/3)Z/2Z-vector spaces

Proposition: Le (V,+) be a commutative group.
It can be given a Z/2Z-vector space structure iff ∀v ∈ V, v + v = 0.

Proof: Suppose that (V,+, ·) is a Z/2Z-vector space. For all v ∈ V , we have

0 = 0 · v = (1 + 1) · v = v + v.
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Proof: Suppose that (V,+, ·) is a Z/2Z-vector space. For all v ∈ V , we have

0 = 0 · v = (1 + 1) · v = v + v.

In the other direction, if ∀v ∈ V, v + v = 0, then we can define a vector space structure
on (V,+) as follows: for all v ∈ V ,

0 · v = 0
1 · v = v



8/19 (3/3)Z/2Z-vector spaces

Proposition: Le (V,+) be a commutative group.
It can be given a Z/2Z-vector space structure iff ∀v ∈ V, v + v = 0.

Proof: Suppose that (V,+, ·) is a Z/2Z-vector space. For all v ∈ V , we have

0 = 0 · v = (1 + 1) · v = v + v.

In the other direction, if ∀v ∈ V, v + v = 0, then we can define a vector space structure
on (V,+) as follows: for all v ∈ V ,

0 · v = 0
1 · v = v

Proposition: Let (V,+, ·) be a finite Z/2Z-vector space. Then there exists n ≥ 0 such
that V has cardinal 2n, and (V,+, ·) is isomorphic to the vector space (Z/2Z)n.

Proof: Consequence of the theory of vector spaces.
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II - Chains, cycles and boundaries

III - Homology groups

VI - Homology groups of topological spaces



10/19Skeleton

Let K be a simplicial complex. For any n ≥ 0, define the n-skeleton of K:

Kn = {σ ∈ K,dim(σ) ≤ n}

Also, define

K(n) = {σ ∈ K, dim(σ) = n}.

K0 K1 K2

K(0) K(1) K(2)

K



11/19 (1/3)Chains

Let n ≥ 0. The n-chains of K is the set Cn(K) whose elements are the formal sums∑
σ∈K(n)

εσ · σ where ∀σ ∈ K(n), εσ ∈ Z/2Z.

Example: Consider the simplicial complex K = {[0], [1], [2], [0, 1], [0, 2]}. The 0-chains
C0(K) consists in 8 elements:

C0(K) = {0, [0], [1], [2], [0] + [1], [0] + [2], [1] + [2], [0] + [1] + [2]}

[0]
[0] + [1] + [2]

0

1 2

[0] + [1] + [2][1] + [2][0] + [2][0] + [1][2][1][0]0



11/19 (2/3)Chains

Let n ≥ 0. The n-chains of K is the set Cn(K) whose elements are the formal sums∑
σ∈K(n)

εσ · σ where ∀σ ∈ K(n), εσ ∈ Z/2Z.

Example: Consider the simplicial complex K = {[0], [1], [2], [0, 1], [0, 2]}. The 0-chains
C0(K) consists in 8 elements:

C0(K) = {0, [0], [1], [2], [0] + [1], [0] + [2], [1] + [2], [0] + [1] + [2]}

[0]
[0] + [1] + [2]

0

1 2

[0] + [1] + [2][1] + [2][0] + [2][0] + [1][2][1][0]0

The 1-chains C1(K) consists in 4 elements

C1(K) = {0, [0, 1], [0, 2], [0, 1] + [0, 2]}.

0 [0, 1] [0, 2] [0, 1] + [0, 2]



11/19 (3/3)Chains

Let n ≥ 0. The n-chains of K is the set Cn(K) whose elements are the formal sums∑
σ∈K(n)

εσ · σ where ∀σ ∈ K(n), εσ ∈ Z/2Z.

We can give Cn(K) a group structure via∑
σ∈K(n)

εσ · σ +
∑

σ∈K(n)

ησ · σ =
∑

σ∈K(n)

(εσ + ησ) · σ.

[0]
[0] + [1] + [2]

Moreover, Cn(K) can be given a Z/2Z-vector space structure.
To see this, remember that a group (V,+) can be given a Z/2Z-vector space structure
if and only if ∀v ∈ V, v + v = 0. Now, observe that for any element of Cn(K),∑

σ∈K(n)

εσ · σ +
∑

σ∈K(n)

εσ · σ =
∑

σ∈K(n)

(εσ + εσ) · σ =
∑

σ∈K(n)

0 · σ = 0.

Example: In the simplicial complex K = {[0], [1], [2], [0, 1], [0, 2]}, the sum of the
0-chains [0] + [1] and [0] + [2] is [1] + [2]:

([0] + [1]) + ([0] + [2]) = [0] + [0] + [1] + [2] = [1] + [2].



12/19 (1/4)Boundary operator

Let n ≥ 1, and σ = [x0, ..., xn] ∈ K(n) a simplex of dimension n. We define its
boundary as the following element of Cn−1(K):

∂nσ =
∑
τ⊂σ

|τ |=|σ|−1

τ

We can extend the operator ∂n as a linear map ∂n : Cn(K)→ Cn−1(K) as follows: for
any element of Cn(K),

∂n
∑

σ∈K(n)

εσ · σ =
∑

σ∈K(n)

εσ · ∂nσ.

Example: Consider the simplicial complex
K = {[0], [1], [2], [3], [0, 1], [0, 2], [1, 2], [1, 3], [2, 3], [0, 1, 2]}.

The simplex [0, 1] has the faces [0] and [1]. Hence

∂1[0, 1] = [0] + [1].

0

1 2

3

∂1



12/19 (2/4)Boundary operator

Let n ≥ 1, and σ = [x0, ..., xn] ∈ K(n) a simplex of dimension n. We define its
boundary as the following element of Cn−1(K):

∂nσ =
∑
τ⊂σ

|τ |=|σ|−1

τ

We can extend the operator ∂n as a linear map ∂n : Cn(K)→ Cn−1(K) as follows: for
any element of Cn(K),

∂n
∑

σ∈K(n)

εσ · σ =
∑

σ∈K(n)

εσ · ∂nσ.

Example: Consider the simplicial complex
K = {[0], [1], [2], [3], [0, 1], [0, 2], [1, 2], [1, 3], [2, 3], [0, 1, 2]}.

The boundary of the 1-chain [0, 1] + [1, 2] + [2, 0] is

0

1 2

3

∂1

∂1
(
[0, 1] + [1, 2] + [2, 0]

)
= ∂1[0, 1] + ∂1[0, 2] + ∂1[2, 0]

= [0] + [1] + [0] + [2] + [2] + [0] = 0



12/19 (3/4)Boundary operator

Let n ≥ 1, and σ = [x0, ..., xn] ∈ K(n) a simplex of dimension n. We define its
boundary as the following element of Cn−1(K):

∂nσ =
∑
τ⊂σ

|τ |=|σ|−1

τ

We can extend the operator ∂n as a linear map ∂n : Cn(K)→ Cn−1(K) as follows: for
any element of Cn(K),

∂n
∑

σ∈K(n)

εσ · σ =
∑

σ∈K(n)

εσ · ∂nσ.

Example: Consider the simplicial complex
K = {[0], [1], [2], [3], [0, 1], [0, 2], [1, 2], [1, 3], [2, 3], [0, 1, 2]}.

The simplex [0, 1, 2] has the faces [0, 1] and [1, 2] and [2, 0]. Hence

∂2[0, 1, 2] = [0, 1] + [1, 2] + [2, 0].

0

1 2

3

∂2



12/19 (4/4)Boundary operator

Proposition: For any n ≥ 1, for any c ∈ Cn(K), we have ∂n−1 ◦ ∂n(c) = 0.

Proof: Suppose that n ≥ 2, the result being trivial otherwise.
Since the boundary operators are linear, it is enough to prove that ∂n−1 ◦ ∂n(σ) = 0 for
all simplex σ ∈ K(n).
By definition, ∂n(σ) =

∑
τ⊂σ

|τ |=|σ|−1
τ , and

∂n−1 ◦ ∂n(σ) =
∑
τ⊂σ

|τ |=|σ|−1

∂n−1(τ) =
∑
τ⊂σ

|τ |=|σ|−1

∑
ν⊂τ

|ν|=|τ |−1

ν

We can write this last sum as∑
τ⊂σ

|τ |=|σ|−1

∑
ν⊂τ

|ν|=|τ |−1

ν =
∑
ν⊂σ

|ν|=|σ|−2

ανν

where αν = {τ ⊂ σ, |τ | = |σ| − 1, ν ⊂ τ}.
It is easy to see that for every ν such that dim ν = dim τ − 2, we have αν = 2 = 0.

0

1 2

3

∂2 ∂1
×2 ×2

×2

=



13/19 (1/5)Cycles and boundaries

Let n ≥ 0. We have a triplet of vector spaces

Cn+1(K)
∂n+1−−−→ Cn(K)

∂n−−→ Cn−1(K).

The maps ∂n+1 and ∂n are linear maps, and we can consider their kernel and image.

Definition: We define:
• The n-cycles: Zn(K) = Ker(∂n),
• The n-boundaries: Bn(K) = Im(∂n+1).



13/19 (2/5)Cycles and boundaries

Let n ≥ 0. We have a triplet of vector spaces

Cn+1(K)
∂n+1−−−→ Cn(K)

∂n−−→ Cn−1(K).

The maps ∂n+1 and ∂n are linear maps, and we can consider their kernel and image.

Definition: We define:
• The n-cycles: Zn(K) = Ker(∂n),
• The n-boundaries: Bn(K) = Im(∂n+1).

Example:
Consider the following simplicial complex

0

1 2

3The chains
0, [0, 1] + [1, 2] + [0, 2], [0, 2] + [2, 3] + [0, 3] and [0, 1] + [1, 2] + [2, 3] + [0, 3]

are 1-cycles.
For instance,

Moreover, the chains
∂2(0) = 0 and ∂2([0, 1, 2]) = [0, 1] + [0, 2] + [1, 2].

are 1-boundaries.

∂1([0, 1] + [1, 2] + [0, 2]) = [0] + [1] + [1] + [2] + [0] + [2] = 0.



13/19 (3/5)Cycles and boundaries

Let n ≥ 0. We have a triplet of vector spaces

Cn+1(K)
∂n+1−−−→ Cn(K)

∂n−−→ Cn−1(K).

The maps ∂n+1 and ∂n are linear maps, and we can consider their kernel and image.

Definition: We define:
• The n-cycles: Zn(K) = Ker(∂n),
• The n-boundaries: Bn(K) = Im(∂n+1).

Definition: We say that two chains c, c′ ∈ Cn(K) are homologous if there exists
b ∈ Bn(K) such that c = c′ + b.

two chains are homologous if they are equal up to a boundary



13/19 (4/5)Cycles and boundaries

Let n ≥ 0. We have a triplet of vector spaces

Cn+1(K)
∂n+1−−−→ Cn(K)

∂n−−→ Cn−1(K).

The maps ∂n+1 and ∂n are linear maps, and we can consider their kernel and image.

Definition: We define:
• The n-cycles: Zn(K) = Ker(∂n),
• The n-boundaries: Bn(K) = Im(∂n+1).

Definition: We say that two chains c, c′ ∈ Cn(K) are homologous if there exists
b ∈ Bn(K) such that c = c′ + b.

Example: Consider the following simplicial complex

0

1 2

3

The chains [0, 2] + [2, 3] + [0, 3] and [0, 1] + [1, 2] + [2, 3] + [0, 3] are homologous.
Indeed,

[0, 2] + [2, 3] + [0, 3] = [0, 1] + [1, 2] + [2, 3] + [0, 3] + [0, 1] + [0, 2] + [1, 2].

=



13/19 (5/5)Cycles and boundaries

Let n ≥ 0. We have a triplet of vector spaces

Cn+1(K)
∂n+1−−−→ Cn(K)

∂n−−→ Cn−1(K).

The maps ∂n+1 and ∂n are linear maps, and we can consider their kernel and image.

Definition: We define:
• The n-cycles: Zn(K) = Ker(∂n),
• The n-boundaries: Bn(K) = Im(∂n+1).

Proposition: We have Bn(K) ⊂ Zn(K).

Proof: Let b ∈ Bn(K) be a boundary.
By definition, there exists c ∈ Cn+1(K) such that b = ∂n+1c.
Using ∂n∂n+1 = 0, we get

∂nb = ∂n∂n+1c = 0,

hence b ∈ Zn(K).
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15/19 (1/5)Homology groups

In the previous subsection, we have defined a sequence of vector spaces, connected by
linear maps

...→ Cn+1(K)→ Cn(K)→ Cn−1(K)→ ...

and for every n ≥ 0, we have defined the cycles and the boundaries Zn(K) and Bn(K).
Since Bn(K) ⊂ Zn(K), we can see Bn(K) as a linear subspace of Zn(K).
We can consider the corresponding quotient vector space, which is called the

Definition: nth homology group of K:

Hn(K) = Zn(K)/Bn(K).
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In the previous subsection, we have defined a sequence of vector spaces, connected by
linear maps

...→ Cn+1(K)→ Cn(K)→ Cn−1(K)→ ...

and for every n ≥ 0, we have defined the cycles and the boundaries Zn(K) and Bn(K).
Since Bn(K) ⊂ Zn(K), we can see Bn(K) as a linear subspace of Zn(K).
We can consider the corresponding quotient vector space, which is called the

Definition: nth homology group of K:

Hn(K) = Zn(K)/Bn(K).

Proposition: dimHn(K) = dimBn(K)− dimZn(K).

Definition: Let K be a simplicial complex and n ≥ 0. Its nth Betti number is the
integer βn(K) = dimHn(K).



15/19 (3/5)Homology groups

In the previous subsection, we have defined a sequence of vector spaces, connected by
linear maps

...→ Cn+1(K)→ Cn(K)→ Cn−1(K)→ ...

and for every n ≥ 0, we have defined the cycles and the boundaries Zn(K) and Bn(K).
Since Bn(K) ⊂ Zn(K), we can see Bn(K) as a linear subspace of Zn(K).
We can consider the corresponding quotient vector space, which is called the

Definition: nth homology group of K:

Hn(K) = Zn(K)/Bn(K).

Proposition: dimHn(K) = dimBn(K)− dimZn(K).

Definition: Let K be a simplicial complex and n ≥ 0. Its nth Betti number is the
integer βn(K) = dimHn(K).

Exemple: Consider the simplicial complex

As we have seen, Z1(K) has cardinal 4, and B1(K) cardinal 2. We deduce that
dimZ1(K) = 2, dimB1(K) = 1, hence dimH1(K) = 2− 1 = 1.

In other words, we have an isomorphism H1(K) ' Z/2Z. Also, β1(K) = 1.

0

1 2

3
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Exercise: Consider the simplicial complex

Compute its 0-boundaries and 0-cycles. Deduce β0(K).

0

1 2
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Exercise: Consider the simplicial complex

Compute its 0-boundaries and 0-cycles. Deduce β0(K).

0

1 2

We have:

Z0(K) = {[0], [1], [2], [0] + [1], [0] + [2], [1] + [2], [0] + [1] + [2]}

B0(K) = {0, [0] + [1], [1] + [2], [0] + [2]}.

We deduce that dimZ0(K) = 3, dimB0(K) = 2, and

dimH0(K) = 3− 2 = 1.
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I - Reminder of algebra

II - Chains, cycles and boundaries

III - Homology groups

VI - Homology groups of topological spaces



17/19Invariant property

Definition: The homology groups of a topological space are the homology groups of any
triangulation of it. We define its Betti numbers similarly.

Proposition: If X and Y are two homotopy equivalent topological spaces, then for any
n ≥ 0 we have isomorphic homology groups Hn(X) ' Hn(Y ). As a consequence,
βn(X) = βn(Y ).
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Conclusion
We defined the homology groups of simplicial complexes.

We defined the homology groups of topological spaces via triangulations.

This is an invariant of homotopy equivalence.

Homeworks for next week: Exercises 29, 30

Facultative exercise: Exercises 27, 28
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Conclusion
We defined the homology groups of simplicial complexes.

We defined the homology groups of topological spaces via triangulations.

This is an invariant of homotopy equivalence.

Homeworks for next week: Exercises 29, 30

Facultative exercise: Exercises 27, 28

Merci !


