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Introduction 2/19 (1/5)

Until here, we defined two invariants of topological spaces: number of connected
components and Euler characteristic.

Today we will define a powerful invariant, homology groups, that already contains the

two previous invariants.
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Introduction 2/19 (5/5)

Until here, we defined two invariants of topological spaces: number of connected
components and Euler characteristic.

Today we will define a powerful invariant, homology groups, that already contains the

two previous invariants.

Algebraic topology

Homology groups Cohomology algebra Characteristic classes Functor K
Singular homology Simplicial homology Cellular homology
Over a finite field Over Z

\

Singular homology over the finite field Z /27



I - Reminder of algebra

IT - Chains, cycles and boundaries

II1 - Homology groups

VI - Homology groups of topological spaces



Groups 4/19 (1/3)
We recall that a group (G, +) is a set G endowed with an operation

GxG—dd
(g,h) — g+ h

such that:
e (associativity) Va,b,c € G, (a+b)+c=a+ (b+¢),
e (identity) 30 € G,Vae G,a+0=0+a = a,
e (inverse) Va € G,Ab e G,a+b=b+a=0.
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Groups 4/19 (3/3)
We recall that a group (G, +) is a set G endowed with an operation

GxG—dd
(g,h) — g+ h

such that:
e (associativity) Va,b,c € G, (a+b)+c=a+ (b+¢),
e (identity) 30 € G,Vae G,a+0=0+a = a,
e (inverse) Va € G,Ab e G,a+b=b+a=0.

Example: The set of integers Z = {..., —2,—1,0,1,2, ...} is a group for the addition +.

Moreover, we say that GG is commutative if Va,b € G,a + b = b+ a. In this course, the
only groups we consider will be commutative.

Example: The group of integers (Z,+) is commutative (1+2=2+1).



Quotient group 5/19 (1/4)

A subgroup of (G,+) is a subset H C G such that

Va,be Hya+ b € H.

If H is a subgroup of (G, the operation + : G X G — G restricts to an operation
+ : H x H — H, making H a group on its own.

Example: For any p > 1, the set pZ = {pn,n € Z} is a subgroup of (Z,+).
Indeed, for any m,n € Z, pn + pm = p(n +m) € pZ.
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A subgroup of (G,+) is a subset H C G such that
Va,be Hya+ b € H.

If H is a subgroup of (G, the operation + : G X G — G restricts to an operation
+ : H x H — H, making H a group on its own.

Suppose that G is commutative, and that H is a subgroup of H. We define the
following equivalence relation on G: for all a,b € G,

a~b < a—bec H.

Denote by G/H the quotient set of GG under this relation. For any a € (G, one shows
that the equivalence class of a is equal to a+ H = {a + h,h € H}.

Example: For any p > 1, the set pZ = {pn,n € Z} is a subgroup of (Z,+).

Indeed, for any m,n € Z, pn + pm = p(n +m) € pZ.

We have a ~ b <— a—0b€ pZ <= pla—D.

The equivalence class of any a € Z is

{beZ,pla—bt=4{beZ,In€Z,b=a+pn}=a+ pZ



Quotient group 5/19 (3/4)

A subgroup of (G,+) is a subset H C G such that
Va,be Hya+ b € H.

If H is a subgroup of (G, the operation + : G X G — G restricts to an operation
+ : H x H — H, making H a group on its own.

Suppose that G is commutative, and that H is a subgroup of H. We define the
following equivalence relation on G: for all a,b € G,

a~b < a—bec H.

Denote by G/H the quotient set of GG under this relation. For any a € (G, one shows
that the equivalence class of a is equal to a+ H = {a + h,h € H}.

Let ag, a1, ..., a, be a choice of representants of equivalence classes of the relation ~.
The quotient set can be written as G/H = {0+ H,a1 + H, ...,a, + H}.

One defines a group structure @& on G/H as follows: for any i, j € [0,n],
(4 + H) @ (a; + H) = (a; + a;) + H.

The group (G/H,®) is called the quotient group.



Quotient group 5/19 (4/4)

Example: Consider pZ C Z. The quotient group Z/pZ admits p classes, with
representants ag = 0, ...,ap,—1 = p — 1.
The classes are

pl, 1+ ps, 2+4pZ, ... p—1+ pZ.

The quotient group Z/pZ can be seen as follows: its elements are

{0, 1, 2, ..., p—1}
and the operation is given by

a®b=a+ b (modulo p)
For instance, Z/67Z = {0,1,2,3,4,5}, and 4 +5 =2 (=6 + 3).

Let ag, a1, ..., a, be a choice of representants of equivalence classes of the relation ~.
The quotient set can be written as G/H = {0+ H,a1 + H, ...,a, + H}.

One defines a group structure @& on G/H as follows: for any i, j € [0,n],
(4 + H) @ (a; + H) = (a; + a;) + H.

The group (G/H,®) is called the quotient group.



he group Z /27 6/19 (1/2)

The subgroup 27 C Z consists of all even numbers.
The relation a ~ b <= a — b € 2Z admits two equivalence classes:

22 ={2n,ne€Z} and 1+2Z={1+2n,n¢€Z}

even numbers J ‘\ odd numbers

The quotient group can be seen as the group Z/27Z = {0, 1} with the operation

04+0=0
O+1=1
1+0=1

1+1=0



he group Z /27 6/19 (2/2)

The subgroup 27 C Z consists of all even numbers.
The relation a ~ b <= a — b € 2Z admits two equivalence classes:

22 ={2n,ne€Z} and 1+2Z={1+2n,n¢€Z}
‘J ‘\ odd numbers

The quotient group can be seen as the group Z/27Z = {0, 1} with the operation

even numbers

04+0=0
O+1=1
1+0=1
1+1=0

For any n > 1, the product group ((Z/27.)",+) is the group whose underlying set is
(Z)27)" = {(€1,...,€n), €1y .0, €n € ZJ27}
and whose operation is defined as
(€1, s €n) + (€], ns€,) = (€1 + €], ey €n +€)).

Note that the set (Z/27)™ has 2" elements.



Vector spaces 7/19 (1/4)

Let (IF, 4+, X) be a field. We recall that a vector space over F is a group (V, +) endowed
with an operation FxV —V

(A, v) — A v
such that
e (compatibility of multiplication) VA, p € F,.Yo e V. A (- v) = (A X p) - v,
e (identity) Vv € V,1-v = v where 1 denotes the unit of F,
e (scalar distributivity) Vu,v e F,.Yo e V, A+v) - v=A-v+v-v,
e (vector distributivity) Vu € F,Vo,w e V, A- (u+v) =A-v+v- v,



Vector spaces 7/19 (2/4)

Let (IF, 4+, X) be a field. We recall that a vector space over F is a group (V, +) endowed
with an operation FxV —V
(A, v) — A v

such that

e (compatibility of multiplication) VA, u € F,Vo € V. A - (- v) = (A X ) - v,

e (identity) Vv € V,1-v = v where 1 denotes the unit of F,

e (scalar distributivity) Vu,v e F,.Yo e V, A+v) - v=A-v+v-v,

e (vector distributivity) Vu €e F,Yo,w e V, A- (u+v)=A-v+v- .

Let {v1,...,v,} be a collection of elements of V. We say that it is free if
VAL udn €F, ) A0 =0 = A\ =..=X, =0.

1<i<n

We say that it is spans V' if

Vo €V, A €F, ) Ay =w.

1<¢<n

If the collection {v1,...,v,} is free and spans V', we say that it is a basis.

Proposition: If the vector space is finite, it admits a basis, and all bases have the same
cardinal, called the dimension of V.



Vector spaces 7/19 (3/4)

A linear subspace of (V,+,-) is a subset W C V such that

Vu,v e Wu4+veW and YveWVAelF el

Just as for groups, we can define an equivalence relation ~ on V', and a quotient vector
space V/W.

Proposition: We have dim V/W = dimV — dim W.



Vector spaces 7/19 (4/4)

A linear subspace of (V,+,-) is a subset W C V such that
Vu,v e Wu4+veW and YveWVAelF el

Just as for groups, we can define an equivalence relation ~ on V', and a quotient vector
space V/W.

Proposition: We have dim V/W = dimV — dim W.
Let (V,+,-) and (W, 4+, ) be two vector spaces. A linear map isa map f: V — W such
that
Vu,v e V, flu+v)= f(u)+ f(v) and YoeVVAeETF, f(lv) =X f(v).
If f is a bijection, it is called an isomorphism, and we say that V' and W are isomorphic.

Proposition: If (V,+,-) is a vector space of dimension n, one shows that it is isomorphic
to the product vector space F".



7./ 27.-vector spaces 3/19 (1/3)

Proposition: Le (V,+) be a commutative group.
It can be given a Z/2Z-vector space structure iff Vv € Vv 4+ v = 0.

Suppose that (V,+, ) is a Z/2Z-vector space. For all v € V', we have
0=0-v=(1+1)-v=v+w.



7./ 27.-vector spaces 5/19 (2/3)

Proposition: Le (V,+) be a commutative group.
It can be given a Z/27Z-vector space structure iff Yo € V,v 4+ v = 0.

Suppose that (V,+, ) is a Z/2Z-vector space. For all v € V', we have
0=0-v=(1+1)-v=v+w.
In the other direction, if Vv € V,v + v = 0, then we can define a vector space structure

on (V,+) as follows: for all v € V,

O-v=20
l-v=w



7./ 27.-vector spaces 3/19 (3/3)

Proposition: Le (V,+) be a commutative group.
It can be given a Z/27Z-vector space structure iff Yo € V,v 4+ v = 0.

Suppose that (V,+, ) is a Z/2Z-vector space. For all v € V', we have
0=0-v=(1+1)-v=v+w.

In the other direction, if Vv € V,v + v = 0, then we can define a vector space structure
on (V,+) as follows: for all v € V,

O-v=20
l-v=w

Proposition: Let (V,+, ) be a finite Z/27Z-vector space. Then there exists n > 0 such
that V' has cardinal 2™, and (V, +, -) is isomorphic to the vector space (Z/27)".

Consequence of the theory of vector spaces.



IT - Chains, cycles and boundaries



Let K be a simplicial complex. For any n > 0, define the n-skeleton of K:
K, ={o € K,dim(o) < n}
Also, define

K(n) = {O‘ c K, dim(a) — n}




Let n > 0. The n-chains of K is the set C,,(K) whose elements are the formal sums

Y € -0 where Vo€ Ky, ¢ €ZL/2L.
oK (n)

Example: Consider the simplicial complex K = {[0], [1], [2], [0, 1], [0,2]}. The 0-chains
Co(K) consists in 8 elements:

Co(K) = {0, [0}, [1], [2], [0] + (1], [0] +[2], [1] + (2], [O] + [1] + [2]}



Let n > 0. The n-chains of K is the set C,,(K) whose elements are the formal sums

Y € -0 where Vo€ Ky, ¢ €ZL/2L.
oK (n)

Example: Consider the simplicial complex K = {[0], [1], [2], [0, 1], [0,2]}. The 0-chains
Co(K) consists in 8 elements:

Co(K) =10, [0], [1}, (2], [0] + (1], [0] + (2], [1] + (2], [0] 4 [1] + [2]}
1 2 o ® o ® o o o o

0 @ o o O
0 0] [1] 2] o]+ (1] [Of+1[2] [1]+[2] [0] +[1] + [2]

The 1-chains C'1(K) consists in 4 elements

Oy (K) = {0, [0,1], [0,2], [0,1] + [0,2]}.

\ / \/

0 0, 1] 0, 2] 0,1] + [0, 2]



Chains 11/19 (3/3)

Let n > 0. The n-chains of K is the set C,,(K) whose elements are the formal sums

Y € -0 where Vo€ Ky, ¢ €ZL/2L.
O'EK(n)

We can give C),(K) a group structure via

Z €g - O + Z Nog + O = Z (€0 +15) - 0.

oEK (n) TEK (n) €K (n)

Moreover, C),(K') can be given a Z/2Z-vector space structure.
To see this, remember that a group (V, +) can be given a Z/2Z-vector space structure
if and only if Vv € V,v + v = 0. Now, observe that for any element of C,, (K),

Z €s * O + Z €y * O = Z (€0 +€5) -0 = Z 0-0=0.

oEK (n) oEK (n) oEK (n) €K (n)

Example: In the simplicial complex K = {[0], [1],[2], [0, 1], [0, 2]}, the sum of the
0-chains [0] 4 [1] and [0] + [2] is [1] + [2]:



Boundary operator 12/19 (1/4)

Let n > 1, and 0 = [z0, ..., x| € K(;,) a simplex of dimension n. We define its
boundary as the following element of C),_1(K):

Op,0 = Z T

TCo
|7|=]o|—1

We can extend the operator 0,, as a linear map 0,,: C,,(K) — C,,_1(K) as follows: for
any element of C,,(K),

O, Z €g O = Z €s - Op0.

o€ K n) cEK (y)
Example: Consider the simplicial complex

K =10}, 1], [2], 3], 10, 1], [0, 2], [1, 2], [1, 3], [2, 3], [0, 1, 2] }.
The simplex [0, 1] has the faces [0] and [1]. Hence

1[0,1] = [0] + [1].

1 2 )




Boundary operator 12/19 (2/4)

Let n > 1, and 0 = [z0, ..., x| € K(;,) a simplex of dimension n. We define its
boundary as the following element of C),_1(K):

Op,0 = Z T

TCo
|7|=]o|—1

We can extend the operator 0,, as a linear map 0,,: C,,(K) — C,,_1(K) as follows: for
any element of C,,(K),

O, Z €g O = Z €s - Op0.

o€ K n) cEK (y)
Example: Consider the simplicial complex

K = {0], [, 12}, 3], [0, 1], [0, 2], [1, 21, [1, 3], [2, 3], [0, 1, 2]}
The boundary of the 1-chain [0, 1] + [1,2] 4+ [2,0] is
A1 ([0,1] + [1,2] + [2,0]) = 61[0,1] + 610, 2] + 612, 0]
= [0] + [1] + (0] + [2] + [2] +- [0] = 0
1 — 2 )

e -
0 3




Boundary operator 12/19 (3/4)

Let n > 1, and 0 = [z0, ..., x| € K(;,) a simplex of dimension n. We define its
boundary as the following element of C),_1(K):

Op,0 = Z T

TCo
|7|=]o|—1

We can extend the operator 0,, as a linear map 0,,: C,,(K) — C,,_1(K) as follows: for
any element of C,,(K),

O, Z €g " O = Z €g * Op0.

o€ K n) cEK (y)
Example: Consider the simplicial complex

K =10}, 1], [2], 3], 10, 1], [0, 2], [1, 2], [1, 3], [2, 3], [0, 1, 2] }.
The simplex [0,1,2] has the faces [0, 1] and [1,2] and [2,0]. Hence

8:[0,1,2] = [0,1] + [1,2] + [2,0].

1 2 Do —_—
' g ‘/
0 3




Boundary operator 12/19 (4/4)

For any n > 1, for any ¢ € C,(K), we have 0,,_1 0 0,(c) = 0.
Proof: Suppose that n > 2, the result being trivial otherwise.

Since the boundary operators are linear, it is enough to prove that 9,,_1 0 9, (c) = 0 for

all simplex o € K(y).
By definition, d,(c) = > +co T, and

|7|=]o|—1
TCOo TCOo vCT
|7|=]o| -1 |7|=]o| -1 [v]=]T]-1

We can write this last sum as

>, 2L v= )
TCoOo vCT

vCo
|7|=lo|—1|v|=]r|-1 lv|=lo|—2

where o, = {7 C o, |7| = |o| — 1,v C T}.
It is easy to see that for every v such that dimv = dim7 — 2, we have o, =2 = 0.

.‘/ ..:

X 2



Cycles and boundaries 13/19 (1/5)

Let n > 0. We have a triplet of vector spaces

on-+1 on

Cri1(K) —— Cp(K) — C,,_1(K).

The maps 0,11 and 0,, are linear maps, and we can consider their kernel and image.

Definition: We define:
e The n-cycles: Z,(K) = Ker(0,),
e The n-boundaries: B, (K) = Im(0,11).



Cycles and boundaries 13/19 (2/5)

Let n > 0. We have a triplet of vector spaces

on-+1 on

Cri1(K) —— Cp(K) — C,,_1(K).

The maps 0,11 and 0,, are linear maps, and we can consider their kernel and image.

Definition: We define:
e The n-cycles: Z,(K) = Ker(0,),
e The n-boundaries: B, (K) = Im(0,11).

Example: 1
Consider the following simplicial complex

The chains 0 3
0, [0,1]4+[1,2]+]0,2], [0,2]+[2,3]+[0,3] and [0,1]+ [1,2]+ [2,3]+ [0, 3]
are 1-cycles.

For instance,
01(]0,1] 4+ [1,2] +|0,2]) = [0] + [1] + [1] + [2] + [0] + [2] = O.

Moreover, the chains
92(0) =0 and  0([0,1,2]) = [0,1] + [0,2] 4 [1,2].
are 1-boundaries.



Cycles and boundaries 13/19 (3/5)

Let n > 0. We have a triplet of vector spaces

Cha1 (K) 2245 € (K) 2% 0,1 (K).

The maps 0,11 and 0,, are linear maps, and we can consider their kernel and image.

Definition: We define:
e The n-cycles: Z,(K) = Ker(0,),
e The n-boundaries: B, (K) = Im(0,11).

Definition: We say that two chains ¢, ¢’ € C,,(K) are homologous if there exists
b€ B,(K) such that c = ¢’ + 0.

two chains are homologous if they are equal up to a boundary



Cycles and boundaries 13/19 (4/5)

Let n > 0. We have a triplet of vector spaces

on-+1 on

Cri1(K) —— Cp(K) — C,,_1(K).

The maps 0,11 and 0,, are linear maps, and we can consider their kernel and image.

Definition: We define:
e The n-cycles: Z,(K) = Ker(0,),
e The n-boundaries: B, (K) = Im(0,11).

Definition: We say that two chains ¢, ¢’ € C,,(K) are homologous if there exists
b€ B,(K) such that c = ¢’ + 0.

Example: Consider the following simplicial complex
7. ]
0 Z 3 < A
The chains [0,2] + [2,3] + [0,3] and [0, 1] + [1,2] + [2, 3] + [0, 3] are homologous.
Indeed,

0,2] +[2,3] +1[0,3] =[0,1] + [1,2] + [2,3] + [0, 3] + [0, 1] + [0, 2] + [1, 2].



Cycles and boundaries 13/19 (5/5)

Let n > 0. We have a triplet of vector spaces

on-+1 on

Cri1(K) —— Cp(K) — C,,_1(K).

The maps 0,11 and 0,, are linear maps, and we can consider their kernel and image.

Definition: We define:
e The n-cycles: Z,(K) = Ker(0,),
e The n-boundaries: B, (K) = Im(0,11).

We have B, (K) C Z,(K).

Proof: Let b € B,,(K) be a boundary.
By definition, there exists ¢ € C,,11(K) such that b = 0,41 c.
Using 0,,0,,..1 = 0, we get

anb — anan—i—lc — 07

hence b € Z,,(K).
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Homology groups 15/19 (1/5)

In the previous subsection, we have defined a sequence of vector spaces, connected by

linear maps
i. > Cpa1(K) = Cp(K) - Cph_1(K) — ...

and for every n > 0, we have defined the cycles and the boundaries Z,,(K) and B, (K).
Since B, (K) C Z,(K), we can see B, (K) as a linear subspace of Z, (K).
We can consider the corresponding quotient vector space, which is called the

Definition: n" homology group of K:



Homology groups 15/19 (2/5)

In the previous subsection, we have defined a sequence of vector spaces, connected by

linear maps
i. > Cpa1(K) = Cp(K) - Cph_1(K) — ...

and for every n > 0, we have defined the cycles and the boundaries Z,,(K) and B, (K).
Since B, (K) C Z,(K), we can see B, (K) as a linear subspace of Z, (K).
We can consider the corresponding quotient vector space, which is called the

Definition: n" homology group of K:
dim H, (K ) = dim B, (K) — dim Z,,(K).

Definition: Let K be a simplicial complex and n > 0. Its n'" Betti number is the
integer 3, (K) = dim H,(K).



Homology groups 15/19 (3/5)

In the previous subsection, we have defined a sequence of vector spaces, connected by

linear maps
i. > Cpa1(K) = Cp(K) - Cph_1(K) — ...

and for every n > 0, we have defined the cycles and the boundaries Z,,(K) and B, (K).
Since B, (K) C Z,(K), we can see B, (K) as a linear subspace of Z, (K).
We can consider the corresponding quotient vector space, which is called the

Definition: n" homology group of K:
dim H, (K ) = dim B, (K) — dim Z,,(K).
Definition: Let K be a simplicial complex and n > 0. Its n'" Betti number is the

integer 3, (K) = dim H,(K). . 5

Exemple: Consider the simplicial complex
0 3

As we have seen, Z1(K) has cardinal 4, and B;(K) cardinal 2. We deduce that
dim Z1(K) =2, dim B;(K) =1, hence dim H1(K) =2 —-1= 1.

In other words, we have an isomorphism Hy(K) ~ Z/27. Also, 51(K) = 1.




Homology groups 15/19 (4/5)

Exercise: Consider the simplicial complex
1 2
0 ]

Compute its 0-boundaries and 0-cycles. Deduce Sy(K).



Homology groups
Exercise: Consider the simplicial complex
1 2
0 ]
Compute its 0-boundaries and 0-cycles. Deduce Sy(K).

We have:
Zo(K) = {0, [1], [2], [0] + [1], [0] + [2], [1] + (2], [O] + [1] + [2]}
Bo(K) = {0, [0] + [1], [1] + [2], [0] + [2]}.

We deduce that dim Zy(K) = 3, dim By(K) = 2, and

dim Hy(K) =3—-2=1.

15/19 (5/5)



VI - Homology groups of topological spaces



Invariant property 17/19

Definition: The homology groups of a topological space are the homology groups of any
triangulation of it. We define its Betti numbers similarly.

Proposition: If X and Y are two homotopy equivalent topological spaces, then for any
n > 0 we have isomorphic homology groups H,(X) >~ H,(Y). As a consequence,



Examples

18/19 (1/4)

O

X O
Ho(X) 7.)27, L]2Z L)2L (Z/2Z.)>
Bo(X) 1 1 1 2
Hy(X) Z)2. 0 (2/22)* (Z/2z)?
Bi(X) . 0 7 ’
Hy(X) 0 7.)27, 0 0
B2(X) 0 L 0 0




Examples

18/19 (2/4)

O

) Q
Ho(X) L/2Z Number of connected components p7.)?
Bo(X) 1 1 1 2

2 2
Hy(X) L]2Z 0 (Z/2Z) (Z/27.)
2 2
B1(X) 1 0
Hy(X) 0 7.)27. 0 0
Ba(X) 0 1 0 0




Examples

18/19 (3/4)

) Q
Ho(X) L/2Z Number of connected components p7.)?
Bo(X) 1 1 1 2

2
Hi(X) 7.)27 Number of holes 27.)
2 2
B1(X) 1 0
Hy(X) 0 7.)27, 0 0
Ba(X) 0 1 0 0




Examples

18/19 (4/4)

“0

) N
Ho(X) L/2Z Number of connected components p7.)?
Bo(X) 1 1 | )
H,(X) 727 Number of holes 27,2
B1(X) 1 0 2 2
Hy(X) 0 Number of cavities 0
B2(X) 0 1 0 0




Conclusion
We defined the homology groups of simplicial complexes.

We defined the homology groups of topological spaces via triangulations.

This is an invariant of homotopy equivalence.

Homeworks for next week: Exercises 29, 30

Facultative exercise: Exercises 27, 28



Conclusion
We defined the homology groups of simplicial complexes.

We defined the homology groups of topological spaces via triangulations.

This is an invariant of homotopy equivalence.

Homeworks for next week: Exercises 29, 30

Facultative exercise: Exercises 27, 28

Merci !



