EMAp Summer Course

Topological Data Analysis with Persistent Homology

https://raphaeltinarrage.github.io/EMAp.html

Lesson 5: Homological algebra

Last update: February 1, 2021

Until here, we defined two invariants of topological spaces: *number of connected components* and *Euler characteristic*.

Today we will define a powerful invariant, *homology groups*, that already contains the two previous invariants.

Algebraic topology

Until here, we defined two invariants of topological spaces: *number of connected components* and *Euler characteristic*.

Until here, we defined two invariants of topological spaces: *number of connected components* and *Euler characteristic*.

Until here, we defined two invariants of topological spaces: *number of connected components* and *Euler characteristic.*

Until here, we defined two invariants of topological spaces: *number of connected components* and *Euler characteristic.*

I - Reminder of algebra

II - Chains, cycles and boundaries

III - Homology groups

 VI - Homology groups of topological spaces

Groups

4/19 (1/3)

We recall that a group (G, +) is a set G endowed with an operation

 $\begin{array}{c} G \times G \longrightarrow G \\ (g,h) \longmapsto g+h \end{array}$

such that:

- (associativity) $\forall a, b, c \in G$, (a + b) + c = a + (b + c),
- (identity) $\exists 0 \in G, \forall a \in G, a + 0 = 0 + a = a$,
- (inverse) $\forall a \in G, \exists b \in G, a + b = b + a = 0.$

Groups

4/19 (2/3)

We recall that a group (G, +) is a set G endowed with an operation

 $\begin{array}{c} G \times G \longrightarrow G \\ (g,h) \longmapsto g+h \end{array}$

such that:

- (associativity) $\forall a, b, c \in G$, (a + b) + c = a + (b + c),
- (identity) $\exists 0 \in G, \forall a \in G, a + 0 = 0 + a = a$,
- (inverse) $\forall a \in G, \exists b \in G, a + b = b + a = 0.$

Example: The set of integers $\mathbb{Z} = \{..., -2, -1, 0, 1, 2, ...\}$ is a group for the addition +.

Groups

4/19 (3/3)

We recall that a group (G, +) is a set G endowed with an operation

 $\begin{array}{c} G \times G \longrightarrow G \\ (g,h) \longmapsto g+h \end{array}$

such that:

- (associativity) $\forall a, b, c \in G$, (a + b) + c = a + (b + c),
- (identity) $\exists 0 \in G, \forall a \in G, a + 0 = 0 + a = a$,
- (inverse) $\forall a \in G, \exists b \in G, a + b = b + a = 0.$

Example: The set of integers $\mathbb{Z} = \{..., -2, -1, 0, 1, 2, ...\}$ is a group for the addition +.

Moreover, we say that G is *commutative* if $\forall a, b \in G, a + b = b + a$. In this course, the only groups we consider will be commutative.

Example: The group of integers $(\mathbb{Z}, +)$ is commutative (1+2=2+1).

5/19 (1/4)

A subgroup of (G, +) is a subset $H \subset G$ such that

 $\forall a, b \in H, a + b \in H.$

If H is a subgroup of G, the operation $+ : G \times G \to G$ restricts to an operation $+ : H \times H \to H$, making H a group on its own.

Example: For any $p \ge 1$, the set $p\mathbb{Z} = \{pn, n \in \mathbb{Z}\}$ is a subgroup of $(\mathbb{Z}, +)$. Indeed, for any $m, n \in \mathbb{Z}$, $pn + pm = p(n + m) \in p\mathbb{Z}$.

5/19 (2/4)

A subgroup of (G, +) is a subset $H \subset G$ such that

 $\forall a, b \in H, a + b \in H.$

If H is a subgroup of G, the operation $+ : G \times G \to G$ restricts to an operation $+ : H \times H \to H$, making H a group on its own.

Suppose that G is commutative, and that H is a subgroup of H. We define the following equivalence relation on G: for all $a, b \in G$,

 $a \sim b \iff a - b \in H.$

Denote by G/H the quotient set of G under this relation. For any $a \in G$, one shows that the equivalence class of a is equal to $a + H = \{a + h, h \in H\}$.

Example: For any $p \ge 1$, the set $p\mathbb{Z} = \{pn, n \in \mathbb{Z}\}$ is a subgroup of $(\mathbb{Z}, +)$. Indeed, for any $m, n \in \mathbb{Z}$, $pn + pm = p(n + m) \in p\mathbb{Z}$. We have $a \sim b \iff a - b \in p\mathbb{Z} \iff p|a - b$. The equivalence class of any $a \in \mathbb{Z}$ is

 $\{b \in \mathbb{Z}, p | a - b\} = \{b \in \mathbb{Z}, \exists n \in \mathbb{Z}, b = a + pn\} = a + p\mathbb{Z}$

5/19 (3/4)

A subgroup of (G, +) is a subset $H \subset G$ such that

 $\forall a, b \in H, a + b \in H.$

If H is a subgroup of G, the operation $+ : G \times G \to G$ restricts to an operation $+ : H \times H \to H$, making H a group on its own.

Suppose that G is commutative, and that H is a subgroup of H. We define the following equivalence relation on G: for all $a, b \in G$,

 $a \sim b \iff a - b \in H.$

Denote by G/H the quotient set of G under this relation. For any $a \in G$, one shows that the equivalence class of a is equal to $a + H = \{a + h, h \in H\}$.

Let $a_0, a_1, ..., a_n$ be a choice of representants of equivalence classes of the relation \sim . The quotient set can be written as $G/H = \{0 + H, a_1 + H, ..., a_n + H\}$. One defines a group structure \oplus on G/H as follows: for any $i, j \in [\![0, n]\!]$,

$$(a_i + H) \oplus (a_j + H) = (a_i + a_j) + H.$$

The group $(G/H, \oplus)$ is called the *quotient group*.

Example: Consider $p\mathbb{Z} \subset \mathbb{Z}$. The quotient group $\mathbb{Z}/p\mathbb{Z}$ admits p classes, with representants $a_0 = 0, ..., a_{p-1} = p - 1$.

The classes are

$$p\mathbb{Z}, 1+p\mathbb{Z}, 2+p\mathbb{Z}, ..., p-1+p\mathbb{Z}.$$

The quotient group $\mathbb{Z}/p\mathbb{Z}$ can be seen as follows: its elements are

$$\{0, 1, 2, ..., p-1\}$$

and the operation is given by

$$a \oplus b = a + b \pmod{p}$$

For instance, $\mathbb{Z}/6\mathbb{Z} = \{0, 1, 2, 3, 4, 5\}$, and 4 + 5 = 2 (= 6 + 3).

Let $a_0, a_1, ..., a_n$ be a choice of representants of equivalence classes of the relation \sim . The quotient set can be written as $G/H = \{0 + H, a_1 + H, ..., a_n + H\}$. One defines a group structure \oplus on G/H as follows: for any $i, j \in [0, n]$,

$$(a_i + H) \oplus (a_j + H) = (a_i + a_j) + H.$$

The group $(G/H, \oplus)$ is called the *quotient group*.

The group $\mathbb{Z}/2\mathbb{Z}$

The subgroup $2\mathbb{Z} \subset \mathbb{Z}$ consists of all even numbers. The relation $a \sim b \iff a - b \in 2\mathbb{Z}$ admits two equivalence classes:

The quotient group can be seen as the group $\mathbb{Z}/2\mathbb{Z} = \{0,1\}$ with the operation

$$0 + 0 = 0$$

 $0 + 1 = 1$
 $1 + 0 = 1$
 $1 + 1 = 0$

The group $\mathbb{Z}/2\mathbb{Z}$

6/19 (2/2)

The subgroup $2\mathbb{Z} \subset \mathbb{Z}$ consists of all even numbers. The relation $a \sim b \iff a - b \in 2\mathbb{Z}$ admits two equivalence classes:

The quotient group can be seen as the group $\mathbb{Z}/2\mathbb{Z} = \{0,1\}$ with the operation

$$0 + 0 = 0$$

 $0 + 1 = 1$
 $1 + 0 = 1$
 $1 + 1 = 0$

For any $n \ge 1$, the product group $((\mathbb{Z}/2\mathbb{Z})^n, +)$ is the group whose underlying set is

$$(\mathbb{Z}/2\mathbb{Z})^n = \{(\epsilon_1, ..., \epsilon_n), \epsilon_1, ..., \epsilon_n \in \mathbb{Z}/2\mathbb{Z}\}\$$

and whose operation is defined as

$$(\epsilon_1, ..., \epsilon_n) + (\epsilon'_1, ..., \epsilon'_n) = (\epsilon_1 + \epsilon'_1, ..., \epsilon_n + \epsilon'_n).$$

Note that the set $(\mathbb{Z}/2\mathbb{Z})^n$ has 2^n elements.

7/19 (1/4)

 $(\lambda,v)\longmapsto\lambda\cdot v$

such that

- (compatibility of multiplication) $\forall \lambda, \mu \in \mathbb{F}, \forall v \in V, \lambda \cdot (\mu \cdot v) = (\lambda \times \mu) \cdot v$,
- (identity) $\forall v \in V, 1 \cdot v = v$ where 1 denotes the unit of \mathbb{F} ,
- (scalar distributivity) $\forall \mu, \nu \in \mathbb{F}, \forall v \in V, (\lambda + \nu) \cdot v = \lambda \cdot v + \nu \cdot v$,
- (vector distributivity) $\forall \mu \in \mathbb{F}, \forall v, w \in V, \lambda \cdot (u+v) = \lambda \cdot v + \nu \cdot v.$

7/19 (2/4)

Let $(\mathbb{F}, +, \times)$ be a field. We recall that a vector space over \mathbb{F} is a group (V, +) endowed with an operation $\mathbb{F} \times V \longrightarrow V$

$$(\lambda, v) \longmapsto \lambda \cdot v$$

such that

- (compatibility of multiplication) $\forall \lambda, \mu \in \mathbb{F}, \forall v \in V, \lambda \cdot (\mu \cdot v) = (\lambda \times \mu) \cdot v$,
- (identity) $\forall v \in V, 1 \cdot v = v$ where 1 denotes the unit of \mathbb{F} ,
- (scalar distributivity) $\forall \mu, \nu \in \mathbb{F}, \forall v \in V, (\lambda + \nu) \cdot v = \lambda \cdot v + \nu \cdot v$,
- (vector distributivity) $\forall \mu \in \mathbb{F}, \forall v, w \in V, \lambda \cdot (u+v) = \lambda \cdot v + \nu \cdot v.$

Let $\{v_1, ..., v_n\}$ be a collection of elements of V. We say that it is *free* if

$$\forall \lambda_1, \dots, \lambda_n \in \mathbb{F}, \sum_{1 \le i \le n} \lambda_i v_i = 0 \implies \lambda_1 = \dots = \lambda_n = 0.$$

We say that it is spans V if

$$\forall v \in V, \exists \lambda_1, ..., \lambda_n \in \mathbb{F}, \sum_{1 \le i \le n} \lambda_i v_i = v.$$

If the collection $\{v_1, ..., v_n\}$ is free and spans V, we say that it is a *basis*.

Proposition: If the vector space is finite, it admits a basis, and all bases have the same cardinal, called the *dimension* of V.

A linear subspace of $(V,+,\cdot)$ is a subset $W \subset V$ such that

 $\forall u, v \in W, u + v \in W$ and $\forall v \in W, \forall \lambda \in \mathbb{F}, \lambda v \in W.$

Just as for groups, we can define an equivalence relation \sim on V, and a *quotient vector* space V/W.

Proposition: We have $\dim V/W = \dim V - \dim W$.

A linear subspace of $(V, +, \cdot)$ is a subset $W \subset V$ such that

 $\forall u, v \in W, u + v \in W$ and $\forall v \in W, \forall \lambda \in \mathbb{F}, \lambda v \in W.$

Just as for groups, we can define an equivalence relation \sim on V, and a *quotient vector* space V/W.

Proposition: We have $\dim V/W = \dim V - \dim W$.

Let $(V,+,\cdot)$ and $(W,+,\cdot)$ be two vector spaces. A linear map is a map $f\colon V\to W$ such that

 $\forall u,v \in V, f(u+v) = f(u) + f(v) \quad \text{ and } \quad \forall v \in V, \forall \lambda \in \mathbb{F}, f(\lambda v) = \lambda \cdot f(v).$

If f is a bijection, it is called an *isomorphism*, and we say that V and W are *isomorphic*.

Proposition: If $(V, +, \cdot)$ is a vector space of dimension n, one shows that it is isomorphic to the product vector space \mathbb{F}^n .

$\mathbb{Z}/2\mathbb{Z}$ -vector spaces

8/19 (1/3)

Proposition: Le (V, +) be a commutative group. It can be given a $\mathbb{Z}/2\mathbb{Z}$ -vector space structure iff $\forall v \in V, v + v = 0$.

Proof: Suppose that $(V, +, \cdot)$ is a $\mathbb{Z}/2\mathbb{Z}$ -vector space. For all $v \in V$, we have

 $0 = 0 \cdot v = (1+1) \cdot v = v + v.$

$\mathbb{Z}/2\mathbb{Z}$ -vector spaces

8/19 (2/3)

Proposition: Le (V, +) be a commutative group. It can be given a $\mathbb{Z}/2\mathbb{Z}$ -vector space structure iff $\forall v \in V, v + v = 0$.

Proof: Suppose that $(V, +, \cdot)$ is a $\mathbb{Z}/2\mathbb{Z}$ -vector space. For all $v \in V$, we have

$$0 = 0 \cdot v = (1+1) \cdot v = v + v.$$

In the other direction, if $\forall v \in V, v + v = 0$, then we can define a vector space structure on (V, +) as follows: for all $v \in V$,

$$0 \cdot v = 0$$
$$1 \cdot v = v$$

$\mathbb{Z}/2\mathbb{Z}$ -vector spaces

8/19 (3/3)

Proposition: Le (V, +) be a commutative group. It can be given a $\mathbb{Z}/2\mathbb{Z}$ -vector space structure iff $\forall v \in V, v + v = 0$.

Proof: Suppose that $(V, +, \cdot)$ is a $\mathbb{Z}/2\mathbb{Z}$ -vector space. For all $v \in V$, we have

 $0 = 0 \cdot v = (1+1) \cdot v = v + v.$

In the other direction, if $\forall v \in V, v + v = 0$, then we can define a vector space structure on (V, +) as follows: for all $v \in V$,

 $0 \cdot v = 0$ $1 \cdot v = v$

Proposition: Let $(V, +, \cdot)$ be a finite $\mathbb{Z}/2\mathbb{Z}$ -vector space. Then there exists $n \ge 0$ such that V has cardinal 2^n , and $(V, +, \cdot)$ is isomorphic to the vector space $(\mathbb{Z}/2\mathbb{Z})^n$.

Proof: Consequence of the theory of vector spaces.

I - Reminder of algebra

II - Chains, cycles and boundaries

III - Homology groups

 VI - Homology groups of topological spaces

Skeleton

10/19

Let K be a simplicial complex. For any $n \ge 0$, define the *n*-skeleton of K:

 $K_n = \{\sigma \in K, \dim(\sigma) \le n\}$

Also, define

$$K_{(n)} = \{ \sigma \in K, \dim(\sigma) = n \}.$$

Chains

11/19 (1/3)

Let $n \ge 0$. The *n*-chains of K is the set $C_n(K)$ whose elements are the formal sums

$$\sum_{\sigma \in K_{(n)}} \epsilon_{\sigma} \cdot \sigma \quad \text{where} \quad \forall \sigma \in K_{(n)}, \ \epsilon_{\sigma} \in \mathbb{Z}/2\mathbb{Z}.$$

Example: Consider the simplicial complex $K = \{[0], [1], [2], [0, 1], [0, 2]\}$. The 0-chains $C_0(K)$ consists in 8 elements:

 $C_0(K) = \{0, [0], [1], [2], [0] + [1], [0] + [2], [1] + [2], [0] + [1] + [2]\}$

Chains

11/19 (2/3)

Let $n \ge 0$. The *n*-chains of K is the set $C_n(K)$ whose elements are the formal sums

$$\sum_{\sigma \in K_{(n)}} \epsilon_{\sigma} \cdot \sigma \quad \text{where} \quad \forall \sigma \in K_{(n)}, \ \epsilon_{\sigma} \in \mathbb{Z}/2\mathbb{Z}.$$

Example: Consider the simplicial complex $K = \{[0], [1], [2], [0, 1], [0, 2]\}$. The 0-chains $C_0(K)$ consists in 8 elements:

 $C_0(K) = \{0, [0], [1], [2], [0] + [1], [0] + [2], [1] + [2], [0] + [1] + [2]\}$

Chains

11/19 (3/3)

Let $n \ge 0$. The *n*-chains of K is the set $C_n(K)$ whose elements are the formal sums

$$\sum_{\sigma \in K_{(n)}} \epsilon_{\sigma} \cdot \sigma \quad \text{where} \quad \forall \sigma \in K_{(n)}, \ \epsilon_{\sigma} \in \mathbb{Z}/2\mathbb{Z}.$$

We can give $C_n(K)$ a group structure via

$$\sum_{\sigma \in K_{(n)}} \epsilon_{\sigma} \cdot \sigma + \sum_{\sigma \in K_{(n)}} \eta_{\sigma} \cdot \sigma = \sum_{\sigma \in K_{(n)}} (\epsilon_{\sigma} + \eta_{\sigma}) \cdot \sigma$$

Moreover, $C_n(K)$ can be given a $\mathbb{Z}/2\mathbb{Z}$ -vector space structure.

To see this, remember that a group (V, +) can be given a $\mathbb{Z}/2\mathbb{Z}$ -vector space structure if and only if $\forall v \in V, v + v = 0$. Now, observe that for any element of $C_n(K)$,

$$\sum_{\sigma \in K_{(n)}} \epsilon_{\sigma} \cdot \sigma + \sum_{\sigma \in K_{(n)}} \epsilon_{\sigma} \cdot \sigma = \sum_{\sigma \in K_{(n)}} (\epsilon_{\sigma} + \epsilon_{\sigma}) \cdot \sigma = \sum_{\sigma \in K_{(n)}} 0 \cdot \sigma = 0.$$

Example: In the simplicial complex $K = \{[0], [1], [2], [0, 1], [0, 2]\}$, the sum of the 0-chains [0] + [1] and [0] + [2] is [1] + [2]:

([0] + [1]) + ([0] + [2]) = [0] + [0] + [1] + [2] = [1] + [2].

12/19 (1/4)

Let $n \ge 1$, and $\sigma = [x_0, ..., x_n] \in K_{(n)}$ a simplex of dimension n. We define its boundary as the following element of $C_{n-1}(K)$:

$$\partial_n \sigma = \sum_{\substack{\tau \subset \sigma \\ |\tau| = |\sigma| - 1}} \tau$$

We can extend the operator ∂_n as a linear map $\partial_n : C_n(K) \to C_{n-1}(K)$ as follows: for any element of $C_n(K)$,

$$\partial_n \sum_{\sigma \in K_{(n)}} \epsilon_{\sigma} \cdot \sigma = \sum_{\sigma \in K_{(n)}} \epsilon_{\sigma} \cdot \partial_n \sigma.$$

Example: Consider the simplicial complex

 $K = \{[0], [1], [2], [3], [0, 1], [0, 2], [1, 2], [1, 3], [2, 3], [0, 1, 2]\}.$

The simplex $\left[0,1\right]$ has the faces $\left[0\right]$ and $\left[1\right].$ Hence

$$\partial_1[0,1] = [0] + [1].$$

12/19 (2/4)

Let $n \ge 1$, and $\sigma = [x_0, ..., x_n] \in K_{(n)}$ a simplex of dimension n. We define its boundary as the following element of $C_{n-1}(K)$:

$$\partial_n \sigma = \sum_{\substack{\tau \subset \sigma \\ |\tau| = |\sigma| - 1}} \tau$$

We can extend the operator ∂_n as a linear map $\partial_n : C_n(K) \to C_{n-1}(K)$ as follows: for any element of $C_n(K)$,

$$\partial_n \sum_{\sigma \in K_{(n)}} \epsilon_{\sigma} \cdot \sigma = \sum_{\sigma \in K_{(n)}} \epsilon_{\sigma} \cdot \partial_n \sigma.$$

Example: Consider the simplicial complex

 $K = \{[0], [1], [2], [3], [0, 1], [0, 2], [1, 2], [1, 3], [2, 3], [0, 1, 2]\}.$

The boundary of the 1-chain [0,1] + [1,2] + [2,0] is

$$\partial_1 ([0,1] + [1,2] + [2,0]) = \partial_1 [0,1] + \partial_1 [0,2] + \partial_1 [2,0]$$

= [0] + [1] + [0] + [2] + [2] + [0] = 0

12/19 (3/4)

Let $n \ge 1$, and $\sigma = [x_0, ..., x_n] \in K_{(n)}$ a simplex of dimension n. We define its boundary as the following element of $C_{n-1}(K)$:

$$\partial_n \sigma = \sum_{\substack{\tau \subset \sigma \\ |\tau| = |\sigma| - 1}} \tau$$

We can extend the operator ∂_n as a linear map $\partial_n : C_n(K) \to C_{n-1}(K)$ as follows: for any element of $C_n(K)$,

$$\partial_n \sum_{\sigma \in K_{(n)}} \epsilon_{\sigma} \cdot \sigma = \sum_{\sigma \in K_{(n)}} \epsilon_{\sigma} \cdot \partial_n \sigma.$$

Example: Consider the simplicial complex

 $K = \{[0], [1], [2], [3], [0, 1], [0, 2], [1, 2], [1, 3], [2, 3], [0, 1, 2]\}.$

The simplex $\left[0,1,2\right]$ has the faces $\left[0,1\right]$ and $\left[1,2\right]$ and $\left[2,0\right].$ Hence

$$\partial_2[0,1,2] = [0,1] + [1,2] + [2,0].$$

Proposition: For any $n \ge 1$, for any $c \in C_n(K)$, we have $\partial_{n-1} \circ \partial_n(c) = 0$.

Proof: Suppose that $n \ge 2$, the result being trivial otherwise.

Since the boundary operators are linear, it is enough to prove that $\partial_{n-1} \circ \partial_n(\sigma) = 0$ for all simplex $\sigma \in K_{(n)}$.

By definition, $\partial_n(\sigma) = \sum_{\substack{\tau \subset \sigma \\ |\tau| = |\sigma| - 1}} \tau$, and

$$\partial_{n-1} \circ \partial_n(\sigma) = \sum_{\substack{\tau \subset \sigma \\ |\tau| = |\sigma| - 1}} \partial_{n-1}(\tau) = \sum_{\substack{\tau \subset \sigma \\ |\tau| = |\sigma| - 1}} \sum_{\substack{\nu \subset \tau \\ |\nu| = |\tau| - 1}} \nu$$

We can write this last sum as

$$\sum_{\substack{\tau \subset \sigma \\ |\tau| = |\sigma| - 1}} \sum_{\substack{\nu \subset \tau \\ |\nu| = |\tau| - 1}} \nu = \sum_{\substack{\nu \subset \sigma \\ |\nu| = |\sigma| - 2}} \alpha_{\nu} \nu$$

where $\alpha_{\nu} = \{ \tau \subset \sigma, |\tau| = |\sigma| - 1, \nu \subset \tau \}.$

It is easy to see that for every ν such that $\dim \nu = \dim \tau - 2$, we have $\alpha_{\nu} = 2 = 0$.

13/19 (1/5)

Let $n \ge 0$. We have a triplet of vector spaces

$$C_{n+1}(K) \xrightarrow{\partial n+1} C_n(K) \xrightarrow{\partial n} C_{n-1}(K).$$

The maps ∂_{n+1} and ∂_n are linear maps, and we can consider their kernel and image. Definition: We define:

- The *n*-cycles: $Z_n(K) = \text{Ker}(\partial_n)$,
- The *n*-boundaries: $B_n(K) = \text{Im}(\partial_{n+1})$.

Let $n \ge 0$. We have a triplet of vector spaces

$$C_{n+1}(K) \xrightarrow{\partial n+1} C_n(K) \xrightarrow{\partial n} C_{n-1}(K).$$

The maps ∂_{n+1} and ∂_n are linear maps, and we can consider their kernel and image. Definition: We define:

- The *n*-cycles: $Z_n(K) = \text{Ker}(\partial_n)$,
- The *n*-boundaries: $B_n(K) = \text{Im}(\partial_{n+1})$.

Example:

Consider the following simplicial complex

$$\begin{bmatrix} 1 \\ 0 \end{bmatrix} \begin{bmatrix} 2 \\ 3 \end{bmatrix}$$

13/19 (2/5)

The chains

0, [0,1] + [1,2] + [0,2], [0,2] + [2,3] + [0,3] and [0,1] + [1,2] + [2,3] + [0,3] are 1-cycles.

For instance,

$$\partial_1([0,1] + [1,2] + [0,2]) = [0] + [1] + [1] + [2] + [0] + [2] = 0.$$

Moreover, the chains

 $\partial_2(0) = 0 \quad \text{and} \quad \partial_2([0,1,2]) = [0,1] + [0,2] + [1,2].$ are 1-boundaries.

13/19 (3/5)

Let $n \ge 0$. We have a triplet of vector spaces

$$C_{n+1}(K) \xrightarrow{\partial n+1} C_n(K) \xrightarrow{\partial n} C_{n-1}(K).$$

The maps ∂_{n+1} and ∂_n are linear maps, and we can consider their kernel and image. Definition: We define:

- The *n*-cycles: $Z_n(K) = \text{Ker}(\partial_n)$,
- The *n*-boundaries: $B_n(K) = \text{Im}(\partial_{n+1})$.

Definition: We say that two chains $c, c' \in C_n(K)$ are *homologous* if there exists $b \in B_n(K)$ such that c = c' + b.

- two chains are homologous if they are equal up to a boundary

Let $n \ge 0$. We have a triplet of vector spaces

$$C_{n+1}(K) \xrightarrow{\partial n+1} C_n(K) \xrightarrow{\partial n} C_{n-1}(K).$$

The maps ∂_{n+1} and ∂_n are linear maps, and we can consider their kernel and image. Definition: We define:

- The *n*-cycles: $Z_n(K) = \text{Ker}(\partial_n)$,
- The *n*-boundaries: $B_n(K) = \text{Im}(\partial_{n+1})$.

Definition: We say that two chains $c, c' \in C_n(K)$ are *homologous* if there exists $b \in B_n(K)$ such that c = c' + b.

Example: Consider the following simplicial complex

$$\int_{0}^{1} \int_{3}^{2} = \int_{1}^{2}$$

13/19 (4/5)

The chains [0,2] + [2,3] + [0,3] and [0,1] + [1,2] + [2,3] + [0,3] are homologous. Indeed,

[0,2] + [2,3] + [0,3] = [0,1] + [1,2] + [2,3] + [0,3] + [0,1] + [0,2] + [1,2].

Let $n \ge 0$. We have a triplet of vector spaces

$$C_{n+1}(K) \xrightarrow{\partial n+1} C_n(K) \xrightarrow{\partial n} C_{n-1}(K).$$

The maps ∂_{n+1} and ∂_n are linear maps, and we can consider their kernel and image. Definition: We define:

- The *n*-cycles: $Z_n(K) = \text{Ker}(\partial_n)$,
- The *n*-boundaries: $B_n(K) = \text{Im}(\partial_{n+1})$.

Proposition: We have $B_n(K) \subset Z_n(K)$.

Proof: Let $b \in B_n(K)$ be a boundary. By definition, there exists $c \in C_{n+1}(K)$ such that $b = \partial_{n+1}c$. Using $\partial_n \partial_{n+1} = 0$, we get

$$\partial_n b = \partial_n \partial_{n+1} c = 0,$$

hence $b \in Z_n(K)$.

13/19 (5/5)

I - Reminder of algebra

II - Chains, cycles and boundaries

III - Homology groups

 VI - Homology groups of topological spaces

15/19 (1/5)

In the previous subsection, we have defined a sequence of vector spaces, connected by linear maps

$$\dots \to C_{n+1}(K) \to C_n(K) \to C_{n-1}(K) \to \dots$$

and for every $n \ge 0$, we have defined the cycles and the boundaries $Z_n(K)$ and $B_n(K)$. Since $B_n(K) \subset Z_n(K)$, we can see $B_n(K)$ as a linear subspace of $Z_n(K)$. We can consider the corresponding quotient vector space, which is called the

Definition: n^{th} homology group of K:

 $H_n(K) = Z_n(K) / B_n(K).$

15/19 (2/5)

In the previous subsection, we have defined a sequence of vector spaces, connected by linear maps

$$\dots \to C_{n+1}(K) \to C_n(K) \to C_{n-1}(K) \to \dots$$

and for every $n \ge 0$, we have defined the cycles and the boundaries $Z_n(K)$ and $B_n(K)$. Since $B_n(K) \subset Z_n(K)$, we can see $B_n(K)$ as a linear subspace of $Z_n(K)$. We can consider the corresponding quotient vector space, which is called the

Definition: n^{th} homology group of K:

$$H_n(K) = Z_n(K) / B_n(K).$$

Proposition: dim $H_n(K) = \dim B_n(K) - \dim Z_n(K)$.

Definition: Let K be a simplicial complex and $n \ge 0$. Its n^{th} Betti number is the integer $\beta_n(K) = \dim H_n(K)$.

15/19 (3/5)

In the previous subsection, we have defined a sequence of vector spaces, connected by linear maps

$$\dots \to C_{n+1}(K) \to C_n(K) \to C_{n-1}(K) \to \dots$$

and for every $n \ge 0$, we have defined the cycles and the boundaries $Z_n(K)$ and $B_n(K)$. Since $B_n(K) \subset Z_n(K)$, we can see $B_n(K)$ as a linear subspace of $Z_n(K)$. We can consider the corresponding quotient vector space, which is called the

Definition: n^{th} homology group of K:

$$H_n(K) = Z_n(K) / B_n(K).$$

Proposition: dim $H_n(K) = \dim B_n(K) - \dim Z_n(K)$.

Definition: Let K be a simplicial complex and $n \ge 0$. Its n^{th} Betti number is the integer $\beta_n(K) = \dim H_n(K)$.

Exemple: Consider the simplicial complex

$$\begin{bmatrix} 1 \\ 0 \end{bmatrix} \begin{bmatrix} 2 \\ 3 \end{bmatrix}$$

As we have seen, $Z_1(K)$ has cardinal 4, and $B_1(K)$ cardinal 2. We deduce that $\dim Z_1(K) = 2$, $\dim B_1(K) = 1$, hence $\dim H_1(K) = 2 - 1 = 1$.

In other words, we have an isomorphism $H_1(K) \simeq \mathbb{Z}/2\mathbb{Z}$. Also, $\beta_1(K) = 1$.

Exercise: Consider the simplicial complex

Compute its 0-boundaries and 0-cycles. Deduce $\beta_0(K)$.

Exercise: Consider the simplicial complex

Compute its 0-boundaries and 0-cycles. Deduce $\beta_0(K)$.

We have:

 $Z_0(K) = \{[0], [1], [2], [0] + [1], [0] + [2], [1] + [2], [0] + [1] + [2]\}$ $B_0(K) = \{0, [0] + [1], [1] + [2], [0] + [2]\}.$

We deduce that $\dim Z_0(K) = 3$, $\dim B_0(K) = 2$, and

 $\dim H_0(K) = 3 - 2 = 1.$

I - Reminder of algebra

II - Chains, cycles and boundaries

III - Homology groups

 VI - Homology groups of topological spaces

Invariant property

Definition: The homology groups of a topological space are the homology groups of any triangulation of it. We define its Betti numbers similarly.

Proposition: If X and Y are two homotopy equivalent topological spaces, then for any $n \ge 0$ we have isomorphic homology groups $H_n(X) \simeq H_n(Y)$. As a consequence, $\beta_n(X) = \beta_n(Y)$.

X				
$H_0(X)$	$\mathbb{Z}/2\mathbb{Z}$	$\mathbb{Z}/2\mathbb{Z}$	$\mathbb{Z}/2\mathbb{Z}$	$(\mathbb{Z}/2\mathbb{Z})^2$
$\beta_0(X)$	1	1	1	2
$H_1(X)$	$\mathbb{Z}/2\mathbb{Z}$	0	$(\mathbb{Z}/2\mathbb{Z})^2$	$(\mathbb{Z}/2\mathbb{Z})^2$
$\beta_1(X)$	1	0	2	2
$H_2(X)$	0	$\mathbb{Z}/2\mathbb{Z}$	0	0
$\beta_2(X)$	0	1	0	0

X				
$H_0(X)$	$\mathbb{Z}/2\mathbb{Z}$	Number of conne	ected components	$2\mathbb{Z})^2$
$\beta_0(X)$	1	1	1	2
$H_1(X)$	$\mathbb{Z}/2\mathbb{Z}$	0	$(\mathbb{Z}/2\mathbb{Z})^2$	$(\mathbb{Z}/2\mathbb{Z})^2$
$\beta_1(X)$	1	0	2	2
$H_2(X)$	0	$\mathbb{Z}/2\mathbb{Z}$	0	0
$\beta_2(X)$	0	1	0	0

18/19 (3/4)

X				
$H_0(X)$	$\mathbb{Z}/2\mathbb{Z}$	$\mathbb{Z}/2\mathbb{Z}$ Number of connected components		
$\beta_0(X)$	1	1	1	2
$H_1(X)$	$\mathbb{Z}/2\mathbb{Z}$	Number of	holes	$2\mathbb{Z})^2$
$\beta_1(X)$	1	0	2	2
$H_2(X)$	0	$\mathbb{Z}/2\mathbb{Z}$	0	0
$\beta_2(X)$	0	1	0	0

18/19 (4/4)

X				
$H_0(X)$	$\mathbb{Z}/2\mathbb{Z}$	Number of conne	$2\mathbb{Z})^2$	
$\beta_0(X)$	1	1	1	2
$H_1(X)$	$\mathbb{Z}/2\mathbb{Z}$	Number of	$2\mathbb{Z})^2$	
$\beta_1(X)$	1	0	2	2
$H_2(X)$	0	Number of	0	
$\beta_2(X)$	0	1	0	0

Conclusion

We defined the homology groups of simplicial complexes.

We defined the homology groups of topological spaces via triangulations.

This is an invariant of homotopy equivalence.

Homeworks for next week: Exercises 29, 30 Facultative exercise: Exercises 27, 28

Conclusion

We defined the homology groups of simplicial complexes.

We defined the homology groups of topological spaces via triangulations.

This is an invariant of homotopy equivalence.

Homeworks for next week: Exercises 29, 30 Facultative exercise: Exercises 27, 28