EMAp Summer Course

Topological Data Analysis with Persistent Homology

https://raphaeltinarrage.github.io/EMAp.html

Lesson 5: Homological algebra

Introduction

Until here, we defined two invariants of topological spaces: number of connected components and Euler characteristic.

Today we will define a powerful invariant, homology groups, that already contains the two previous invariants.

Algebraic topology

Introduction

Until here, we defined two invariants of topological spaces: number of connected components and Euler characteristic.

Today we will define a powerful invariant, homology groups, that already contains the two previous invariants.

Introduction

Until here, we defined two invariants of topological spaces: number of connected components and Euler characteristic.

Today we will define a powerful invariant, homology groups, that already contains the two previous invariants.

Introduction

Until here, we defined two invariants of topological spaces: number of connected components and Euler characteristic.

Today we will define a powerful invariant, homology groups, that already contains the two previous invariants.

Introduction

Until here, we defined two invariants of topological spaces: number of connected components and Euler characteristic.

Today we will define a powerful invariant, homology groups, that already contains the two previous invariants.

I - Reminder of algebra

II - Chains, cycles and boundaries

III - Homology groups

VI - Homology groups of topological spaces

Groups

We recall that a group $(G,+)$ is a set G endowed with an operation

$$
\begin{aligned}
G \times G & \longrightarrow G \\
(g, h) & \longmapsto g+h
\end{aligned}
$$

such that:

- (associativity) $\forall a, b, c \in G,(a+b)+c=a+(b+c)$,
- (identity) $\exists 0 \in G, \forall a \in G, a+0=0+a=a$,
- (inverse) $\forall a \in G, \exists b \in G, a+b=b+a=0$.

Groups

We recall that a group $(G,+)$ is a set G endowed with an operation

$$
\begin{aligned}
G \times G & \longrightarrow G \\
(g, h) & \longmapsto g+h
\end{aligned}
$$

such that:

- (associativity) $\forall a, b, c \in G,(a+b)+c=a+(b+c)$,
- (identity) $\exists 0 \in G, \forall a \in G, a+0=0+a=a$,
- (inverse) $\forall a \in G, \exists b \in G, a+b=b+a=0$.

Example: The set of integers $\mathbb{Z}=\{\ldots,-2,-1,0,1,2, \ldots\}$ is a group for the addition + .

Groups

We recall that a group $(G,+)$ is a set G endowed with an operation

$$
\begin{aligned}
G \times G & \longrightarrow G \\
(g, h) & \longmapsto g+h
\end{aligned}
$$

such that:

- (associativity) $\forall a, b, c \in G,(a+b)+c=a+(b+c)$,
- (identity) $\exists 0 \in G, \forall a \in G, a+0=0+a=a$,
- (inverse) $\forall a \in G, \exists b \in G, a+b=b+a=0$.

Example: The set of integers $\mathbb{Z}=\{\ldots,-2,-1,0,1,2, \ldots\}$ is a group for the addition + .
Moreover, we say that G is commutative if $\forall a, b \in G, a+b=b+a$. In this course, the only groups we consider will be commutative.

Example: The group of integers $(\mathbb{Z},+)$ is commutative $(1+2=2+1)$.

Quotient group

A subgroup of $(G,+)$ is a subset $H \subset G$ such that

$$
\forall a, b \in H, a+b \in H
$$

If H is a subgroup of G, the operation $+: G \times G \rightarrow G$ restricts to an operation $+: H \times H \rightarrow H$, making H a group on its own.

Example: For any $p \geq 1$, the set $p \mathbb{Z}=\{p n, n \in \mathbb{Z}\}$ is a subgroup of $(\mathbb{Z},+)$.
Indeed, for any $m, n \in \mathbb{Z}, p n+p m=p(n+m) \in p \mathbb{Z}$.

Quotient group

A subgroup of $(G,+)$ is a subset $H \subset G$ such that

$$
\forall a, b \in H, a+b \in H
$$

If H is a subgroup of G, the operation $+: G \times G \rightarrow G$ restricts to an operation $+: H \times H \rightarrow H$, making H a group on its own.

Suppose that G is commutative, and that H is a subgroup of H. We define the following equivalence relation on G : for all $a, b \in G$,

$$
a \sim b \Longleftrightarrow a-b \in H
$$

Denote by G / H the quotient set of G under this relation. For any $a \in G$, one shows that the equivalence class of a is equal to $a+H=\{a+h, h \in H\}$.

Example: For any $p \geq 1$, the set $p \mathbb{Z}=\{p n, n \in \mathbb{Z}\}$ is a subgroup of $(\mathbb{Z},+)$.
Indeed, for any $m, n \in \mathbb{Z}, p n+p m=p(n+m) \in p \mathbb{Z}$.
We have $a \sim b \Longleftrightarrow a-b \in p \mathbb{Z} \Longleftrightarrow p \mid a-b$.
The equivalence class of any $a \in \mathbb{Z}$ is

$$
\{b \in \mathbb{Z}, p \mid a-b\}=\{b \in \mathbb{Z}, \exists n \in \mathbb{Z}, b=a+p n\}=a+p \mathbb{Z}
$$

Quotient group

A subgroup of $(G,+)$ is a subset $H \subset G$ such that

$$
\forall a, b \in H, a+b \in H
$$

If H is a subgroup of G, the operation $+: G \times G \rightarrow G$ restricts to an operation $+: H \times H \rightarrow H$, making H a group on its own.

Suppose that G is commutative, and that H is a subgroup of H. We define the following equivalence relation on G : for all $a, b \in G$,

$$
a \sim b \Longleftrightarrow a-b \in H
$$

Denote by G / H the quotient set of G under this relation. For any $a \in G$, one shows that the equivalence class of a is equal to $a+H=\{a+h, h \in H\}$.

Let $a_{0}, a_{1}, \ldots, a_{n}$ be a choice of representants of equivalence classes of the relation \sim.
The quotient set can be written as $G / H=\left\{0+H, a_{1}+H, \ldots, a_{n}+H\right\}$.
One defines a group structure \oplus on G / H as follows: for any $i, j \in \llbracket 0, n \rrbracket$,

$$
\left(a_{i}+H\right) \oplus\left(a_{j}+H\right)=\left(a_{i}+a_{j}\right)+H
$$

The group $(G / H, \oplus)$ is called the quotient group.

Quotient group

Example: Consider $p \mathbb{Z} \subset \mathbb{Z}$. The quotient group $\mathbb{Z} / p \mathbb{Z}$ admits p classes, with representants $a_{0}=0, \ldots, a_{p-1}=p-1$.
The classes are

$$
p \mathbb{Z}, \quad 1+p \mathbb{Z}, \quad 2+p \mathbb{Z}, \quad \ldots, \quad p-1+p \mathbb{Z}
$$

The quotient group $\mathbb{Z} / p \mathbb{Z}$ can be seen as follows: its elements are

$$
\{0,1, \quad 2, \ldots, p-1\}
$$

and the operation is given by

$$
a \oplus b=a+b(\operatorname{modulo} p)
$$

For instance, $\mathbb{Z} / 6 \mathbb{Z}=\{0,1,2,3,4,5\}$, and $4+5=2(=6+3)$.

Let $a_{0}, a_{1}, \ldots, a_{n}$ be a choice of representants of equivalence classes of the relation \sim.
The quotient set can be written as $G / H=\left\{0+H, a_{1}+H, \ldots, a_{n}+H\right\}$.
One defines a group structure \oplus on G / H as follows: for any $i, j \in \llbracket 0, n \rrbracket$,

$$
\left(a_{i}+H\right) \oplus\left(a_{j}+H\right)=\left(a_{i}+a_{j}\right)+H
$$

The group $(G / H, \oplus)$ is called the quotient group.

The group $\mathbb{Z} / 2 \mathbb{Z}$

The subgroup $2 \mathbb{Z} \subset \mathbb{Z}$ consists of all even numbers.
The relation $a \sim b \Longleftrightarrow a-b \in 2 \mathbb{Z}$ admits two equivalence classes:

The quotient group can be seen as the group $\mathbb{Z} / 2 \mathbb{Z}=\{0,1\}$ with the operation

$$
\begin{aligned}
& 0+0=0 \\
& 0+1=1 \\
& 1+0=1 \\
& 1+1=0
\end{aligned}
$$

The group $\mathbb{Z} / 2 \mathbb{Z}$

The subgroup $2 \mathbb{Z} \subset \mathbb{Z}$ consists of all even numbers.
The relation $a \sim b \Longleftrightarrow a-b \in 2 \mathbb{Z}$ admits two equivalence classes:

The quotient group can be seen as the group $\mathbb{Z} / 2 \mathbb{Z}=\{0,1\}$ with the operation

$$
\begin{aligned}
& 0+0=0 \\
& 0+1=1 \\
& 1+0=1 \\
& 1+1=0
\end{aligned}
$$

For any $n \geq 1$, the product group $\left((\mathbb{Z} / 2 \mathbb{Z})^{n},+\right)$ is the group whose underlying set is

$$
(\mathbb{Z} / 2 \mathbb{Z})^{n}=\left\{\left(\epsilon_{1}, \ldots, \epsilon_{n}\right), \epsilon_{1}, \ldots, \epsilon_{n} \in \mathbb{Z} / 2 \mathbb{Z}\right\}
$$

and whose operation is defined as

$$
\left(\epsilon_{1}, \ldots, \epsilon_{n}\right)+\left(\epsilon_{1}^{\prime}, \ldots, \epsilon_{n}^{\prime}\right)=\left(\epsilon_{1}+\epsilon_{1}^{\prime}, \ldots, \epsilon_{n}+\epsilon_{n}^{\prime}\right) .
$$

Note that the set $(\mathbb{Z} / 2 \mathbb{Z})^{n}$ has 2^{n} elements.

Vector spaces

Let $(\mathbb{F},+, \times)$ be a field. We recall that a vector space over \mathbb{F} is a group $(V,+)$ endowed with an operation

$$
\mathbb{F} \times V \longrightarrow V
$$

such that

$$
(\lambda, v) \longmapsto \lambda \cdot v
$$

- (compatibility of multiplication) $\forall \lambda, \mu \in \mathbb{F}, \forall v \in V, \lambda \cdot(\mu \cdot v)=(\lambda \times \mu) \cdot v$,
- (identity) $\forall v \in V, 1 \cdot v=v$ where 1 denotes the unit of \mathbb{F},
- (scalar distributivity) $\forall \mu, \nu \in \mathbb{F}, \forall v \in V,(\lambda+\nu) \cdot v=\lambda \cdot v+\nu \cdot v$,
- (vector distributivity) $\forall \mu \in \mathbb{F}, \forall v, w \in V, \lambda \cdot(u+v)=\lambda \cdot v+\nu \cdot v$.

Vector spaces

Let $(\mathbb{F},+, \times)$ be a field. We recall that a vector space over \mathbb{F} is a group $(V,+)$ endowed with an operation

$$
\mathbb{F} \times V \longrightarrow V
$$

$$
(\lambda, v) \longmapsto \lambda \cdot v
$$

such that

- (compatibility of multiplication) $\forall \lambda, \mu \in \mathbb{F}, \forall v \in V, \lambda \cdot(\mu \cdot v)=(\lambda \times \mu) \cdot v$,
- (identity) $\forall v \in V, 1 \cdot v=v$ where 1 denotes the unit of \mathbb{F},
- (scalar distributivity) $\forall \mu, \nu \in \mathbb{F}, \forall v \in V,(\lambda+\nu) \cdot v=\lambda \cdot v+\nu \cdot v$,
- (vector distributivity) $\forall \mu \in \mathbb{F}, \forall v, w \in V, \lambda \cdot(u+v)=\lambda \cdot v+\nu \cdot v$.

Let $\left\{v_{1}, \ldots, v_{n}\right\}$ be a collection of elements of V. We say that it is free if

$$
\forall \lambda_{1}, \ldots, \lambda_{n} \in \mathbb{F}, \sum_{1 \leq i \leq n} \lambda_{i} v_{i}=0 \Longrightarrow \lambda_{1}=\ldots=\lambda_{n}=0
$$

We say that it is spans V if

$$
\forall v \in V, \exists \lambda_{1}, \ldots, \lambda_{n} \in \mathbb{F}, \sum_{1 \leq i \leq n} \lambda_{i} v_{i}=v
$$

If the collection $\left\{v_{1}, \ldots, v_{n}\right\}$ is free and spans V, we say that it is a basis.
Proposition: If the vector space is finite, it admits a basis, and all bases have the same cardinal, called the dimension of V.

Vector spaces

A linear subspace of $(V,+, \cdot)$ is a subset $W \subset V$ such that

$$
\forall u, v \in W, u+v \in W \quad \text { and } \quad \forall v \in W, \forall \lambda \in \mathbb{F}, \lambda v \in W
$$

Just as for groups, we can define an equivalence relation \sim on V, and a quotient vector space V / W.

Proposition: We have $\operatorname{dim} V / W=\operatorname{dim} V-\operatorname{dim} W$.

Vector spaces

A linear subspace of $(V,+, \cdot)$ is a subset $W \subset V$ such that

$$
\forall u, v \in W, u+v \in W \quad \text { and } \quad \forall v \in W, \forall \lambda \in \mathbb{F}, \lambda v \in W
$$

Just as for groups, we can define an equivalence relation \sim on V, and a quotient vector space V / W.

Proposition: We have $\operatorname{dim} V / W=\operatorname{dim} V-\operatorname{dim} W$.

Let $(V,+, \cdot)$ and $(W,+, \cdot)$ be two vector spaces. A linear map is a map $f: V \rightarrow W$ such that

$$
\forall u, v \in V, f(u+v)=f(u)+f(v) \quad \text { and } \quad \forall v \in V, \forall \lambda \in \mathbb{F}, f(\lambda v)=\lambda \cdot f(v)
$$

If f is a bijection, it is called an isomorphism, and we say that V and W are isomorphic.
Proposition: If $(V,+, \cdot)$ is a vector space of dimension n, one shows that it is isomorphic to the product vector space \mathbb{F}^{n}.

$\mathbb{Z} / 2 \mathbb{Z}$-vector spaces

Proposition: Le $(V,+)$ be a commutative group.
It can be given a $\mathbb{Z} / 2 \mathbb{Z}$-vector space structure iff $\forall v \in V, v+v=0$.

Proof: Suppose that $(V,+, \cdot)$ is a $\mathbb{Z} / 2 \mathbb{Z}$-vector space. For all $v \in V$, we have

$$
0=0 \cdot v=(1+1) \cdot v=v+v
$$

$\mathbb{Z} / 2 \mathbb{Z}$-vector spaces

Proposition: Le $(V,+)$ be a commutative group. It can be given a $\mathbb{Z} / 2 \mathbb{Z}$-vector space structure iff $\forall v \in V, v+v=0$.

Proof: Suppose that $(V,+, \cdot)$ is a $\mathbb{Z} / 2 \mathbb{Z}$-vector space. For all $v \in V$, we have

$$
0=0 \cdot v=(1+1) \cdot v=v+v
$$

In the other direction, if $\forall v \in V, v+v=0$, then we can define a vector space structure on $(V,+)$ as follows: for all $v \in V$,

$$
\begin{aligned}
& 0 \cdot v=0 \\
& 1 \cdot v=v
\end{aligned}
$$

$\mathbb{Z} / 2 \mathbb{Z}$-vector spaces

Proposition: Le $(V,+)$ be a commutative group. It can be given a $\mathbb{Z} / 2 \mathbb{Z}$-vector space structure iff $\forall v \in V, v+v=0$.

Proof: Suppose that $(V,+, \cdot)$ is a $\mathbb{Z} / 2 \mathbb{Z}$-vector space. For all $v \in V$, we have

$$
0=0 \cdot v=(1+1) \cdot v=v+v
$$

In the other direction, if $\forall v \in V, v+v=0$, then we can define a vector space structure on $(V,+)$ as follows: for all $v \in V$,

$$
\begin{aligned}
& 0 \cdot v=0 \\
& 1 \cdot v=v
\end{aligned}
$$

Proposition: Let $(V,+, \cdot)$ be a finite $\mathbb{Z} / 2 \mathbb{Z}$-vector space. Then there exists $n \geq 0$ such that V has cardinal 2^{n}, and $(V,+, \cdot)$ is isomorphic to the vector space $(\mathbb{Z} / 2 \mathbb{Z})^{n}$.

Proof: Consequence of the theory of vector spaces.

I - Reminder of algebra

II - Chains, cycles and boundaries

III - Homology groups

VI - Homology groups of topological spaces

Skeleton

Let K be a simplicial complex. For any $n \geq 0$, define the n-skeleton of K :

$$
K_{n}=\{\sigma \in K, \operatorname{dim}(\sigma) \leq n\}
$$

Also, define

$$
K_{(n)}=\{\sigma \in K, \operatorname{dim}(\sigma)=n\} .
$$

K

Chains

Let $n \geq 0$. The n-chains of K is the set $C_{n}(K)$ whose elements are the formal sums

$$
\sum_{\sigma \in K_{(n)}} \epsilon_{\sigma} \cdot \sigma \quad \text { where } \quad \forall \sigma \in K_{(n)}, \epsilon_{\sigma} \in \mathbb{Z} / 2 \mathbb{Z}
$$

Example: Consider the simplicial complex $K=\{[0],[1],[2],[0,1],[0,2]\}$. The 0 -chains $C_{0}(K)$ consists in 8 elements:

$$
C_{0}(K)=\{0,[0],[1],[2],[0]+[1],[0]+[2],[1]+[2],[0]+[1]+[2]\}
$$

1 p 2
0

[0]

[1]

[2]

$[1]+[2][0]+[1]+[2]$

Chains

Let $n \geq 0$. The n-chains of K is the set $C_{n}(K)$ whose elements are the formal sums

$$
\sum_{\sigma \in K_{(n)}} \epsilon_{\sigma} \cdot \sigma \quad \text { where } \quad \forall \sigma \in K_{(n)}, \epsilon_{\sigma} \in \mathbb{Z} / 2 \mathbb{Z}
$$

Example: Consider the simplicial complex $K=\{[0],[1],[2],[0,1],[0,2]\}$. The 0 -chains $C_{0}(K)$ consists in 8 elements:

$$
C_{0}(K)=\{0,[0],[1],[2],[0]+[1],[0]+[2],[1]+[2],[0]+[1]+[2]\}
$$

The 1-chains $C_{1}(K)$ consists in 4 elements

$$
C_{1}(K)=\{0,[0,1],[0,2],[0,1]+[0,2]\} .
$$

0

$[0,1]$

$[0,2]$

$[0,1]+[0,2]$

Chains

Let $n \geq 0$. The n-chains of K is the set $C_{n}(K)$ whose elements are the formal sums

$$
\sum_{\sigma \in K_{(n)}} \epsilon_{\sigma} \cdot \sigma \quad \text { where } \quad \forall \sigma \in K_{(n)}, \epsilon_{\sigma} \in \mathbb{Z} / 2 \mathbb{Z}
$$

We can give $C_{n}(K)$ a group structure via

$$
\sum_{\sigma \in K_{(n)}} \epsilon_{\sigma} \cdot \sigma+\sum_{\sigma \in K_{(n)}} \eta_{\sigma} \cdot \sigma=\sum_{\sigma \in K_{(n)}}\left(\epsilon_{\sigma}+\eta_{\sigma}\right) \cdot \sigma
$$

Moreover, $C_{n}(K)$ can be given a $\mathbb{Z} / 2 \mathbb{Z}$-vector space structure.
To see this, remember that a group $(V,+)$ can be given a $\mathbb{Z} / 2 \mathbb{Z}$-vector space structure if and only if $\forall v \in V, v+v=0$. Now, observe that for any element of $C_{n}(K)$,

$$
\sum_{\sigma \in K_{(n)}} \epsilon_{\sigma} \cdot \sigma+\sum_{\sigma \in K_{(n)}} \epsilon_{\sigma} \cdot \sigma=\sum_{\sigma \in K_{(n)}}\left(\epsilon_{\sigma}+\epsilon_{\sigma}\right) \cdot \sigma=\sum_{\sigma \in K_{(n)}} 0 \cdot \sigma=0
$$

Example: In the simplicial complex $K=\{[0],[1],[2],[0,1],[0,2]\}$, the sum of the 0 -chains $[0]+[1]$ and $[0]+[2]$ is $[1]+[2]$:

$$
([0]+[1])+([0]+[2])=[0]+[0]+[1]+[2]=[1]+[2] .
$$

Boundary operator

Let $n \geq 1$, and $\sigma=\left[x_{0}, \ldots, x_{n}\right] \in K_{(n)}$ a simplex of dimension n. We define its boundary as the following element of $C_{n-1}(K)$:

$$
\partial_{n} \sigma=\sum_{\substack{\tau \subset \sigma \\|\tau|=|\sigma|-1}} \tau
$$

We can extend the operator ∂_{n} as a linear map $\partial_{n}: C_{n}(K) \rightarrow C_{n-1}(K)$ as follows: for any element of $C_{n}(K)$,

$$
\partial_{n} \sum_{\sigma \in K_{(n)}} \epsilon_{\sigma} \cdot \sigma=\sum_{\sigma \in K_{(n)}} \epsilon_{\sigma} \cdot \partial_{n} \sigma
$$

Example: Consider the simplicial complex

$$
K=\{[0],[1],[2],[3],[0,1],[0,2],[1,2],[1,3],[2,3],[0,1,2]\} .
$$

The simplex $[0,1]$ has the faces $[0]$ and $[1]$. Hence

$$
\partial_{1}[0,1]=[0]+[1] .
$$

Boundary operator

Let $n \geq 1$, and $\sigma=\left[x_{0}, \ldots, x_{n}\right] \in K_{(n)}$ a simplex of dimension n. We define its boundary as the following element of $C_{n-1}(K)$:

$$
\partial_{n} \sigma=\sum_{\substack{\tau \subset \sigma \\|\tau|=|\sigma|-1}} \tau
$$

We can extend the operator ∂_{n} as a linear map $\partial_{n}: C_{n}(K) \rightarrow C_{n-1}(K)$ as follows: for any element of $C_{n}(K)$,

$$
\partial_{n} \sum_{\sigma \in K_{(n)}} \epsilon_{\sigma} \cdot \sigma=\sum_{\sigma \in K_{(n)}} \epsilon_{\sigma} \cdot \partial_{n} \sigma
$$

Example: Consider the simplicial complex

$$
K=\{[0],[1],[2],[3],[0,1],[0,2],[1,2],[1,3],[2,3],[0,1,2]\} .
$$

The boundary of the 1 -chain $[0,1]+[1,2]+[2,0]$ is

$$
\begin{aligned}
\partial_{1}([0,1]+[1,2]+[2,0]) & =\partial_{1}[0,1]+\partial_{1}[0,2]+\partial_{1}[2,0] \\
& =[0]+[1]+[0]+[2]+[2]+[0]=0
\end{aligned}
$$

Boundary operator

Let $n \geq 1$, and $\sigma=\left[x_{0}, \ldots, x_{n}\right] \in K_{(n)}$ a simplex of dimension n. We define its boundary as the following element of $C_{n-1}(K)$:

$$
\partial_{n} \sigma=\sum_{\substack{\tau \subset \sigma \\|\tau|=|\sigma|-1}} \tau
$$

We can extend the operator ∂_{n} as a linear map $\partial_{n}: C_{n}(K) \rightarrow C_{n-1}(K)$ as follows: for any element of $C_{n}(K)$,

$$
\partial_{n} \sum_{\sigma \in K_{(n)}} \epsilon_{\sigma} \cdot \sigma=\sum_{\sigma \in K_{(n)}} \epsilon_{\sigma} \cdot \partial_{n} \sigma
$$

Example: Consider the simplicial complex

$$
K=\{[0],[1],[2],[3],[0,1],[0,2],[1,2],[1,3],[2,3],[0,1,2]\} .
$$

The simplex $[0,1,2]$ has the faces $[0,1]$ and $[1,2]$ and $[2,0]$. Hence

$$
\partial_{2}[0,1,2]=[0,1]+[1,2]+[2,0] .
$$

Boundary operator

Proposition: For any $n \geq 1$, for any $c \in C_{n}(K)$, we have $\partial_{n-1} \circ \partial_{n}(c)=0$.
Proof: Suppose that $n \geq 2$, the result being trivial otherwise.
Since the boundary operators are linear, it is enough to prove that $\partial_{n-1} \circ \partial_{n}(\sigma)=0$ for all simplex $\sigma \in K_{(n)}$.
By definition, $\partial_{n}(\sigma)=\sum_{\substack{\tau \subset|=|\sigma|-1}}^{\tau \tau} \tau$, and

$$
\partial_{n-1} \circ \partial_{n}(\sigma)=\sum_{\substack{\tau \subset \sigma \\|\tau|=|\sigma|-1}} \partial_{n-1}(\tau)=\sum_{\substack{\tau \subset \sigma \\|\tau|=|\sigma|-1}} \sum_{\substack{\nu \subset \tau \\|\nu|=|\tau|-1}} \nu
$$

We can write this last sum as

$$
\sum_{\substack{\tau \subset \sigma \\|\tau|=|\sigma|-1}} \sum_{\substack{\nu \subset \tau \\|\nu|=|\tau|-1}} \nu=\sum_{\substack{\nu \subset \sigma \\|\nu|=|\sigma|-2}} \alpha_{\nu} \nu
$$

where $\alpha_{\nu}=\{\tau \subset \sigma,|\tau|=|\sigma|-1, \nu \subset \tau\}$.
It is easy to see that for every ν such that $\operatorname{dim} \nu=\operatorname{dim} \tau-2$, we have $\alpha_{\nu}=2=0$.

Cycles and boundaries

Let $n \geq 0$. We have a triplet of vector spaces

$$
C_{n+1}(K) \xrightarrow{\partial n+1} C_{n}(K) \xrightarrow{\partial n} C_{n-1}(K) .
$$

The maps ∂_{n+1} and ∂_{n} are linear maps, and we can consider their kernel and image.
Definition: We define:

- The n-cycles: $Z_{n}(K)=\operatorname{Ker}\left(\partial_{n}\right)$,
- The n-boundaries: $B_{n}(K)=\operatorname{Im}\left(\partial_{n+1}\right)$.

Cycles and boundaries

Let $n \geq 0$. We have a triplet of vector spaces

$$
C_{n+1}(K) \xrightarrow{\partial n+1} C_{n}(K) \xrightarrow{\partial n} C_{n-1}(K)
$$

The maps ∂_{n+1} and ∂_{n} are linear maps, and we can consider their kernel and image.
Definition: We define:

- The n-cycles: $Z_{n}(K)=\operatorname{Ker}\left(\partial_{n}\right)$,
- The n-boundaries: $B_{n}(K)=\operatorname{Im}\left(\partial_{n+1}\right)$.

Example:

Consider the following simplicial complex
The chains

$0, \quad[0,1]+[1,2]+[0,2], \quad[0,2]+[2,3]+[0,3] \quad$ and $\quad[0,1]+[1,2]+[2,3]+[0,3]$ are 1-cycles.
For instance,

$$
\partial_{1}([0,1]+[1,2]+[0,2])=[0]+[1]+[1]+[2]+[0]+[2]=0
$$

Moreover, the chains

$$
\partial_{2}(0)=0 \quad \text { and } \quad \partial_{2}([0,1,2])=[0,1]+[0,2]+[1,2] .
$$

are 1-boundaries.

Cycles and boundaries

Let $n \geq 0$. We have a triplet of vector spaces

$$
C_{n+1}(K) \xrightarrow{\partial n+1} C_{n}(K) \xrightarrow{\partial n} C_{n-1}(K) .
$$

The maps ∂_{n+1} and ∂_{n} are linear maps, and we can consider their kernel and image.
Definition: We define:

- The n-cycles: $Z_{n}(K)=\operatorname{Ker}\left(\partial_{n}\right)$,
- The n-boundaries: $B_{n}(K)=\operatorname{Im}\left(\partial_{n+1}\right)$.

Definition: We say that two chains $c, c^{\prime} \in C_{n}(K)$ are homologous if there exists $b \in B_{n}(K)$ such that $c=c^{\prime}+b$.
\longrightarrow two chains are homologous if they are equal up to a boundary

Cycles and boundaries

Let $n \geq 0$. We have a triplet of vector spaces

$$
C_{n+1}(K) \xrightarrow{\partial n+1} C_{n}(K) \xrightarrow{\partial n} C_{n-1}(K)
$$

The maps ∂_{n+1} and ∂_{n} are linear maps, and we can consider their kernel and image.
Definition: We define:

- The n-cycles: $Z_{n}(K)=\operatorname{Ker}\left(\partial_{n}\right)$,
- The n-boundaries: $B_{n}(K)=\operatorname{Im}\left(\partial_{n+1}\right)$.

Definition: We say that two chains $c, c^{\prime} \in C_{n}(K)$ are homologous if there exists $b \in B_{n}(K)$ such that $c=c^{\prime}+b$.

Example: Consider the following simplicial complex

The chains $[0,2]+[2,3]+[0,3]$ and $[0,1]+[1,2]+[2,3]+[0,3]$ are homologous. Indeed,

$$
[0,2]+[2,3]+[0,3]=[0,1]+[1,2]+[2,3]+[0,3]+[0,1]+[0,2]+[1,2] .
$$

Cycles and boundaries

Let $n \geq 0$. We have a triplet of vector spaces

$$
C_{n+1}(K) \xrightarrow{\partial n+1} C_{n}(K) \xrightarrow{\partial n} C_{n-1}(K)
$$

The maps ∂_{n+1} and ∂_{n} are linear maps, and we can consider their kernel and image.
Definition: We define:

- The n-cycles: $Z_{n}(K)=\operatorname{Ker}\left(\partial_{n}\right)$,
- The n-boundaries: $B_{n}(K)=\operatorname{Im}\left(\partial_{n+1}\right)$.

Proposition: We have $B_{n}(K) \subset Z_{n}(K)$.
Proof: Let $b \in B_{n}(K)$ be a boundary.
By definition, there exists $c \in C_{n+1}(K)$ such that $b=\partial_{n+1} c$.
Using $\partial_{n} \partial_{n+1}=0$, we get

$$
\partial_{n} b=\partial_{n} \partial_{n+1} c=0
$$

hence $b \in Z_{n}(K)$.

I - Reminder of algebra

II - Chains, cycles and boundaries

III - Homology groups

VI - Homology groups of topological spaces

Homology groups

In the previous subsection, we have defined a sequence of vector spaces, connected by linear maps

$$
\ldots \rightarrow C_{n+1}(K) \rightarrow C_{n}(K) \rightarrow C_{n-1}(K) \rightarrow \ldots
$$

and for every $n \geq 0$, we have defined the cycles and the boundaries $Z_{n}(K)$ and $B_{n}(K)$. Since $B_{n}(K) \subset Z_{n}(K)$, we can see $B_{n}(K)$ as a linear subspace of $Z_{n}(K)$. We can consider the corresponding quotient vector space, which is called the

Definition: $n^{\text {th }}$ homology group of K :

$$
H_{n}(K)=Z_{n}(K) / B_{n}(K)
$$

Homology groups

In the previous subsection, we have defined a sequence of vector spaces, connected by linear maps

$$
\ldots \rightarrow C_{n+1}(K) \rightarrow C_{n}(K) \rightarrow C_{n-1}(K) \rightarrow \ldots
$$

and for every $n \geq 0$, we have defined the cycles and the boundaries $Z_{n}(K)$ and $B_{n}(K)$. Since $B_{n}(K) \subset Z_{n}(K)$, we can see $B_{n}(K)$ as a linear subspace of $Z_{n}(K)$. We can consider the corresponding quotient vector space, which is called the

Definition: $n^{\text {th }}$ homology group of K :

$$
H_{n}(K)=Z_{n}(K) / B_{n}(K)
$$

Proposition: $\operatorname{dim} H_{n}(K)=\operatorname{dim} B_{n}(K)-\operatorname{dim} Z_{n}(K)$.
Definition: Let K be a simplicial complex and $n \geq 0$. Its $n^{\text {th }}$ Betti number is the integer $\beta_{n}(K)=\operatorname{dim} H_{n}(K)$.

Homology groups

In the previous subsection, we have defined a sequence of vector spaces, connected by linear maps

$$
\ldots \rightarrow C_{n+1}(K) \rightarrow C_{n}(K) \rightarrow C_{n-1}(K) \rightarrow \ldots
$$

and for every $n \geq 0$, we have defined the cycles and the boundaries $Z_{n}(K)$ and $B_{n}(K)$. Since $B_{n}(K) \subset Z_{n}(K)$, we can see $B_{n}(K)$ as a linear subspace of $Z_{n}(K)$.
We can consider the corresponding quotient vector space, which is called the
Definition: $n^{\text {th }}$ homology group of K :

$$
H_{n}(K)=Z_{n}(K) / B_{n}(K)
$$

Proposition: $\operatorname{dim} H_{n}(K)=\operatorname{dim} B_{n}(K)-\operatorname{dim} Z_{n}(K)$.
Definition: Let K be a simplicial complex and $n \geq 0$. Its $n^{\text {th }}$ Betti number is the integer $\beta_{n}(K)=\operatorname{dim} H_{n}(K)$.

Exemple: Consider the simplicial complex

As we have seen, $Z_{1}(K)$ has cardinal 4 , and $B_{1}(K)$ cardinal 2 . We deduce that $\operatorname{dim} Z_{1}(K)=2, \operatorname{dim} B_{1}(K)=1$, hence $\operatorname{dim} H_{1}(K)=2-1=1$.

In other words, we have an isomorphism $H_{1}(K) \simeq \mathbb{Z} / 2 \mathbb{Z}$. Also, $\beta_{1}(K)=1$.

Homology groups

Exercise: Consider the simplicial complex

Compute its 0 -boundaries and 0 -cycles. Deduce $\beta_{0}(K)$.

Homology groups

Exercise: Consider the simplicial complex

Compute its 0 -boundaries and 0 -cycles. Deduce $\beta_{0}(K)$.

We have:

$$
\begin{aligned}
& Z_{0}(K)=\{[0],[1],[2],[0]+[1],[0]+[2],[1]+[2],[0]+[1]+[2]\} \\
& B_{0}(K)=\{0,[0]+[1],[1]+[2],[0]+[2]\} .
\end{aligned}
$$

We deduce that $\operatorname{dim} Z_{0}(K)=3, \operatorname{dim} B_{0}(K)=2$, and

$$
\operatorname{dim} H_{0}(K)=3-2=1
$$

I - Reminder of algebra

II - Chains, cycles and boundaries

III - Homology groups

VI - Homology groups of topological spaces

Invariant property

Definition: The homology groups of a topological space are the homology groups of any triangulation of it. We define its Betti numbers similarly.

Proposition: If X and Y are two homotopy equivalent topological spaces, then for any $n \geq 0$ we have isomorphic homology groups $H_{n}(X) \simeq H_{n}(Y)$. As a consequence, $\beta_{n}(X)=\beta_{n}(Y)$.

Examples

18/19 (1/4)

X				
$H_{0}(X)$	$\mathbb{Z} / 2 \mathbb{Z}$	$\mathbb{Z} / 2 \mathbb{Z}$	$\mathbb{Z} / 2 \mathbb{Z}$	$(\mathbb{Z} / 2 \mathbb{Z})^{2}$
$\beta_{0}(X)$	1	1	1	2
$H_{1}(X)$	$\mathbb{Z} / 2 \mathbb{Z}$	0	$(\mathbb{Z} / 2 \mathbb{Z})^{2}$	$(\mathbb{Z} / 2 \mathbb{Z})^{2}$
$\beta_{1}(X)$	1	0	2	2
$H_{2}(X)$	0	$\mathbb{Z} / 2 \mathbb{Z}$	0	0
$\beta_{2}(X)$	0	1	0	0

Examples

18/19 (2/4)

Examples

18/19 (3/4)

Examples

18/19 (4/4)

X				
$H_{0}(X)$	$\mathbb{Z} / 2 \mathbb{Z}$	Number	d components	$2 \mathbb{Z})^{2}$
$\beta_{0}(X)$	1	1	1	2
$H_{1}(X)$	$\mathbb{Z} / 2 \mathbb{Z}$			$2 \mathbb{Z})^{2}$
$\beta_{1}(X)$	1	0	2	2
$H_{2}(X)$	0		vities	0
$\beta_{2}(X)$	0	1	0	0

Conclusion

We defined the homology groups of simplicial complexes.
We defined the homology groups of topological spaces via triangulations.
This is an invariant of homotopy equivalence.

Homeworks for next week: Exercises 29, 30
Facultative exercise: Exercises 27, 28

Conclusion

We defined the homology groups of simplicial complexes.
We defined the homology groups of topological spaces via triangulations.
This is an invariant of homotopy equivalence.

Homeworks for next week: Exercises 29, 30
Facultative exercise: Exercises 27, 28

Merci !

