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Objective of the lesson: doing topology on a computer.




I - Combinatorial simplicial complexes



Standard simplices 4/14 (1/2)

In order to describe topological spaces, we will decompose them into simpler pieces.
The pieces we shall consider are the standard simplices.

The standard simplex of dimension n is the following subset of R"1!

A, ={r=(x1,....,0n41) € R 2, s Tpr1 > 0and 1+ ...+ 111 =1}
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Standard simplices 4/14 (2/2)

In order to describe topological spaces, we will decompose them into simpler pieces.
The pieces we shall consider are the standard simplices.

The standard simplex of dimension n is the following subset of R"1!

Ap={x= (21, Tnp1) ER" ™ 2, . zpi1 >0and 21 + ...+ Tppq = 1}

- y
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Remark: For any collection of points a1, ..., ar € R™, their convex hull is defined as:

conv({al...ak}) = {Zlgigk tiCLi, 1+ ...+ 1 = 1, tl, ...,tk; > O} .

We can say that A,, is the convex hull of the vectors eq, ..., e,,11 of R®™ where

e; = (0,...,1,0,...,0) (3™ coordinate 1, the other ones 0).



Simplicial complexes 5/14 (1/7)

First, a purely combinatorial definition (without geometry):

Let V' be a set (called the set of vertices). A simplicial complex over V is a
set K of subsets of V' (called the simplices) such that, for every 0 € K and every
non-empty 7 C o, we have 7 € K.



Simplicial complexes 5/14 (2/7)

First, a purely combinatorial definition (without geometry):

Let V' be a set (called the set of vertices). A simplicial complex over V is a
set K of subsets of V' (called the simplices) such that, for every 0 € K and every
non-empty 7 C o, we have 7 € K.

Example: Let V ={0,1,2} and
K =10}, [1], [2],10,1], [1, 2], [2, 0] }.

This is a simplicial complex.



Simplicial complexes 5/14 (3/7)

First, a purely combinatorial definition (without geometry):

Let V' be a set (called the set of vertices). A simplicial complex over V is a
set K of subsets of V' (called the simplices) such that, for every 0 € K and every
non-empty 7 C o, we have 7 € K.

If 0 € K is a simplex, its non-empty subsets 7 C ¢ are called faces of o.

By convention, we write simplices with square brackets (instead of curly brackets).
Example: Let V ={0,1,2} and
K = {10}, [1], 2], 10,1], [1, 2], [2, 0]}.

This is a simplicial complex.



Simplicial complexes 5/14 (4/7)

First, a purely combinatorial definition (without geometry):

Let V' be a set (called the set of vertices). A simplicial complex over V is a
set K of subsets of V' (called the simplices) such that, for every 0 € K and every
non-empty 7 C o, we have 7 € K.

If 0 € K is a simplex, its non-empty subsets 7 C ¢ are called faces of o.

By convention, we write simplices with square brackets (instead of curly brackets).
Example: Let V ={0,1,2} and
K = {10}, [1], 2], 10,1], [1, 2], [2, 0]}.

This is a simplicial complex.



Simplicial complexes 5/14 (5/7)

First, a purely combinatorial definition (without geometry):

Let V' be a set (called the set of vertices). A simplicial complex over V is a
set K of subsets of V' (called the simplices) such that, for every 0 € K and every
non-empty 7 C o, we have 7 € K.

If 0 € K is a simplex, its non-empty subsets 7 C ¢ are called faces of o.

By convention, we write simplices with square brackets (instead of curly brackets).
Example: Let V ={0,1,2} and
K = {0}, [1], 2], 10,1, [1, 2], [2, 0}, [0, 1, 2]}.

This is a simplicial complex.



Simplicial complexes 5/14 (6/7)

First, a purely combinatorial definition (without geometry):

Let V' be a set (called the set of vertices). A simplicial complex over V is a
set K of subsets of V' (called the simplices) such that, for every 0 € K and every
non-empty 7 C o, we have 7 € K.

If 0 € K is a simplex, its non-empty subsets 7 C ¢ are called faces of o.

By convention, we write simplices with square brackets (instead of curly brackets).
Example: Let V ={0,1,2} and
K = {0}, [1], 2], 10,1], [1, 2}, [0, 1, 2]}.

This is not a simplicial complex.
Indeed, the simplex [0, 1,2] admits a face [2,0] that is not included in V.

0




Simplicial complexes 5/14 (7/7)

First, a purely combinatorial definition (without geometry):

Let V' be a set (called the set of vertices). A simplicial complex over V is a
set K of subsets of V' (called the simplices) such that, for every 0 € K and every
non-empty 7 C o, we have 7 € K.

If o is a simplex, its dimension is defined as |o| — 1 (cardinality of o minus 1). If K is a
simplicial complex, its dimension is defined as the maximal dimension of its simplices.

Example: Let V ={0,1,2,3} and
K = {0}, [1}, 2], 3], [0, 1], 1,2}, 2,3],[3,0], 0,2}, 1,3],[0,1,2}, 10,1, 3], 0,2, 3], [1,2, 3]}
It a simplicial complex of dimension 2.
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I - Combinatorial simplicial complexes

I1 - Topology

III - Euler characteristic

(VI - Tutorial)



opological realization 7/14 (1/2)

Let us give simplicial complexes a topology.

Let K be a simplicial complex, with vertex V = {1,...,n}.
In R™, consider, for every i € [1,n], the vector e; = (0, ...,1,0,...,0) (i*" coordinate 1,

the other ones 0).
Let |K| be the subset of R™ defined as:

K| = | conv({e;.j € o})

ceK

where conv represent the convex hull of points.
Endowed with the subspace topology, (| K|, 7| k) is a topological space, that we call
the topological realization of K.

If ay,...,ar € R™, the convex hull is defined as:
Y, Y

conv({al...ak}) = {Zlgigk tia;, t1+ ...+t =1, t1,....tp > O} :



opological realization 7/14 (2/2)

Let us give simplicial complexes a topology.

Let K be a simplicial complex, with vertex V = {1,...,n}.
In R™, consider, for every i € [1,n], the vector e; = (0, ...,1,0,...,0) (i*" coordinate 1,
the other ones 0).
Let |K| be the subset of R™ defined as:

K| = | conv({e;.j € o})

ceK

where conv represent the convex hull of points.
Endowed with the subspace topology, (| K|, 7| k) is a topological space, that we call
the topological realization of K.

Remark: If the simplicial complex can be drawn in the plane (or space) without crossing
itself, then its topological realization simply is the subspace topology.

Example: K = {[0],[1],[2],[3],]0,1],[1, 2], [2,0],[1,3],[2,3], [0, 1, 2]}.

1
0




riangulations 8/14 (1/4)

Let (X,7T) be a topological space. A triangulation of X is a simplicial
complex K such that its topological realization | K| is homeomorphic to X.



riangulations 8/14 (2/4)

Let (X,7T) be a topological space. A triangulation of X is a simplicial
complex K such that its topological realization | K| is homeomorphic to X.

Example: The following simplicial complex is a triangulation of the circle:
0
K = {0}, (1}, [2], [0, 1], [1, 2], 2, 0]}



riangulations 8/14 (3/4)

Let (X,7T) be a topological space. A triangulation of X is a simplicial
complex K such that its topological realization |K| is homeomorphic to X.

Example: The following simplicial complex is a triangulation of the circle:
0
K = {0}, (1}, [2], [0, 1], [1, 2], 2, 0]}

Example: The following simplicial complex is a triangulation of the sphere:

K = 1[0}, [1], 2], [3], [0, 1], 1,2}, 2, 3], 3, 0], [0, 2], [1, 3], 10,1, 2], [0, 1, 3}, [0, 2, 3], [1, 2, 3] }.

3
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riangulations 8/14 (4/4)

Let (X,7T) be a topological space. A triangulation of X is a simplicial
complex K such that its topological realization |K| is homeomorphic to X.

Given a topological space, it is not always possible to triangulate it.
However, when it is, there exists many different triangulations.



111 - Euler characteristic



Euler characteristic 10/14 (1/7)

Let K be a simplicial complex of dimension n. lts Euler characteristic is the
integer

X(K) = Z (=1)* - (number of simplices of dimension 7).
0<:<n



Euler characteristic 10/14 (2/7)

Let K be a simplicial complex of dimension n. lts Euler characteristic is the
integer

X(K) = Z (=1)* - (number of simplices of dimension 7).
0<:<n

Example: The simplicial complex K = {[0], [1], 2], [0, 1], [1, 2], |2, 0]} has Euler
characteristic 0

X(K)=3-3=0



Euler characteristic 10/14 (3/7)

Definition: Let K be a simplicial complex of dimension n. Its Euler characteristic is the
integer

X(K) = Z (=1)* - (number of simplices of dimension ).
0<:<n

Example: The simplicial complex K = {[0], [1], [2], [0, 1], [1, 2], [2, 0]} has Euler
characteristic 0

X(K)=3-3=0

Example: The simplicial complex
K = {[0], [1],[2], 3], 10, 1], [1, 2], 2, 3]. 13,0}, 10, 2], 1, 3], 10,1, 2],10,1,3], 0, 2,3], 1,2, 3]}

has Euler characteristic 3 0

X(K)=4—-6+4=2



Euler characteristic 10/14 (4/7)

Let K be a simplicial complex of dimension n. lts Euler characteristic is the
integer
X(K) = Z (=1)* - (number of simplices of dimension 7).
0<:<n

Let X be a topological space. Its Euler characteristic is defined as the Euler
characteristic of any triangulation of it.

Two issues:
e X must admit a triangulation

e we have to make sure the the triangulations of X all have the same Euler
characteristic. In other words, if K and K’ are two triangulations of X, we must

have x(K) = x(K’).



Euler characteristic 10/14 (5/7)

Let K be a simplicial complex of dimension n. lts Euler characteristic is the
integer

X(K) = Z (=1)* - (number of simplices of dimension 7).
0<:<n

Let X be a topological space. Its Euler characteristic is defined as the Euler
characteristic of any triangulation of it.

Two issues:
e X must admit a triangulation

;» topological spaces does not all admit a Euler characteristic

e we have to make sure the the triangulations of X all have the same Euler
characteristic. In other words, if K and K’ are two triangulations of X, we must

have x(K) = x(K’).



Euler characteristic 10/14 (6/7)

Let K be a simplicial complex of dimension n. lts Euler characteristic is the
integer

X(K) = Z (=1)* - (number of simplices of dimension 7).
0<:<n

Let X be a topological space. Its Euler characteristic is defined as the Euler
characteristic of any triangulation of it.

Two issues:
e X must admit a triangulation

;» topological spaces does not all admit a Euler characteristic

e we have to make sure the the triangulations of X all have the same Euler
characteristic. In other words, if K and K’ are two triangulations of X, we must

have x(K) = x(K’).

;» this is truel

but we won't be able to prove it in this summer course...



Euler characteristic 10/14 (7/7)

Let K be a simplicial complex of dimension n. lts Euler characteristic is the
integer

X(K) = Z (=1)* - (number of simplices of dimension 7).
0<:<n

Let X be a topological space. Its Euler characteristic is defined as the Euler
characteristic of any triangulation of it.

Example: The circle has Euler characteristic 0 because it admits a triangulation
K = {[0], [1],[2], 10, 1], [1,2], 2,0} 0

2

Example: The sphere has Euler characteristic 2 because it admits a triangulation
K = {0}, (1}, [2], [3], [0, 1], [1,2]. [2, 3], 3. 0], [0, 2], [1,3],[0,1,2}, 10,1, 3], 0,2, 3], 1,2, 3]}

0



Euler characteristic is an invariant ;4 (19

Proposition: If X and Y are two homotopy equivalent topological spaces, then
X(X) = x(Y).

Therefore, the Euler characteristic is an invariant of homotopy equivalence classes.

We can use this information to prove that two spaces are not homotopy equivalent.



Euler characteristic is an invariant ;14 (59

Proposition: If X and Y are two homotopy equivalent topological spaces, then
X(X) = x(Y).

Therefore, the Euler characteristic is an invariant of homotopy equivalence classes.

We can use this information to prove that two spaces are not homotopy equivalent.

Example: The circle has Euler characteristic 0, and the sphere Euler characteristic 2.
Therefore, they are not homotopy equivalent.

Exercise (21): Show that R3 and R* are not homeomorphic.



I - Combinatorial simplicial complexes

I1 - Topology

III - Euler characteristic

(VI - Tutorial)
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Rendez-vous on

https://github.com/raphaeltinarrage/EMAp/blob/main/Tutoriall.ipynb

For those who want to go further (simplex trees), have a look at

https://github.com/GUDHI/TDA-tutorial/blob/master/Tuto-GUDHI-simplex
-Trees.ipynb



Conclusion

We learnt how to represent topological spaces on a computer.

We defined a new topological invariant.

Homeworks for next week: Exercises 20, 25

Facultative exercise: Exercises 21, 26***



Conclusion

We learnt how to represent topological spaces on a computer.

We defined a new topological invariant.

Homeworks for next week: Exercises 20, 25

Facultative exercise: Exercises 21, 26***

Obrigado!



