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Objective of the lesson: doing topology on a computer.



3/14

I - Combinatorial simplicial complexes

II - Topology

III - Euler characteristic

(VI - Tutorial)



4/14 (1/2)Standard simplices

In order to describe topological spaces, we will decompose them into simpler pieces.
The pieces we shall consider are the standard simplices.

The standard simplex of dimension n is the following subset of Rn+1

∆n = {x = (x1, ..., xn+1) ∈ Rn+1, x1, ..., xn+1 ≥ 0 and x1 + ...+ xn+1 = 1}

∆0 ∆1 ∆2
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In order to describe topological spaces, we will decompose them into simpler pieces.
The pieces we shall consider are the standard simplices.

The standard simplex of dimension n is the following subset of Rn+1

∆n = {x = (x1, ..., xn+1) ∈ Rn+1, x1, ..., xn+1 ≥ 0 and x1 + ...+ xn+1 = 1}

∆0 ∆1 ∆2

Remark: For any collection of points a1, ..., ak ∈ Rn, their convex hull is defined as:

conv({a1...ak}) =
{∑

1≤i≤k tiai, t1 + ...+ tk = 1, t1, ..., tk ≥ 0
}
.

We can say that ∆n is the convex hull of the vectors e1, ..., en+1 of Rn+1, where

ei = (0, ..., 1, 0, ..., 0) (ith coordinate 1, the other ones 0).



5/14 (1/7)Simplicial complexes

First, a purely combinatorial definition (without geometry):

Definition: Let V be a set (called the set of vertices). A simplicial complex over V is a
set K of subsets of V (called the simplices) such that, for every σ ∈ K and every
non-empty τ ⊂ σ, we have τ ∈ K.
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Definition: Let V be a set (called the set of vertices). A simplicial complex over V is a
set K of subsets of V (called the simplices) such that, for every σ ∈ K and every
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Example: Let V = {0, 1, 2} and

K = {[0], [1], [2], [0, 1], [1, 2], [2, 0]}.

This is a simplicial complex.
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First, a purely combinatorial definition (without geometry):

Definition: Let V be a set (called the set of vertices). A simplicial complex over V is a
set K of subsets of V (called the simplices) such that, for every σ ∈ K and every
non-empty τ ⊂ σ, we have τ ∈ K.

By convention, we write simplices with square brackets (instead of curly brackets).

If σ ∈ K is a simplex, its non-empty subsets τ ⊂ σ are called faces of σ.
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This is a simplicial complex.



5/14 (4/7)Simplicial complexes

First, a purely combinatorial definition (without geometry):
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First, a purely combinatorial definition (without geometry):

Definition: Let V be a set (called the set of vertices). A simplicial complex over V is a
set K of subsets of V (called the simplices) such that, for every σ ∈ K and every
non-empty τ ⊂ σ, we have τ ∈ K.

By convention, we write simplices with square brackets (instead of curly brackets).

If σ ∈ K is a simplex, its non-empty subsets τ ⊂ σ are called faces of σ.
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Example: Let V = {0, 1, 2} and

K = {[0], [1], [2], [0, 1], [1, 2], [2, 0], [0, 1, 2]}.

This is a simplicial complex.
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5/14 (6/7)Simplicial complexes

First, a purely combinatorial definition (without geometry):

Definition: Let V be a set (called the set of vertices). A simplicial complex over V is a
set K of subsets of V (called the simplices) such that, for every σ ∈ K and every
non-empty τ ⊂ σ, we have τ ∈ K.

By convention, we write simplices with square brackets (instead of curly brackets).

If σ ∈ K is a simplex, its non-empty subsets τ ⊂ σ are called faces of σ.
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Example: Let V = {0, 1, 2} and

K = {[0], [1], [2], [0, 1], [1, 2], [0, 1, 2]}.

This is not a simplicial complex.
Indeed, the simplex [0, 1, 2] admits a face [2, 0] that is not included in V .
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5/14 (7/7)Simplicial complexes

First, a purely combinatorial definition (without geometry):

Definition: Let V be a set (called the set of vertices). A simplicial complex over V is a
set K of subsets of V (called the simplices) such that, for every σ ∈ K and every
non-empty τ ⊂ σ, we have τ ∈ K.

If σ is a simplex, its dimension is defined as |σ| − 1 (cardinality of σ minus 1). If K is a
simplicial complex, its dimension is defined as the maximal dimension of its simplices.
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Example: Let V = {0, 1, 2, 3} and

K = {[0], [1], [2], [3], [0, 1], [1, 2], [2, 3], [3, 0], [0, 2], [1, 3], [0, 1, 2], [0, 1, 3], [0, 2, 3], [1, 2, 3]}.

It a simplicial complex of dimension 2.
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Let us give simplicial complexes a topology.

Definition: Let K be a simplicial complex, with vertex V = {1, ..., n}.
In Rn, consider, for every i ∈ J1, nK, the vector ei = (0, ..., 1, 0, ..., 0) (ith coordinate 1,
the other ones 0).
Let |K| be the subset of Rn defined as:

|K| =
⋃
σ∈K

conv ({ej , j ∈ σ})

where conv represent the convex hull of points.
Endowed with the subspace topology, (|K| , T||K|) is a topological space, that we call
the topological realization of K.

If a1, ..., ak ∈ Rn, the convex hull is defined as:

conv({a1...ak}) =
{∑

1≤i≤k tiai, t1 + ...+ tk = 1, t1, ..., tk ≥ 0
}
.



7/14 (2/2)Topological realization

Let us give simplicial complexes a topology.

Definition: Let K be a simplicial complex, with vertex V = {1, ..., n}.
In Rn, consider, for every i ∈ J1, nK, the vector ei = (0, ..., 1, 0, ..., 0) (ith coordinate 1,
the other ones 0).
Let |K| be the subset of Rn defined as:

|K| =
⋃
σ∈K

conv ({ej , j ∈ σ})

where conv represent the convex hull of points.
Endowed with the subspace topology, (|K| , T||K|) is a topological space, that we call
the topological realization of K.

Remark: If the simplicial complex can be drawn in the plane (or space) without crossing
itself, then its topological realization simply is the subspace topology.

Example: K = {[0], [1], [2], [3], [0, 1], [1, 2], [2, 0], [1, 3], [2, 3], [0, 1, 2]}.
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8/14 (1/4)Triangulations

Definition: Let (X, T ) be a topological space. A triangulation of X is a simplicial
complex K such that its topological realization |K| is homeomorphic to X.
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Definition: Let (X, T ) be a topological space. A triangulation of X is a simplicial
complex K such that its topological realization |K| is homeomorphic to X.

Example: The following simplicial complex is a triangulation of the circle:

K = {[0], [1], [2], [0, 1], [1, 2], [2, 0]}
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8/14 (3/4)Triangulations

Definition: Let (X, T ) be a topological space. A triangulation of X is a simplicial
complex K such that its topological realization |K| is homeomorphic to X.

Example: The following simplicial complex is a triangulation of the circle:

K = {[0], [1], [2], [0, 1], [1, 2], [2, 0]}
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Example: The following simplicial complex is a triangulation of the sphere:

K = {[0], [1], [2], [3], [0, 1], [1, 2], [2, 3], [3, 0], [0, 2], [1, 3], [0, 1, 2], [0, 1, 3], [0, 2, 3], [1, 2, 3]}.
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Definition: Let (X, T ) be a topological space. A triangulation of X is a simplicial
complex K such that its topological realization |K| is homeomorphic to X.

Given a topological space, it is not always possible to triangulate it.
However, when it is, there exists many different triangulations.
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10/14 (1/7)Euler characteristic

Definition: Let K be a simplicial complex of dimension n. Its Euler characteristic is the
integer

χ(K) =
∑

0≤i≤n

(−1)i · (number of simplices of dimension i).
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Definition: Let K be a simplicial complex of dimension n. Its Euler characteristic is the
integer

χ(K) =
∑

0≤i≤n

(−1)i · (number of simplices of dimension i).

Example: The simplicial complex K = {[0], [1], [2], [0, 1], [1, 2], [2, 0]} has Euler
characteristic
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χ(K) = 3− 3 = 0
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Definition: Let K be a simplicial complex of dimension n. Its Euler characteristic is the
integer

χ(K) =
∑

0≤i≤n

(−1)i · (number of simplices of dimension i).

Example: The simplicial complex K = {[0], [1], [2], [0, 1], [1, 2], [2, 0]} has Euler
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Example: The simplicial complex
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χ(K) = 3− 3 = 0

χ(K) = 4− 6 + 4 = 2

K = {[0], [1], [2], [3], [0, 1], [1, 2], [2, 3], [3, 0], [0, 2], [1, 3], [0, 1, 2], [0, 1, 3], [0, 2, 3], [1, 2, 3]}
has Euler characteristic
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Definition: Let K be a simplicial complex of dimension n. Its Euler characteristic is the
integer

χ(K) =
∑

0≤i≤n

(−1)i · (number of simplices of dimension i).

Definition: Let X be a topological space. Its Euler characteristic is defined as the Euler
characteristic of any triangulation of it.

Two issues:
• X must admit a triangulation

• we have to make sure the the triangulations of X all have the same Euler
characteristic. In other words, if K and K ′ are two triangulations of X, we must
have χ(K) = χ(K ′).
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Definition: Let K be a simplicial complex of dimension n. Its Euler characteristic is the
integer

χ(K) =
∑

0≤i≤n

(−1)i · (number of simplices of dimension i).

Definition: Let X be a topological space. Its Euler characteristic is defined as the Euler
characteristic of any triangulation of it.

Two issues:
• X must admit a triangulation

• we have to make sure the the triangulations of X all have the same Euler
characteristic. In other words, if K and K ′ are two triangulations of X, we must
have χ(K) = χ(K ′).

topological spaces does not all admit a Euler characteristic

this is true!
but we won’t be able to prove it in this summer course...
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Definition: Let K be a simplicial complex of dimension n. Its Euler characteristic is the
integer

χ(K) =
∑

0≤i≤n

(−1)i · (number of simplices of dimension i).

Definition: Let X be a topological space. Its Euler characteristic is defined as the Euler
characteristic of any triangulation of it.

Example: The circle has Euler characteristic 0 because it admits a triangulation

0

1
2

1
2

0

1
2

3

K = {[0], [1], [2], [3], [0, 1], [1, 2], [2, 3], [3, 0], [0, 2], [1, 3], [0, 1, 2], [0, 1, 3], [0, 2, 3], [1, 2, 3]}

K = {[0], [1], [2], [0, 1], [1, 2], [2, 0]}

Example: The sphere has Euler characteristic 2 because it admits a triangulation



11/14 (1/2)Euler characteristic is an invariant

Proposition: If X and Y are two homotopy equivalent topological spaces, then
χ(X) = χ(Y ).

Therefore, the Euler characteristic is an invariant of homotopy equivalence classes.

We can use this information to prove that two spaces are not homotopy equivalent.

n = 1 n = 2 n = 3 n = 4



11/14 (2/2)Euler characteristic is an invariant

Proposition: If X and Y are two homotopy equivalent topological spaces, then
χ(X) = χ(Y ).

Therefore, the Euler characteristic is an invariant of homotopy equivalence classes.

We can use this information to prove that two spaces are not homotopy equivalent.

Example: The circle has Euler characteristic 0, and the sphere Euler characteristic 2.
Therefore, they are not homotopy equivalent.

Exercise (21): Show that R3 and R4 are not homeomorphic.

n = 1 n = 2 n = 3 n = 4
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III - Euler characteristic
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Rendez-vous on

https://github.com/raphaeltinarrage/EMAp/blob/main/Tutorial1.ipynb

For those who want to go further (simplex trees), have a look at

https://github.com/GUDHI/TDA-tutorial/blob/master/Tuto-GUDHI-simplex

-Trees.ipynb
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Conclusion
We learnt how to represent topological spaces on a computer.

We defined a new topological invariant.

Homeworks for next week: Exercises 20, 25

Facultative exercise: Exercises 21, 26???
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Conclusion
We learnt how to represent topological spaces on a computer.

We defined a new topological invariant.

Homeworks for next week: Exercises 20, 25

Facultative exercise: Exercises 21, 26???

Obrigado!


