## EMAp Summer Course

## Topological Data Analysis with Persistent Homology

https://raphaeltinarrage.github.io/EMAp.html

Lesson 4: Simplicial complexes

Introduction


Objective of the lesson: doing topology on a computer.

## I - Combinatorial simplicial complexes

## II - Topology

III - Euler characteristic
(VI - Tutorial)

## Standard simplices

In order to describe topological spaces, we will decompose them into simpler pieces. The pieces we shall consider are the standard simplices.

The standard simplex of dimension $n$ is the following subset of $\mathbb{R}^{n+1}$

$$
\Delta_{n}=\left\{x=\left(x_{1}, \ldots, x_{n+1}\right) \in \mathbb{R}^{n+1}, x_{1}, \ldots, x_{n+1} \geq 0 \text { and } x_{1}+\ldots+x_{n+1}=1\right\}
$$




$\Delta_{0}$
$\Delta_{1}$
$\Delta_{2}$

## Standard simplices

In order to describe topological spaces, we will decompose them into simpler pieces. The pieces we shall consider are the standard simplices.

The standard simplex of dimension $n$ is the following subset of $\mathbb{R}^{n+1}$

$$
\Delta_{n}=\left\{x=\left(x_{1}, \ldots, x_{n+1}\right) \in \mathbb{R}^{n+1}, x_{1}, \ldots, x_{n+1} \geq 0 \text { and } x_{1}+\ldots+x_{n+1}=1\right\}
$$




$\Delta_{0}$
$\Delta_{1}$
$\Delta_{2}$
Remark: For any collection of points $a_{1}, \ldots, a_{k} \in \mathbb{R}^{n}$, their convex hull is defined as:

$$
\operatorname{conv}\left(\left\{a_{1} \ldots a_{k}\right\}\right)=\left\{\sum_{1 \leq i \leq k} t_{i} a_{i}, \quad t_{1}+\ldots+t_{k}=1, \quad t_{1}, \ldots, t_{k} \geq 0\right\}
$$

We can say that $\Delta_{n}$ is the convex hull of the vectors $e_{1}, \ldots, e_{n+1}$ of $\mathbb{R}^{n+1}$, where

$$
e_{i}=(0, \ldots, 1,0, \ldots, 0) \quad\left(i^{\text {th }} \text { coordinate } 1, \text { the other ones } 0\right) .
$$

## Simplicial complexes

First, a purely combinatorial definition (without geometry):
Definition: Let $V$ be a set (called the set of vertices). A simplicial complex over $V$ is a set $K$ of subsets of $V$ (called the simplices) such that, for every $\sigma \in K$ and every non-empty $\tau \subset \sigma$, we have $\tau \in K$.

## Simplicial complexes

First, a purely combinatorial definition (without geometry):
Definition: Let $V$ be a set (called the set of vertices). A simplicial complex over $V$ is a set $K$ of subsets of $V$ (called the simplices) such that, for every $\sigma \in K$ and every non-empty $\tau \subset \sigma$, we have $\tau \in K$.

Example: Let $V=\{0,1,2\}$ and

$$
K=\{[0],[1],[2],[0,1],[1,2],[2,0]\} .
$$

This is a simplicial complex.

## Simplicial complexes

First, a purely combinatorial definition (without geometry):
Definition: Let $V$ be a set (called the set of vertices). A simplicial complex over $V$ is a set $K$ of subsets of $V$ (called the simplices) such that, for every $\sigma \in K$ and every non-empty $\tau \subset \sigma$, we have $\tau \in K$.

If $\sigma \in K$ is a simplex, its non-empty subsets $\tau \subset \sigma$ are called faces of $\sigma$.
By convention, we write simplices with square brackets (instead of curly brackets).
Example: Let $V=\{0,1,2\}$ and

$$
K=\{[0],[1],[2],[0,1],[1,2],[2,0]\} .
$$

This is a simplicial complex.

## Simplicial complexes

First, a purely combinatorial definition (without geometry):
Definition: Let $V$ be a set (called the set of vertices). A simplicial complex over $V$ is a set $K$ of subsets of $V$ (called the simplices) such that, for every $\sigma \in K$ and every non-empty $\tau \subset \sigma$, we have $\tau \in K$.

If $\sigma \in K$ is a simplex, its non-empty subsets $\tau \subset \sigma$ are called faces of $\sigma$.
By convention, we write simplices with square brackets (instead of curly brackets).
Example: Let $V=\{0,1,2\}$ and

$$
K=\{[0],[1],[2],[0,1],[1,2],[2,0]\} .
$$

This is a simplicial complex.


## Simplicial complexes

First, a purely combinatorial definition (without geometry):
Definition: Let $V$ be a set (called the set of vertices). A simplicial complex over $V$ is a set $K$ of subsets of $V$ (called the simplices) such that, for every $\sigma \in K$ and every non-empty $\tau \subset \sigma$, we have $\tau \in K$.

If $\sigma \in K$ is a simplex, its non-empty subsets $\tau \subset \sigma$ are called faces of $\sigma$.
By convention, we write simplices with square brackets (instead of curly brackets).
Example: Let $V=\{0,1,2\}$ and

$$
K=\{[0],[1],[2],[0,1],[1,2],[2,0],[0,1,2]\} .
$$

This is a simplicial complex.


## Simplicial complexes

First, a purely combinatorial definition (without geometry):
Definition: Let $V$ be a set (called the set of vertices). A simplicial complex over $V$ is a set $K$ of subsets of $V$ (called the simplices) such that, for every $\sigma \in K$ and every non-empty $\tau \subset \sigma$, we have $\tau \in K$.

If $\sigma \in K$ is a simplex, its non-empty subsets $\tau \subset \sigma$ are called faces of $\sigma$.
By convention, we write simplices with square brackets (instead of curly brackets).
Example: Let $V=\{0,1,2\}$ and

$$
K=\{[0],[1],[2],[0,1],[1,2],[0,1,2]\} .
$$

This is not a simplicial complex.
Indeed, the simplex $[0,1,2]$ admits a face $[2,0]$ that is not included in $V$.


## Simplicial complexes

First, a purely combinatorial definition (without geometry):
Definition: Let $V$ be a set (called the set of vertices). A simplicial complex over $V$ is a set $K$ of subsets of $V$ (called the simplices) such that, for every $\sigma \in K$ and every non-empty $\tau \subset \sigma$, we have $\tau \in K$.

If $\sigma$ is a simplex, its dimension is defined as $|\sigma|-1$ (cardinality of $\sigma$ minus 1 ). If $K$ is a simplicial complex, its dimension is defined as the maximal dimension of its simplices.

Example: Let $V=\{0,1,2,3\}$ and
$K=\{[0],[1],[2],[3],[0,1],[1,2],[2,3],[3,0],[0,2],[1,3],[0,1,2],[0,1,3],[0,2,3],[1,2,3]\}$
It a simplicial complex of dimension 2 .


## I - Combinatorial simplicial complexes

II - Topology

III - Euler characteristic
(VI - Tutorial)

## Topological realization

Let us give simplicial complexes a topology.
Definition: Let $K$ be a simplicial complex, with vertex $V=\{1, \ldots, n\}$.
In $\mathbb{R}^{n}$, consider, for every $i \in \llbracket 1, n \rrbracket$, the vector $e_{i}=(0, \ldots, 1,0, \ldots, 0)\left(i^{\text {th }}\right.$ coordinate 1 , the other ones 0 ).
Let $|K|$ be the subset of $\mathbb{R}^{n}$ defined as:

$$
|K|=\bigcup_{\sigma \in K} \operatorname{conv}\left(\left\{e_{j}, j \in \sigma\right\}\right)
$$

where conv represent the convex hull of points.
Endowed with the subspace topology, $\left(|K|, \mathcal{T}_{||K|}\right)$ is a topological space, that we call the topological realization of $K$.

If $a_{1}, \ldots, a_{k} \in \mathbb{R}^{n}$, the convex hull is defined as:

$$
\operatorname{conv}\left(\left\{a_{1} \ldots a_{k}\right\}\right)=\left\{\sum_{1 \leq i \leq k} t_{i} a_{i}, \quad t_{1}+\ldots+t_{k}=1, \quad t_{1}, \ldots, t_{k} \geq 0\right\}
$$

## Topological realization

Let us give simplicial complexes a topology.
Definition: Let $K$ be a simplicial complex, with vertex $V=\{1, \ldots, n\}$.
In $\mathbb{R}^{n}$, consider, for every $i \in \llbracket 1, n \rrbracket$, the vector $e_{i}=(0, \ldots, 1,0, \ldots, 0)\left(i^{\text {th }}\right.$ coordinate 1 , the other ones 0 ).
Let $|K|$ be the subset of $\mathbb{R}^{n}$ defined as:

$$
|K|=\bigcup_{\sigma \in K} \operatorname{conv}\left(\left\{e_{j}, j \in \sigma\right\}\right)
$$

where conv represent the convex hull of points.
Endowed with the subspace topology, $\left(|K|, \mathcal{T}_{||K|}\right)$ is a topological space, that we call the topological realization of $K$.

Remark: If the simplicial complex can be drawn in the plane (or space) without crossing itself, then its topological realization simply is the subspace topology.

Example: $\quad K=\{[0],[1],[2],[3],[0,1],[1,2],[2,0],[1,3],[2,3],[0,1,2]\}$.


## Triangulations

Definition: Let $(X, \mathcal{T})$ be a topological space. A triangulation of $X$ is a simplicial complex $K$ such that its topological realization $|K|$ is homeomorphic to $X$.

## Triangulations

Definition: Let $(X, \mathcal{T})$ be a topological space. A triangulation of $X$ is a simplicial complex $K$ such that its topological realization $|K|$ is homeomorphic to $X$.

Example: The following simplicial complex is a triangulation of the circle:

$$
K=\{[0],[1],[2],[0,1],[1,2],[2,0]\}
$$



## Triangulations

Definition: Let $(X, \mathcal{T})$ be a topological space. A triangulation of $X$ is a simplicial complex $K$ such that its topological realization $|K|$ is homeomorphic to $X$.

Example: The following simplicial complex is a triangulation of the circle:

$$
K=\{[0],[1],[2],[0,1],[1,2],[2,0]\}
$$



Example: The following simplicial complex is a triangulation of the sphere:
$K=\{[0],[1],[2],[3],[0,1],[1,2],[2,3],[3,0],[0,2],[1,3],[0,1,2],[0,1,3],[0,2,3],[1,2,3]\}$.


## Triangulations

Definition: Let $(X, \mathcal{T})$ be a topological space. A triangulation of $X$ is a simplicial complex $K$ such that its topological realization $|K|$ is homeomorphic to $X$.

Given a topological space, it is not always possible to triangulate it. However, when it is, there exists many different triangulations.


## I - Combinatorial simplicial complexes

II - Topology

III - Euler characteristic
(VI - Tutorial)

## Euler characteristic

Definition: Let $K$ be a simplicial complex of dimension $n$. Its Euler characteristic is the integer

$$
\chi(K)=\sum_{0 \leq i \leq n}(-1)^{i} \cdot(\text { number of simplices of dimension } i)
$$

## Euler characteristic

Definition: Let $K$ be a simplicial complex of dimension $n$. Its Euler characteristic is the integer

$$
\chi(K)=\sum_{0 \leq i \leq n}(-1)^{i} \cdot(\text { number of simplices of dimension } i) .
$$

Example: The simplicial complex $K=\{[0],[1],[2],[0,1],[1,2],[2,0]\}$ has Euler characteristic

$$
\chi(K)=3-3=0
$$



## Euler characteristic

Definition: Let $K$ be a simplicial complex of dimension $n$. Its Euler characteristic is the integer

$$
\chi(K)=\sum_{0 \leq i \leq n}(-1)^{i} \cdot(\text { number of simplices of dimension } i) .
$$

Example: The simplicial complex $K=\{[0],[1],[2],[0,1],[1,2],[2,0]\}$ has Euler characteristic

$$
\chi(K)=3-3=0
$$



Example: The simplicial complex
$K=\{[0],[1],[2],[3],[0,1],[1,2],[2,3],[3,0],[0,2],[1,3],[0,1,2],[0,1,3],[0,2,3],[1,2,3]\}$
has Euler characteristic

$$
\chi(K)=4-6+4=2
$$



## Euler characteristic

Definition: Let $K$ be a simplicial complex of dimension $n$. Its Euler characteristic is the integer

$$
\chi(K)=\sum_{0 \leq i \leq n}(-1)^{i} \cdot(\text { number of simplices of dimension } i) .
$$

Definition: Let $X$ be a topological space. Its Euler characteristic is defined as the Euler characteristic of any triangulation of it.

Two issues:

- $X$ must admit a triangulation
- we have to make sure the the triangulations of $X$ all have the same Euler characteristic. In other words, if $K$ and $K^{\prime}$ are two triangulations of $X$, we must have $\chi(K)=\chi\left(K^{\prime}\right)$.


## Euler characteristic

Definition: Let $K$ be a simplicial complex of dimension $n$. Its Euler characteristic is the integer

$$
\chi(K)=\sum_{0 \leq i \leq n}(-1)^{i} \cdot(\text { number of simplices of dimension } i) .
$$

Definition: Let $X$ be a topological space. Its Euler characteristic is defined as the Euler characteristic of any triangulation of it.

Two issues:

- $X$ must admit a triangulation
$\rightarrow$ topological spaces does not all admit a Euler characteristic
- we have to make sure the the triangulations of $X$ all have the same Euler characteristic. In other words, if $K$ and $K^{\prime}$ are two triangulations of $X$, we must have $\chi(K)=\chi\left(K^{\prime}\right)$.


## Euler characteristic

Definition: Let $K$ be a simplicial complex of dimension $n$. Its Euler characteristic is the integer

$$
\chi(K)=\sum_{0 \leq i \leq n}(-1)^{i} \cdot(\text { number of simplices of dimension } i) .
$$

Definition: Let $X$ be a topological space. Its Euler characteristic is defined as the Euler characteristic of any triangulation of it.

Two issues:

- $X$ must admit a triangulation
$\rightarrow$ topological spaces does not all admit a Euler characteristic
- we have to make sure the the triangulations of $X$ all have the same Euler characteristic. In other words, if $K$ and $K^{\prime}$ are two triangulations of $X$, we must have $\chi(K)=\chi\left(K^{\prime}\right)$.
$\rightarrow$ this is true!
but we won't be able to prove it in this summer course...


## Euler characteristic

Definition: Let $K$ be a simplicial complex of dimension $n$. Its Euler characteristic is the integer

$$
\chi(K)=\sum_{0 \leq i \leq n}(-1)^{i} \cdot(\text { number of simplices of dimension } i) .
$$

Definition: Let $X$ be a topological space. Its Euler characteristic is defined as the Euler characteristic of any triangulation of it.

Example: The circle has Euler characteristic 0 because it admits a triangulation

$$
K=\{[0],[1],[2],[0,1],[1,2],[2,0]\}
$$



Example: The sphere has Euler characteristic 2 because it admits a triangulation $K=\{[0],[1],[2],[3],[0,1],[1,2],[2,3],[3,0],[0,2],[1,3],[0,1,2],[0,1,3],[0,2,3],[1,2,3]\}$

## Euler characteristic is an invariant

## 11/14 (1/2)

Proposition: If $X$ and $Y$ are two homotopy equivalent topological spaces, then $\chi(X)=\chi(Y)$.

Therefore, the Euler characteristic is an invariant of homotopy equivalence classes.
We can use this information to prove that two spaces are not homotopy equivalent.

## Euler characteristic is an invariant

Proposition: If $X$ and $Y$ are two homotopy equivalent topological spaces, then $\chi(X)=\chi(Y)$.

Therefore, the Euler characteristic is an invariant of homotopy equivalence classes.
We can use this information to prove that two spaces are not homotopy equivalent.

Example: The circle has Euler characteristic 0, and the sphere Euler characteristic 2. Therefore, they are not homotopy equivalent.

Exercise (21): Show that $\mathbb{R}^{3}$ and $\mathbb{R}^{4}$ are not homeomorphic.

I - Combinatorial simplicial complexes

II - Topology

III - Euler characteristic
(VI - Tutorial)

Rendez-vous on
https://github.com/raphaeltinarrage/EMAp/blob/main/Tutorial1.ipynb

For those who want to go further (simplex trees), have a look at
https://github.com/GUDHI/TDA-tutorial/blob/master/Tuto-GUDHI-simplex
-Trees.ipynb

## Conclusion

We learnt how to represent topological spaces on a computer.
We defined a new topological invariant.

Homeworks for next week: Exercises 20, 25
Facultative exercise: Exercises 21, 26 ${ }^{\star \star \star}$

## Conclusion

We learnt how to represent topological spaces on a computer.
We defined a new topological invariant.

Homeworks for next week: Exercises 20, 25
Facultative exercise: Exercises 21, 26 ${ }^{\star \star \star}$

Obrigado!

