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4/16 (1/7)Definition

Definition: Let (X, T ) and (Y,U) be two topological spaces, and f, g : X → Y two
continuous maps. A homotopy between f and g is a map F : X × [0, 1]→ Y such that:
• F (·, 0) is equal to f ,
• F (·, 1) is equal to g,
• F : X × [0, 1]→ Y is continuous.

If such a homotopy exists, we say that the maps f and g are homotopic.

For any t ∈ [0, 1], the notation F (·, t) refers to the map

F (·, t) : X −→ Y

x 7−→ F (x, t)



4/16 (2/7)Definition

Definition: Let (X, T ) and (Y,U) be two topological spaces, and f, g : X → Y two
continuous maps. A homotopy between f and g is a map F : X × [0, 1]→ Y such that:
• F (·, 0) is equal to f ,
• F (·, 1) is equal to g,
• F : X × [0, 1]→ Y is continuous.

If such a homotopy exists, we say that the maps f and g are homotopic.

For any t ∈ [0, 1], the notation F (·, t) refers to the map

F (·, t) : X −→ Y

x 7−→ F (x, t)

F (·, 0) = f F (·, 0.2) F (·, 0.5) F (·, 0.6) F (·, 1) = g

Example: Homotopy F : R× [0, 1]→ R between f : R→ R and g : R→ R.



4/16 (3/7)Definition

Definition: Let (X, T ) and (Y,U) be two topological spaces, and f, g : X → Y two
continuous maps. A homotopy between f and g is a map F : X × [0, 1]→ Y such that:
• F (·, 0) is equal to f ,
• F (·, 1) is equal to g,
• F : X × [0, 1]→ Y is continuous.

If such a homotopy exists, we say that the maps f and g are homotopic.

For any t ∈ [0, 1], the notation F (·, t) refers to the map

F (·, t) : X −→ Y

x 7−→ F (x, t)

Example: Homotopy F : [0, 1]× [0, 1]→ R2 between f : [0, 1]→ R2 and g : [0, 1]→ R2.

F (·, 0) = f F (·, 0.2) F (·, 0.5) F (·, 0.6) F (·, 1) = g



4/16 (4/7)Definition

Definition: Let (X, T ) and (Y,U) be two topological spaces, and f, g : X → Y two
continuous maps. A homotopy between f and g is a map F : X × [0, 1]→ Y such that:
• F (·, 0) is equal to f ,
• F (·, 1) is equal to g,
• F : X × [0, 1]→ Y is continuous.

Example: Let X = Y = [−1, 1] endowed with the Euclidean topology, and consider the
maps f, g : X → Y defined as

f : x 7→ 0

g : x 7→ x

Let us prove that they are homotopic. Consider the map

F : X × [0, 1] −→ Y

(x, t) 7−→ tx

We see that F (·, 0) : x 7→ 0 is equal to f , and F (·, 1) : x 7→ x is equal to g. Moreover,
F is continuous. Hence, F is an homotopy between f and g. Thus these two maps are
homotopic.



4/16 (5/7)Definition

Example: Let X = Y = [−1, 1] endowed with the Euclidean topology, and consider the
maps f, g : X → Y defined as

f : x 7→ 0

g : x 7→ x

Let us prove that they are homotopic. Consider the map

F : X × [0, 1] −→ Y

(x, t) 7−→ tx

We see that F (·, 0) : x 7→ 0 is equal to f , and F (·, 1) : x 7→ x is equal to g. Moreover,
F is continuous. Hence, F is an homotopy between f and g. Thus these two maps are
homotopic.

F (·, 0) F (·, 0.2) F (·, 0.5) F (·, 0.6) F (·, 1)



4/16 (6/7)Definition

Example: The map

F : S1×[0, 1] −→ R2

θ 7−→ (cos(θ) + t, sin(θ) + t)

is a homotopy between the maps f : S1 → R2 and g : S1 → R2 defined as

f : θ 7→ (cos(θ), sin(θ)) and g : θ 7→ (cos(θ) + 1, sin(θ) + 1)

F (·, 0) F (·, 0.2) F (·, 0.5) F (·, 0.6) F (·, 1)

(Notation: S1 denotes the unit circle of R2.)



4/16 (7/7)Definition

F (·, 0) F (·, 0.2) F (·, 0.5) F (·, 0.6) F (·, 1)

?

Non-example: Between S1 and R2 \ {(0, 0)}, the plane without the origin, there is no
homotopy between the maps

f : θ 7→ (cos(θ), sin(θ)) and g : θ 7→ (cos(θ) + 1, sin(θ) + 1)

The homotopy F would pass through the point (0, 0) at some point, which is impossible.

(Notation: S1 denotes the unit circle of R2.)



5/16 (1/2)Trivial maps

From a homotopic point a view, a trivial map is a map that is homotopic to a constant
map.

Proposition: Let (X, T ) be a topological space and f : X → Rn a continuous map.
Then f is homotopic to a constant map.

Proof: Consider the continuous application

F : X × [0, 1] −→ Rn

(x, t) 7−→ tf(x)

We have that F (·, 1) = f , and F (·, 0) : x 7→ 0 is a constant map.
Hence F is a homotopy between f and the constant map

x 7→ 0
g : X → Rn



5/16 (2/2)Trivial maps

From a homotopic point a view, a trivial map is a map that is homotopic to a constant
map.

Proposition: Let (X, T ) be a topological space and f : X → Rn a continuous map.
Then f is homotopic to a constant map.

Proof: Consider the continuous application

F : X × [0, 1] −→ Rn

(x, t) 7−→ tf(x)

We have that F (·, 1) = f , and F (·, 0) : x 7→ 0 is a constant map.
Hence F is a homotopy between f and the constant map

Exercise: Let f : Rn → X be a continuous map. Then f is homotopic to a constant
map.

x 7→ 0
g : X → Rn
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7/16 (1/2)Definition

Defintion Let (X, T ) and (Y,U) be two topological spaces. A homotopy equivalence
between X and Y is a pair of continuous maps f : X → Y and g : Y → X such that:
• g ◦ f : X → X is homotopic to the identity map id : X → X,
• f ◦ g : Y → Y is homotopic to the identity map id : Y → Y .

If such a homotopy equivalence exists, we say that X and Y are homotopy equivalent.

f

gg ◦ f f ◦ g
X Y



7/16 (2/2)Definition

Defintion Let (X, T ) and (Y,U) be two topological spaces. A homotopy equivalence
between X and Y is a pair of continuous maps f : X → Y and g : Y → X such that:
• g ◦ f : X → X is homotopic to the identity map id : X → X,
• f ◦ g : Y → Y is homotopic to the identity map id : Y → Y .

If such a homotopy equivalence exists, we say that X and Y are homotopy equivalent.

f

gg ◦ f f ◦ g

≈ ≈
id : X → X id : Y → Y

X Y



8/16 (1/4)Deformation retractions

Determining whether two topological spaces are homotopy equivalent may be difficult.
When one is a subset of the other, we have a handy tool:

Definition: Let (X, T ) be a topological space and Y ⊂ X a subset, endowed with the
subspace topology T|Y .
A retraction is a continuous map r : X → X such that ∀x ∈ X, r(x) ∈ Y and
∀y ∈ Y, r(y) = y.
A deformation retraction is a homotopy F : X × [0, 1]→ Y between the identity map
id : X → X and a retraction r : X → Y .

X

Y



8/16 (2/4)Deformation retractions

Determining whether two topological spaces are homotopy equivalent may be difficult.
When one is a subset of the other, we have a handy tool:

Definition: Let (X, T ) be a topological space and Y ⊂ X a subset, endowed with the
subspace topology T|Y .
A retraction is a continuous map r : X → X such that ∀x ∈ X, r(x) ∈ Y and
∀y ∈ Y, r(y) = y.
A deformation retraction is a homotopy F : X × [0, 1]→ Y between the identity map
id : X → X and a retraction r : X → Y .

Proposition: If a deformation retraction exists, then X and Y are homotopic equivalent.

Proof: Let r : X → Y denote the retraction, and consider the inclusion map i : Y → X.
Let us prove that r, i is a homotopy equivalence.

First, let us prove that i ◦ r : X → X is homotopic to the identity map id : X → X.
This is clear because i ◦ r = r, and r is homotopic to the identity by definition of a
deformation retraction.

Second, let us prove that r ◦ i : Y → Y is homotopic to the identity map id : Y → Y .
This is obvious because r ◦ i = id by definition of a retraction.



8/16 (3/4)Deformation retractions

Definition: Let (X, T ) be a topological space and Y ⊂ X a subset, endowed with the
subspace topology T|Y . A retraction is a continuous map r : X → Y such that
∀y ∈ Y, r(y) = y. A deformation retraction is a homotopy F : X × [0, 1]→ Y between
the identity map id : X → X and a retraction r : X → Y .

Example: For any n ≥ 1, the Euclidean space Rn is homotopy equivalent to the point
{0} ⊂ Rn. To prove this, consider the retraction

r : Rn −→ {0}
x 7−→ 0

It is homotopic to the identity id : Rn → Rn via the deformation retraction

F : Rn × [0, 1] −→ Rn

(x, t) 7−→ (1− t)x

Indeed, we have F (·, 0) = id and F (·, 1) = r.

R



8/16 (4/4)Deformation retractions

Definition: Let (X, T ) be a topological space and Y ⊂ X a subset, endowed with the
subspace topology T|Y . A retraction is a continuous map r : X → Y such that
∀y ∈ Y, r(y) = y. A deformation retraction is a homotopy F : X × [0, 1]→ Y between
the identity map id : X → X and a retraction r : X → Y .

Example: For any n ≥ 1, the Euclidean space without origin, Rn \ {0}, is homotopy
equivalent to the sphere S (0, 1) ⊂ Rn. To prove this, consider the retraction

r : Rn \ {0} −→ S (0, 1)

x 7−→ x

‖x‖

It is homotopic to the identity id : Rn \ {0} → Rn \ {0} via the deformation retraction

F : (Rn \ {0})× [0, 1] −→ Rn \ {0}

(x, t) 7−→
(
1− t+ t

‖x‖

)
x

Indeed, we have F (·, 0) = id and F (·, 1) = r.



9/16 (1/4)Homotopy equivalence relation

X Y

Z

Let us denote X ≈ Y if the two topological spaces X and Y are homotopic equivalent.

Being homotopic equivalent is an equivalence relation. That is:
• (Reflexivity) X ≈ X
• (Symmetry) X ≈ Y =⇒ Y ≈ X.
• (Transitivity) X ≈ Y and Y ≈ Z =⇒ X ≈ Z.

We can classify topological spaces according to this relation, and obtain classes of
homotopy equivalence:



9/16 (2/4)Homotopy equivalence relation

X Y

Z

Let us denote X ≈ Y if the two topological spaces X and Y are homotopic equivalent.

Being homotopic equivalent is an equivalence relation. That is:
• (Reflexivity) X ≈ X
• (Symmetry) X ≈ Y =⇒ Y ≈ X.
• (Transitivity) X ≈ Y and Y ≈ Z =⇒ X ≈ Z.

We can classify topological spaces according to this relation, and obtain classes of
homotopy equivalence:

the class of circles

= = = = = = ...



9/16 (3/4)Homotopy equivalence relation

X Y

Z

Let us denote X ≈ Y if the two topological spaces X and Y are homotopic equivalent.

Being homotopic equivalent is an equivalence relation. That is:
• (Reflexivity) X ≈ X
• (Symmetry) X ≈ Y =⇒ Y ≈ X.
• (Transitivity) X ≈ Y and Y ≈ Z =⇒ X ≈ Z.

We can classify topological spaces according to this relation, and obtain classes of
homotopy equivalence:

the class of circles

= = = = = = ...

the class of points

= = = = = = ...



9/16 (4/4)Homotopy equivalence relation

X Y

Z

Let us denote X ≈ Y if the two topological spaces X and Y are homotopic equivalent.

Being homotopic equivalent is an equivalence relation. That is:
• (Reflexivity) X ≈ X
• (Symmetry) X ≈ Y =⇒ Y ≈ X.
• (Transitivity) X ≈ Y and Y ≈ Z =⇒ X ≈ Z.

We can classify topological spaces according to this relation, and obtain classes of
homotopy equivalence:

the class of circles

= = = = = = ...

the class of points

= = = = = = ...

the class of spheres, the class of torii, the class of Klein bottles, ...
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11/16 (1/4)Homeomorphic implies homotopic

Proposition: Let X,Y be two topological spaces. If they are homeomorphic, then they
are homotopic equivalent.

In other words:
X ' Y =⇒ X ≈ Y.

Consequence: In order to prove that two spaces are homotopy equivalent, it is enough
to show that they are homeomorphic.



11/16 (2/4)Homeomorphic implies homotopic

Proposition: Let X,Y be two topological spaces. If they are homeomorphic, then they
are homotopic equivalent.

In other words:
X ' Y =⇒ X ≈ Y.

Consequence: In order to prove that two spaces are homotopy equivalent, it is enough
to show that they are homeomorphic.

Proof: Let h : X → Y be a homeomorphism.

We have to build a homotopy equivalence f : X → Y , g : Y → X.

Define f = h and g = h−1. Let us show g ◦ f is homotopic to id : X → X and f ◦ g is
homotopic to id : Y → Y .

We have g ◦ f = h−1 ◦ h = id. But id : X → X is homotopic to id : X → X (any map
is homotopic to itsef.)

Similarly, f ◦ g = h ◦ h−1 = id, and id : Y → Y is homotopic to id : Y → Y .

Conclusion: f, g is a homotopy equivalence between X and Y , hence X and Y are
homotopy equivalent.



11/16 (3/4)Homeomorphic implies homotopic

Proposition: Let X,Y be two topological spaces. If they are homeomorphic, then they
are homotopic equivalent.

In other words:
X ' Y =⇒ X ≈ Y.

Consequence: In order to prove that two spaces are homotopy equivalent, it is enough
to show that they are homeomorphic.

Example: The letter L and the letter Z are homeomorphic:

Hence they are homotopy equivalent.



11/16 (4/4)Homeomorphic implies homotopic

Proposition: Let X,Y be two topological spaces. If they are homeomorphic, then they
are homotopic equivalent.

In other words:
X ' Y =⇒ X ≈ Y.

Consequence: In order to prove that two spaces are homotopy equivalent, it is enough
to show that they are homeomorphic.

This strategy does not always work: some spaces are homotopy equivalent but not
homeomorphic!

This is the case for Rn and {0} for instance.



12/16 (1/3)Exercise

Consider the following letters of the alphabet, endowed with the subspace topology
induced from R2:

A B C D E F
Classify them into homotopy equivalence classes, then classify them into
homeomorphism equivalence classes.



12/16 (2/3)Exercise

Consider the following letters of the alphabet, endowed with the subspace topology
induced from R2:

A B C D E F
Classify them into homotopy equivalence classes, then classify them into
homeomorphism equivalence classes.

Homotopy equivalence classes:

A D≈ (≈ )

B (≈ )
C E F≈ ≈ (≈ )



12/16 (3/3)Exercise

Consider the following letters of the alphabet, endowed with the subspace topology
induced from R2:

A B C D E F
Classify them into homotopy equivalence classes, then classify them into
homeomorphism equivalence classes.

Homotopy equivalence classes:

A D≈ (≈ )

B (≈ )
C E F≈ ≈ (≈ )

Homotopy equivalence classes:

A

B

C

D

E ' F
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14/16 (1/4)Number of connected components

Until here, we studied two quantities associated to topological spaces: number of
connected components and dimension.

Proposition: Two homotopy equivalent topological spaces admit the same number of
connected components.

Proof: Let X,Y be two topological spaces, and f : X → Y, g : Y → X a homotopy
equivalence.

Let F : X × [0, 1]→ X be a homotopy between g ◦ f and id : X → X.
Let x ∈ X, and O the connected component of x.

The space O× [0, 1] is connected. Hence its image F (O× [0, 1]) ⊂ X is connected too.

Moreover, O = F (O × {1}) ⊂ F (O × [0, 1]).
Hence F (O × [0, 1]) is a connected subset of X that contains O, and we deduce that
O = F (O × [0, 1]).

Last, notice that

g ◦ f(O) = F (O × {0}) ⊂ F (O × [0, 1]) = O.



14/16 (2/4)Number of connected components

Until here, we studied two quantities associated to topological spaces: number of
connected components and dimension.

Proposition: Two homotopy equivalent topological spaces admit the same number of
connected components.

Proof: Let X,Y be two topological spaces, and f : X → Y, g : Y → X a homotopy
equivalence.

Let F : X × [0, 1]→ X be a homotopy between g ◦ f and id : X → X.
Let x ∈ X, and O the connected component of x.
We have g ◦ f(O) ⊂ O.

Suppose that X admits n connected components O1, ..., On, and that Y admits m of
them.

By contradiction, suppose that m < n. This implies that we have two components
Oi, Oj such that f(Oi) and f(Oj) are included in the same connected component O′ of
Y .
Hence g ◦ f(Oi) and g ◦ f(Oj) are included in a common connected component of X.
This is absurd because g ◦ f(Oi) ⊂ Oi and g ◦ f(Oj) ⊂ Oj .



14/16 (3/4)Number of connected components

Until here, we studied two quantities associated to topological spaces: number of
connected components and dimension.

Proposition: Two homotopy equivalent topological spaces admit the same number of
connected components.

Proof: Let X,Y be two topological spaces, and f : X → Y, g : Y → X a homotopy
equivalence.

Suppose that X admits n connected components O1, ..., On, and that Y admits m of
them.

We have shown that m ≥ n.

By exchanging the roles of X and Y in the whole reasonning, we obtain that m ≤ n.
We deduce that m = n.



14/16 (4/4)Number of connected components

Until here, we studied two quantities associated to topological spaces: number of
connected components and dimension.

Proposition: Two homotopy equivalent topological spaces admit the same number of
connected components.

In other words, number of connected components is an invariant of homotopy
equivalence.

This allows to show that two spaces are not equivalent.

Example: For any n,m ≥ 0 such that n 6= m, the subspaces {1, ..., n} and {1, ...,m} of
R are not homotopic equivalent.

Indeed, the first one admits n connected components, and the second one m
components.



15/16Dimension

On the other hand, dimension is not an invariant of homotopy equivalence.

Indeed, some homotopic equivalent spaces have different dimensions.

This is the case, for instance, with all the Euclidean spaces Rn, n ≥ 0. They are all
homotopic equivalent, but all with different dimensions.



16/16 (1/2)

Conclusion
We learnt to look at topological spaces from a homotopic-equivalence perspective.

This is a weaker notion than homeomorphism-equivalence.

Between the quantities, number of connected components and dimension, ony one is
invariant for the homotopic-equivalence relation.

Homework for tomorrow: Exercises 12 and 16

Facultative exercise: Exercises 13 and 14



16/16 (2/2)

Conclusion
We learnt to look at topological spaces from a homotopic-equivalence perspective.

This is a weaker notion than homeomorphism-equivalence.

Between the quantities, number of connected components and dimension, ony one is
invariant for the homotopic-equivalence relation.

Homework for tomorrow: Exercises 12 and 16

Facultative exercise: Exercises 13 and 14

Obrigado!


