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2/17 (1/2)Introduction

= =

In topology, we are allowed to deform shapes.

why would you
do that?



2/17 (2/2)Introduction

= =

In topology, we are allowed to deform shapes.

why would you
do that?

”Mathematics is the art
of giving the same
name to different
things.”

”Topology is precisely the
mathematical discipline
that allows the passage
from local to global”
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4/17 (1/6)Definition

Definition: Let (X, T ) and (Y,U) be two topological spaces, and f : X → Y a map.
We say that f is a homeomorphism if
• f : X → Y is continuous,
• f is a bijection,
• f−1 : Y → X is continuous.

If there exist such a homeomorphism, we say that the two topological spaces are
homeomorphic.



4/17 (2/6)Definition

Definition: Let (X, T ) and (Y,U) be two topological spaces, and f : X → Y a map.
We say that f is a homeomorphism if
• f : X → Y is continuous,
• f is a bijection,
• f−1 : Y → X is continuous.

If there exist such a homeomorphism, we say that the two topological spaces are
homeomorphic.

Example: Consider the following circles of R2:

f : S (0, 1) −→ S (0, 2)
x 7−→ 2x

It is continuous, bijective, and its inverse f−1 : x 7→ 1
2x also is continuous. Hence f is a

homeomorphism.

S (0, 1) = {x ∈ R2, ‖x‖ = 1},
S (0, 2) = {x ∈ R2, ‖x‖ = 2}.

and the map

Hence these two circles are homeomorphic.
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Example: Consider the following circles of R2:

f : S (0, 1) −→ S (0, 2)
x 7−→ 2x

It is continuous, bijective, and its inverse f−1 : x 7→ 1
2x also is continuous. Hence f is a

homeomorphism.

and the map

Hence these two circles are homeomorphic.

How to prove that f is continuous?
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Example: Consider the following circles of R2:

f : S (0, 1) −→ S (0, 2)
x 7−→ 2x

It is continuous, bijective, and its inverse f−1 : x 7→ 1
2x also is continuous. Hence f is a

homeomorphism.

and the map

Hence these two circles are homeomorphic.

How to prove that f is continuous?

f is the restriction of a continuous map R2 → R2

Lemma:
Let g be a continuous map between (X, T ) and (Y,U).
Consider a subset A ⊂ X, and endow it with the subspace topology T|A.
Consider a subset B ⊂ Y , and endow it with the subspace topology U|B .
If f(A) ⊂ B, then the induced map g|A,B : (A, T|A)→ (B,U|B) also is continuous.
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Definition: Let (X, T ) and (Y,U) be two topological spaces, and f : X → Y a map.
We say that f is a homeomorphism if
• f : X → Y is continuous,
• f is a bijection,
• f−1 : Y → X is continuous.

If there exist such a homeomorphism, we say that the two topological spaces are
homeomorphic.

Example: Consider a circle and a square

f : S (0, 1) −→ C

(x1, x2) 7−→
1

max(|x1|, |x2|)
(x1, x2)

It is continuous, bijective, and its inverse f−1 : x 7→ 1√
x2
1+x2

2

(x1, x2) also is continuous.

Hence f is a homeomorphism.

and the map

Hence the circle and the square are homeomorphic.

S (0, 1) = {x ∈ R2, ‖X‖ = 1},
C =

{
(x1, x2) ∈ R2, max(|x1|, |x2|) = 1

}
.
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Definition: Let (X, T ) and (Y,U) be two topological spaces, and f : X → Y a map.
We say that f is a homeomorphism if
• f : X → Y is continuous,
• f is a bijection,
• f−1 : Y → X is continuous.

If there exist such a homeomorphism, we say that the two topological spaces are
homeomorphic.

Exercise: The topological spaces B(0, 1) ⊂ Rn and Rn are homeomorphic.

'



5/17 (1/3)Non-homeomorphic spaces

Non-example: Consider the interval [0, 2π) and the circle S (0, 1) ⊂ R2.

Define the map

It is continuous, and admits the following inverse:

g : S (0, 1) −→ [0, 2π)

(x1, x2) 7−→ arctan

(
x2
x1

)
The map g is not continuous. Hence f is not a homeomorphism.

f : [0, 2π) −→ S (0, 1)
θ 7−→ (cos(θ), sin(θ))

0 2π
(1, 0)(1, 0)



5/17 (2/3)Non-homeomorphic spaces

Non-example: Consider the interval [0, 2π) and the circle S (0, 1) ⊂ R2.

Define the map

It is continuous, and admits the following inverse:

g : S (0, 1) −→ [0, 2π)

(x1, x2) 7−→ arctan

(
x2
x1

)
The map g is not continuous. Hence f is not a homeomorphism.

f : [0, 2π) −→ S (0, 1)
θ 7−→ (cos(θ), sin(θ))

0 2π
(1, 0) π(1, 0)

Indeed, [0, π) is an open subset of [0, 2π), but g−1([0, π)) is not an open subset of
S (0, 1) (it is not open around g−1(0) = (1, 0)).



5/17 (3/3)Non-homeomorphic spaces

Non-example: Consider the interval [0, 2π) and the circle S (0, 1) ⊂ R2.

Define the map

It is continuous, and admits the following inverse:

g : S (0, 1) −→ [0, 2π)

(x1, x2) 7−→ arctan

(
x2
x1

)
The map g is not continuous. Hence f is not a homeomorphism.

f : [0, 2π) −→ S (0, 1)
θ 7−→ (cos(θ), sin(θ))

0 2π
(1, 0) π(1, 0)

Indeed, [0, π) is an open subset of [0, 2π), but g−1([0, π)) is not an open subset of
S (0, 1) (it is not open around g−1(0) = (1, 0)).

Question:

Did we just prove that
[0, 2π) and S(0, 1) are
not homeomorphic?



6/17 (1/8)Homeomorphism equivalence relation

Let us write X ' Y if the two topological spaces X and Y are homeomorphic, i.e., if
there exists a homeomorphism f : X → Y .

For any X, we have
X ' X.

Proof: Consider the identity map id : X → X, x 7→ x.
It is a homeomorphism between X and X.



6/17 (2/8)Homeomorphism equivalence relation

Let us write X ' Y if the two topological spaces X and Y are homeomorphic, i.e., if
there exists a homeomorphism f : X → Y .

For any X, we have
X ' X.

Moreover, we have:
X ' Y ⇐⇒ Y ' X.

Proof: Suppose that X and Y are homeomorphic: f : X → Y .
Then f−1 : Y → X is a homeomorphism between Y and X.



6/17 (3/8)Homeomorphism equivalence relation

Let us write X ' Y if the two topological spaces X and Y are homeomorphic, i.e., if
there exists a homeomorphism f : X → Y .

For any X, we have
X ' X.

Moreover, we have:
X ' Y ⇐⇒ Y ' X.

We also have a third property:

X ' Y and Y ' Z =⇒ X ' Z.

Proof: Suppose that we have two homeomorphisms f : X → Y and g : Y → Z.
Then g ◦ f : X → Z is a homeomorphism between X and Z.



6/17 (4/8)Homeomorphism equivalence relation

Let us write X ' Y if the two topological spaces X and Y are homeomorphic, i.e., if
there exists a homeomorphism f : X → Y .

For any X, we have
X ' X.

Moreover, we have:
X ' Y ⇐⇒ Y ' X.

We also have a third property:

X ' Y and Y ' Z =⇒ X ' Z.

Conclusion: Being homeomorphic is an equivalence relation.

It allows to classify topological spaces in classes (called classes of homeomorphism
equivalence):

reflexivity

symmetry

transitivity



6/17 (5/8)Homeomorphism equivalence relation

Let us write X ' Y if the two topological spaces X and Y are homeomorphic, i.e., if
there exists a homeomorphism f : X → Y .

For any X, we have
X ' X.

Moreover, we have:
X ' Y ⇐⇒ Y ' X.

We also have a third property:

X ' Y and Y ' Z =⇒ X ' Z.

Conclusion: Being homeomorphic is an equivalence relation.

It allows to classify topological spaces in classes (called classes of homeomorphism
equivalence):

reflexivity

symmetry

transitivity

the class of circles

= = = = = = ...



6/17 (6/8)Homeomorphism equivalence relation

Let us write X ' Y if the two topological spaces X and Y are homeomorphic, i.e., if
there exists a homeomorphism f : X → Y .

For any X, we have
X ' X.

Moreover, we have:
X ' Y ⇐⇒ Y ' X.

We also have a third property:

X ' Y and Y ' Z =⇒ X ' Z.

Conclusion: Being homeomorphic is an equivalence relation.

It allows to classify topological spaces in classes (called classes of homeomorphism
equivalence):

reflexivity

symmetry

transitivity

the class of intervals

= = = = = = ...



6/17 (7/8)Homeomorphism equivalence relation

Let us write X ' Y if the two topological spaces X and Y are homeomorphic, i.e., if
there exists a homeomorphism f : X → Y .

For any X, we have
X ' X.

Moreover, we have:
X ' Y ⇐⇒ Y ' X.

We also have a third property:

X ' Y and Y ' Z =⇒ X ' Z.

Conclusion: Being homeomorphic is an equivalence relation.

It allows to classify topological spaces in classes (called classes of homeomorphism
equivalence):

reflexivity

symmetry

transitivity

the class of crosses

= = = = = = ...



6/17 (8/8)Homeomorphism equivalence relation

Let us write X ' Y if the two topological spaces X and Y are homeomorphic, i.e., if
there exists a homeomorphism f : X → Y .

For any X, we have
X ' X.

Moreover, we have:
X ' Y ⇐⇒ Y ' X.

We also have a third property:

X ' Y and Y ' Z =⇒ X ' Z.

Conclusion: Being homeomorphic is an equivalence relation.

It allows to classify topological spaces in classes (called classes of homeomorphism
equivalence):

reflexivity

symmetry

transitivity

the class of spheres

= = = = = = ...



7/17Homeomorphism problem

In general, it may be complicated to determine whether two spaces are homeomorphic.

=
?

To answer this problem, we will use the notion of invariant.
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I - Homeomorphic topological spaces

II - Connected components
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9/17 (1/3)Connectedness

Definition: Let (X, T ) be a topological space. We say that X is connected if for every
open sets O,O′ ∈ T such that O ∩O′ = ∅, we have

X = O ∪O′ =⇒ O = ∅ or O′ = ∅.

In other words, a connected topological space cannot be divided into two non-empty
disjoint open sets.

connected space non-connected space



9/17 (2/3)Connectedness

Definition: Let (X, T ) be a topological space. We say that X is connected if for every
open sets O,O′ ∈ T such that O ∩O′ = ∅, we have

X = O ∪O′ =⇒ O = ∅ or O′ = ∅.

In other words, a connected topological space cannot be divided into two non-empty
disjoint open sets.

connected space non-connected space

O

O′



9/17 (3/3)Connectedness

Definition: Let (X, T ) be a topological space. We say that X is connected if for every
open sets O,O′ ∈ T such that O ∩O′ = ∅, we have

X = O ∪O′ =⇒ O = ∅ or O′ = ∅.

In other words, a connected topological space cannot be divided into two non-empty
disjoint open sets.

connected space non-connected space

Proposition: The balls of Rn are connected.
More generally, any convex set is connected.

O

O′



10/17 (1/10)Connected components

If a space is not connected, we can consider its connected components.
Let x ∈ X. The connected component of x is defined as the largest subset of X that is
connected.

X :
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If a space is not connected, we can consider its connected components.
Let x ∈ X. The connected component of x is defined as the largest subset of X that is
connected.

xX :
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If a space is not connected, we can consider its connected components.
Let x ∈ X. The connected component of x is defined as the largest subset of X that is
connected.

xX :
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If a space is not connected, we can consider its connected components.
Let x ∈ X. The connected component of x is defined as the largest subset of X that is
connected.

x
X :
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If a space is not connected, we can consider its connected components.
Let x ∈ X. The connected component of x is defined as the largest subset of X that is
connected.

x
X :
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If a space is not connected, we can consider its connected components.
Let x ∈ X. The connected component of x is defined as the largest subset of X that is
connected.

x
X :
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If a space is not connected, we can consider its connected components.
Let x ∈ X. The connected component of x is defined as the largest subset of X that is
connected.

x
X :
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If a space is not connected, we can consider its connected components.
Let x ∈ X. The connected component of x is defined as the largest subset of X that is
connected.

x

X :
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If a space is not connected, we can consider its connected components.
Let x ∈ X. The connected component of x is defined as the largest subset of X that is
connected.

x

X :



10/17 (10/10)Connected components

If a space is not connected, we can consider its connected components.
Let x ∈ X. The connected component of x is defined as the largest subset of X that is
connected.

The set of connected components of X forms a partition of X into open sets.

Definition: Let (X, T ) be a topological space. Suppose that there exists a collection of
n non-empty, disjoint and connected sets (O1, ..., On) such that⋃

1≤i≤n

Oi = X.

Then we say that X admits n connected components.

X :
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I - Homeomorphic topological spaces

II - Connected components

III - Connectedness as an invariant

VI - Dimension



12/17 (1/6)Invariant property

Proposition Two homeomorphic topological spaces admit the same number of
connected components.

Proof: Let f : X → Y be a homeomorphism. Let n be the number of connected
components of Y , and m the number of X. Let us show that m = n.

Suppose that Y admits n connected components. We can write Y =
⋃

1≤i≤n
Oi where

the Oi are disjoint non-empty connected sets. Also, we have seen that the Oi are open.

For all i ∈ J1, nK, define O′i = f−1(Oi). We have:
• for all i ∈ J1, nK O′i = f−1(Oi) is open (because f is continuous),
• X =

⋃
1≤i≤n

O′i (because f is a map)

• for all i, j ∈ J1, nK with i 6= j, O′i ∩O′j = f−1(Oi) ∩ f−1(Oj) = f−1(Oi ∩Oj) = ∅
• for all i ∈ J1, nK, O′i = f−1(Oi) 6= ∅ (because f is a bijection).

Hence X can be covered by n disjoint non-empty open sets. We deduce that X admits
at least n connected components.



12/17 (2/6)Invariant property

Proposition Two homeomorphic topological spaces admit the same number of
connected components.

Proof: Let f : X → Y be a homeomorphism. Let n be the number of connected
components of Y , and m the number of X. Let us show that m = n.

Suppose that Y admits n connected components. We can write Y =
⋃

1≤i≤n
Oi where

the Oi are disjoint non-empty connected sets. Also, we have seen that the Oi are open.

For all i ∈ J1, nK, define O′i = f−1(Oi). We have:
• for all i ∈ J1, nK O′i = f−1(Oi) is open (because f is continuous),
• X =

⋃
1≤i≤n

O′i (because f is a map)

• for all i, j ∈ J1, nK with i 6= j, O′i ∩O′j = f−1(Oi) ∩ f−1(Oj) = f−1(Oi ∩Oj) = ∅
• for all i ∈ J1, nK, O′i = f−1(Oi) 6= ∅ (because f is a bijection).

Hence X can be covered by n disjoint non-empty open sets. We deduce that X admits
at least n connected components.

Now, suppose that X admits m connected components. Using the same reasoning, one
shows that Y admits at least m connected components. Hence we have n ≥ m ≥ n,
that is, n = m.



12/17 (3/6)Invariant property

Proposition Two homeomorphic topological spaces admit the same number of
connected components.

Example: The subsets [0, 1] and [0, 1] ∪ [2, 3] of R are not homeomorphic.
Indeed, the first one has one connected component, and the second one two.

0 1 0 1 2 3



12/17 (4/6)Invariant property

Proposition Two homeomorphic topological spaces admit the same number of
connected components.

Example: The interval [0, 2π) and the circle S (0, 1) ⊂ R2 are not homeomorphic.

We will prove this by contradiction. Suppose that they are homeomorphic. By
definition, this means that there exists a map f : [0, 2π)→ S (0, 1) which is continuous,
inversible, and with continuous inverse.

0 2π



12/17 (5/6)Invariant property

Proposition Two homeomorphic topological spaces admit the same number of
connected components.

Example: The interval [0, 2π) and the circle S (0, 1) ⊂ R2 are not homeomorphic.

We will prove this by contradiction. Suppose that they are homeomorphic. By
definition, this means that there exists a map f : [0, 2π)→ S (0, 1) which is continuous,
inversible, and with continuous inverse.

Let x ∈ [0, 2π) such that x 6= 0. Consider the subsets [0, 2π) \ {x} ⊂ [0, 2π) and
S (0, 1) \ {f(x)} ⊂ S (0, 1), and the induced map

g : [0, 2π) \ {x} → S (0, 1) \ {f(x)}.

The map g is a homeomorphism.

0 2π

x
f(x)



12/17 (6/6)Invariant property

Proposition Two homeomorphic topological spaces admit the same number of
connected components.

Example: The interval [0, 2π) and the circle S (0, 1) ⊂ R2 are not homeomorphic.

We will prove this by contradiction. Suppose that they are homeomorphic. By
definition, this means that there exists a map f : [0, 2π)→ S (0, 1) which is continuous,
inversible, and with continuous inverse.

Let x ∈ [0, 2π) such that x 6= 0. Consider the subsets [0, 2π) \ {x} ⊂ [0, 2π) and
S (0, 1) \ {f(x)} ⊂ S (0, 1), and the induced map

g : [0, 2π) \ {x} → S (0, 1) \ {f(x)}.

The map g is a homeomorphism.

0 2π

x
f(x)

==

Moreover, [0, 2π) \ {x} has two connected components, and S (0, 1) \ {f(x)} only one.
This is absurd.
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I - Homeomorphic topological spaces

II - Connected components

III - Connectedness as an invariant
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14/17 (1/2)Invariance of domain

Theorem: If m 6= n, the Euclidean spaces Rm and Rn are not homeomorphic.

We will have to wait a little bit before proving this result.

However, we can prove some particular cases.

6= 6=

Example: R and R2 are not homeomorphic.
Just as before, we will prove this by contradiction. Suppose that there exists a
homeomorphism f : R→ R2. Choose any x ∈ R. The induced map

g : R \ {x} → R2 \ {f(x)}

is still a homeomorphism, but R \ {x} has two connected components, while
R2 \ {f(x)} has one. This is a contradiction.



14/17 (2/2)Invariance of domain

Theorem: If m 6= n, the Euclidean spaces Rm and Rn are not homeomorphic.

We will have to wait a little bit before proving this result.

However, we can prove some particular cases.

6= 6=

Example: R and R2 are not homeomorphic.
Just as before, we will prove this by contradiction. Suppose that there exists a
homeomorphism f : R→ R2. Choose any x ∈ R. The induced map

g : R \ {x} → R2 \ {f(x)}

is still a homeomorphism, but R \ {x} has two connected components, while
R2 \ {f(x)} has one. This is a contradiction.

The same reasoning shows that R and Rn are not homeomorphic either.



15/17 (1/3)Dimension

Definition: Let (X, T ) be a topological space, and n ≥ 0. We say that it has dimension
n if the following is true: for every x ∈ X, there exists an open set O such that x ∈ O,
and a homeomorphism O → Rn.

Example: The circle has dimension 1.

' R



15/17 (2/3)Dimension

Definition: Let (X, T ) be a topological space, and n ≥ 0. We say that it has dimension
n if the following is true: for every x ∈ X, there exists an open set O such that x ∈ O,
and a homeomorphism O → Rn.

Example: The circle has dimension 1.

' R

Example: The sphere has dimension 2.

' R2



15/17 (3/3)Dimension

Definition: Let (X, T ) be a topological space, and n ≥ 0. We say that it has dimension
n if the following is true: for every x ∈ X, there exists an open set O such that x ∈ O,
and a homeomorphism O → Rn.

Example: The circle has dimension 1.

' R

Example: The sphere has dimension 2.

' R2

Interpretation: a topological space of dimension n is a topological space that locally
looks like the Euclidean space Rn.



16/17 (1/2)Dimension invariant

Theorem: Let X, Y be two homeomorphic topological spaces. If X has dimension n,
then Y also has dimension n.

In other words, dimension is an invariant.

We can use it to show that two spaces are not homeomorphic.

Example: The unit circle S1 ⊂ R2 and the unit sphere S2 ⊂ R3 are not homeomorphic.
Indeed, the first one has dimension 1, and the second one dimension 2.



16/17 (2/2)Dimension invariant

Theorem: Let X, Y be two homeomorphic topological spaces. If X has dimension n,
then Y also has dimension n.

Proof: Let n be the dimension of X, and consider a homeomorphism g : Y → X.

Let y ∈ Y , and x = g(y). Since x has dimension n, there exists an open set O of X,
with x ∈ O, and a homeomorphism h : O → Rn.

Define O′ = g−1(O). It is an open set of Y , with y ∈ O′. Moreover, the map
h ◦ g : O′ → Rn is a homeomorphism.

This being true for every y ∈ Y , we deduce that Y has dimension n.



17/17 (1/2)

Conclusion
We learnt to look at topological spaces from a homeomorphic-equivalence
perspective.

We study two invariants: number of connected components and dimension. This
allows to understand whether two topological spaces are homeomorphic or not.

Homework for tomorrow: Exercise 8 and 11

Facultative exercise: Exercise 10
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Conclusion
We learnt to look at topological spaces from a homeomorphic-equivalence
perspective.

We study two invariants: number of connected components and dimension. This
allows to understand whether two topological spaces are homeomorphic or not.

Homework for tomorrow: Exercise 8 and 11

Facultative exercise: Exercise 10

Obrigado!


