EMAp Summer Course

Topological Data Analysis with Persistent Homology

https://raphaeltinarrage.github.io/EMAp.html

Lesson 2: Homeomorphisms

Last update: January 27, 2021

Introduction

2/17 (1/2)

In topology, we are allowed to deform shapes.

Introduction

2/17 (2/2)

In topology, we are allowed to deform shapes.

I - Homeomorphic topological spaces

II - Connected components

III - Connectedness as an invariant

 VI - Dimension

4/17 (1/6)

Definition: Let (X, \mathcal{T}) and (Y, \mathcal{U}) be two topological spaces, and $f: X \to Y$ a map. We say that f is a *homeomorphism* if

- $f \colon X \to Y$ is continuous,
- f is a bijection,
- $f^{-1}: Y \to X$ is continuous.

If there exist such a homeomorphism, we say that the two topological spaces are homeomorphic.

4/17 (2/6)

Definition: Let (X, \mathcal{T}) and (Y, \mathcal{U}) be two topological spaces, and $f: X \to Y$ a map. We say that f is a *homeomorphism* if

- $f \colon X \to Y$ is continuous,
- f is a bijection,
- $f^{-1}: Y \to X$ is continuous.

If there exist such a homeomorphism, we say that the two topological spaces are homeomorphic.

Example: Consider the following circles of \mathbb{R}^2 : $\mathbb{S}(0,1) = \{x \in \mathbb{R}^2, \|x\| = 1\},\$

$$\mathbb{S}(0,2) = \{ x \in \mathbb{R}^2, \|x\| = 2 \}.$$

and the map $f \colon \mathbb{S}(0,1) \longrightarrow \mathbb{S}(0,2)$ $x \longmapsto 2x$

It is continuous, bijective, and its inverse $f^{-1} \colon x \mapsto \frac{1}{2}x$ also is continuous. Hence f is a homeomorphism.

Hence these two circles are homeomorphic.

4/17 (3/6)

How to prove that f is continuous?

Example: Consider the following circles of \mathbb{R}^2 :

and the map $f \colon \mathbb{S}(0,1) \longrightarrow \mathbb{S}(0,2)$ $x \longmapsto 2x$

It is continuous, bijective, and its inverse $f^{-1} \colon x \mapsto \frac{1}{2}x$ also is continuous. Hence f is a homeomorphism.

Hence these two circles are homeomorphic.

How to prove that f is continuous?

 $\longrightarrow f$ is the restriction of a continuous map $\mathbb{R}^2 \to \mathbb{R}^2$

Lemma:

Let g be a continuous map between (X, \mathcal{T}) and (Y, \mathcal{U}) . Consider a subset $A \subset X$, and endow it with the subspace topology $\mathcal{T}_{|A}$. Consider a subset $B \subset Y$, and endow it with the subspace topology $\mathcal{U}_{|B}$. If $f(A) \subset B$, then the induced map $g_{|A,B} \colon (A, \mathcal{T}_{|A}) \to (B, \mathcal{U}_{|B})$ also is continuous.

Example: Consider the following circles of \mathbb{R}^2 :

and the map $f \colon \mathbb{S}(0,1) \longrightarrow \mathbb{S}(0,2)$ $x \longmapsto 2x$

It is continuous, bijective, and its inverse $f^{-1} \colon x \mapsto \frac{1}{2}x$ also is continuous. Hence f is a homeomorphism.

Hence these two circles are homeomorphic.

Definition: Let (X, \mathcal{T}) and (Y, \mathcal{U}) be two topological spaces, and $f: X \to Y$ a map. We say that f is a *homeomorphism* if

- $f: X \to Y$ is continuous,
- f is a bijection,
- $f^{-1}: Y \to X$ is continuous.

If there exist such a homeomorphism, we say that the two topological spaces are homeomorphic.

Example: Consider a circle and a square $S(0,1) = \{x \in \mathbb{R}^2, \|X\| = 1\},\$

 $C = \{(x_1, x_2) \in \mathbb{R}^2, \max(|x_1|, |x_2|) = 1\}.$

and the map $f: \mathbb{S}(0,1) \longrightarrow \mathcal{C}$ $(x_1, x_2) \longmapsto \frac{1}{\max(|x_1|, |x_2|)}(x_1, x_2)$ It is continuous, bijective, and its inverse $f^{-1} \colon x \mapsto \frac{1}{\sqrt{x_1^2 + x_2^2}}(x_1, x_2)$ also is continuous. Hence f is a homeomorphism.

Hence the circle and the square are homeomorphic.

4/17 (6/6)

Definition: Let (X, \mathcal{T}) and (Y, \mathcal{U}) be two topological spaces, and $f: X \to Y$ a map. We say that f is a *homeomorphism* if

- $f \colon X \to Y$ is continuous,
- f is a bijection,
- $f^{-1}: Y \to X$ is continuous.

If there exist such a homeomorphism, we say that the two topological spaces are homeomorphic.

Exercise: The topological spaces $\mathcal{B}(0,1) \subset \mathbb{R}^n$ and \mathbb{R}^n are homeomorphic.

Non-homeomorphic spaces

5/17 (1/3)

Non-example: Consider the interval $[0, 2\pi)$ and the circle $\mathbb{S}(0, 1) \subset \mathbb{R}^2$.

Define the map
$$f: [0, 2\pi) \longrightarrow \mathbb{S}(0, 1)$$

 $\theta \longmapsto (\cos(\theta), \sin(\theta))$

It is continuous, and admits the following inverse:

$$g: \mathbb{S}(0,1) \longrightarrow [0,2\pi)$$
$$(x_1,x_2) \longmapsto \arctan\left(\frac{x_2}{x_1}\right)$$

The map g is **not** continuous. Hence f is not a homeomorphism.

Non-homeomorphic spaces

Non-example: Consider the interval $[0, 2\pi)$ and the circle $\mathbb{S}(0, 1) \subset \mathbb{R}^2$.

Define the map
$$f: [0, 2\pi) \longrightarrow \mathbb{S}(0, 1)$$

 $\theta \longmapsto (\cos(\theta), \sin(\theta))$

It is continuous, and admits the following inverse:

$$g: \mathbb{S}(0,1) \longrightarrow [0,2\pi)$$
$$(x_1,x_2) \longmapsto \arctan\left(\frac{x_2}{x_1}\right)$$

The map g is **not** continuous. Hence f is not a homeomorphism.

Indeed, $[0, \pi)$ is an open subset of $[0, 2\pi)$, but $g^{-1}([0, \pi))$ is not an open subset of $\mathbb{S}(0, 1)$ (it is not open around $g^{-1}(0) = (1, 0)$).

5/17 (2/3)

Non-homeomorphic spaces

Non-example: Consider the interval $[0, 2\pi)$ and the circle $\mathbb{S}(0, 1) \subset \mathbb{R}^2$.

Define the map
$$f: [0, 2\pi) \longrightarrow \mathbb{S}(0, 1)$$

 $\theta \longmapsto (\cos(\theta), \sin(\theta))$

It is continuous, and admits the following inverse:

$$g: \mathbb{S}(0,1) \longrightarrow [0,2\pi)$$
$$(x_1,x_2) \longmapsto \arctan\left(\frac{x_2}{x_1}\right)$$

Question:

Did we just prove that $[0,2\pi)$ and $\mathbb{S}(0,1)$ are not homeomorphic?

The map g is **not** continuous. Hence f is not a homeomorphism.

Indeed, $[0, \pi)$ is an open subset of $[0, 2\pi)$, but $g^{-1}([0, \pi))$ is not an open subset of $\mathbb{S}(0, 1)$ (it is not open around $g^{-1}(0) = (1, 0)$).

Homeomorphism equivalence relation 6/17 (1/8)

Let us write $X \simeq Y$ if the two topological spaces X and Y are homeomorphic, i.e., if there exists a homeomorphism $f: X \to Y$.

For any X, we have

 $X \simeq X.$

Proof: Consider the identity map id : $X \to X$, $x \mapsto x$. It is a homeomorphism between X and X.

Homeomorphism equivalence relation 6/17 (2/8)

Let us write $X \simeq Y$ if the two topological spaces X and Y are homeomorphic, i.e., if there exists a homeomorphism $f: X \to Y$.

For any X, we have

 $X \simeq X.$

Moreover, we have:

$$X \simeq Y \iff Y \simeq X.$$

Proof: Suppose that X and Y are homeomorphic: $f: X \to Y$. Then $f^{-1}: Y \to X$ is a homeomorphism between Y and X.

Homeomorphism equivalence relation 6/17 (3/8)

Let us write $X \simeq Y$ if the two topological spaces X and Y are homeomorphic, i.e., if there exists a homeomorphism $f: X \to Y$.

For any X, we have

 $X \simeq X.$

Moreover, we have:

$$X \simeq Y \iff Y \simeq X.$$

We also have a third property:

$$X \simeq Y$$
 and $Y \simeq Z \implies X \simeq Z$.

Proof: Suppose that we have two homeomorphisms $f: X \to Y$ and $g: Y \to Z$. Then $g \circ f: X \to Z$ is a homeomorphism between X and Z.

Homeomorphism equivalence relation $_{6/17}$ (4/8)

Let us write $X \simeq Y$ if the two topological spaces X and Y are homeomorphic, i.e., if there exists a homeomorphism $f: X \to Y$.

For any X, we have

Moreover, we have:

$$X \simeq X$$
. reflexivity
 $X \simeq Y \iff Y \simeq X$. symmetry

We also have a third property:

$$X \simeq Y$$
 and $Y \simeq Z \implies X \simeq Z$. transitivity

Conclusion: Being homeomorphic is an equivalence relation.

It allows to classify topological spaces in classes (called *classes of homeomorphism equivalence*):

Homeomorphism equivalence relation 6/17 (5/8)

Let us write $X \simeq Y$ if the two topological spaces X and Y are homeomorphic, i.e., if there exists a homeomorphism $f: X \to Y$.

For any X, we have

Moreover, we have:

$$X \simeq X$$
. reflexivity
 $X \simeq Y \iff Y \simeq X$. symmetry

We also have a third property:

$$X \simeq Y$$
 and $Y \simeq Z \implies X \simeq Z$. transitivity

Conclusion: Being homeomorphic is an equivalence relation.

It allows to classify topological spaces in classes (called *classes of homeomorphism equivalence*):

$$= \bigcirc = \bigcirc = \bigcirc = \bigcirc = \bigcirc = \bigcirc = \cdots$$

the class of circles

Homeomorphism equivalence relation 6/17 (6/8)

Let us write $X \simeq Y$ if the two topological spaces X and Y are homeomorphic, i.e., if there exists a homeomorphism $f: X \to Y$.

For any X, we have

Moreover, we have:

$$X \simeq X$$
. reflexivity
 $X \simeq Y \iff Y \simeq X$. symmetry

We also have a third property:

$$X \simeq Y$$
 and $Y \simeq Z \implies X \simeq Z$. transitivity

Conclusion: Being homeomorphic is an equivalence relation.

It allows to classify topological spaces in classes (called *classes of homeomorphism equivalence*):

$$---- =$$
 $--- =$ $---- =$ $---- =$ $---- =$

the class of intervals

Homeomorphism equivalence relation 6/17 (7/8)

Let us write $X \simeq Y$ if the two topological spaces X and Y are homeomorphic, i.e., if there exists a homeomorphism $f: X \to Y$.

For any X, we have

Moreover, we have:

$$X \simeq X$$
. reflexivity
 $X \simeq Y \iff Y \simeq X$. symmetry

We also have a third property:

$$X \simeq Y$$
 and $Y \simeq Z \implies X \simeq Z$. transitivity

Conclusion: Being homeomorphic is an equivalence relation.

It allows to classify topological spaces in classes (called *classes of homeomorphism equivalence*):

the class of crosses

Homeomorphism equivalence relation 6/17 (8/8)

Let us write $X \simeq Y$ if the two topological spaces X and Y are homeomorphic, i.e., if there exists a homeomorphism $f: X \to Y$.

For any X, we have

Moreover, we have:

$$X \simeq X$$
. reflexivity
 $X \simeq Y \iff Y \simeq X$. symmetry

We also have a third property:

$$X \simeq Y$$
 and $Y \simeq Z \implies X \simeq Z$. transitivity

Conclusion: Being homeomorphic is an equivalence relation.

It allows to classify topological spaces in classes (called *classes of homeomorphism equivalence*):

Homeomorphism problem

7/17

In general, it may be complicated to determine whether two spaces are homeomorphic.

To answer this problem, we will use the notion of *invariant*.

I - Homeomorphic topological spaces

II - Connected components

III - Connectedness as an invariant

 VI - Dimension

Connectedness

9/17 (1/3)

Definition: Let (X, \mathcal{T}) be a topological space. We say that X is *connected* if for every open sets $O, O' \in \mathcal{T}$ such that $O \cap O' = \emptyset$, we have

$$X = O \cup O' \implies O = \emptyset \text{ or } O' = \emptyset.$$

In other words, a connected topological space cannot be divided into two non-empty disjoint open sets.

connected space

non-connected space

Connectedness

9/17 (2/3)

Definition: Let (X, \mathcal{T}) be a topological space. We say that X is *connected* if for every open sets $O, O' \in \mathcal{T}$ such that $O \cap O' = \emptyset$, we have

$$X = O \cup O' \implies O = \emptyset \text{ or } O' = \emptyset.$$

In other words, a connected topological space cannot be divided into two non-empty disjoint open sets.

connected space

Connectedness

9/17 (3/3)

Definition: Let (X, \mathcal{T}) be a topological space. We say that X is *connected* if for every open sets $O, O' \in \mathcal{T}$ such that $O \cap O' = \emptyset$, we have

$$X = O \cup O' \implies O = \emptyset \text{ or } O' = \emptyset.$$

In other words, a connected topological space cannot be divided into two non-empty disjoint open sets.

Proposition: The balls of \mathbb{R}^n are connected. More generally, any convex set is connected.

10/17 (1/10)

10/17 (2/10)

10/17 (3/10)

10/17 (4/10)

10/17 (5/10)

10/17 (6/10)

10/17 (7/10)

10/17 (8/10)

10/17 (9/10)

10/17 (10/10)

If a space is not connected, we can consider its connected components. Let $x \in X$. The connected component of x is defined as the largest subset of X that is connected.

The set of connected components of X forms a partition of X into open sets.

Definition: Let (X, \mathcal{T}) be a topological space. Suppose that there exists a collection of n non-empty, disjoint and connected sets $(O_1, ..., O_n)$ such that

$$\bigcup_{1 \le i \le n} O_i = X.$$

Then we say that X admits n connected components.

I - Homeomorphic topological spaces

II - Connected components

III - Connectedness as an invariant

VI - Dimension

Proposition Two homeomorphic topological spaces admit the same number of connected components.

Proof: Let $f: X \to Y$ be a homeomorphism. Let n be the number of connected components of Y, and m the number of X. Let us show that m = n.

Suppose that Y admits n connected components. We can write $Y = \bigcup_{1 \le i \le n} O_i$ where

the O_i are disjoint non-empty connected sets. Also, we have seen that the O_i are open.

For all $i \in \llbracket 1, n \rrbracket$, define $O'_i = f^{-1}(O_i)$. We have:

- for all $i \in \llbracket 1, n \rrbracket O'_i = f^{-1}(O_i)$ is open (because f is continuous),
- $X = \bigcup_{1 \le i \le n} O'_i$ (because f is a map)
- for all $i, j \in [\![1, n]\!]$ with $i \neq j$, $O'_i \cap O'_j = f^{-1}(O_i) \cap f^{-1}(O_j) = f^{-1}(O_i \cap O_j) = \emptyset$
- for all $i \in [\![1, n]\!]$, $O'_i = f^{-1}(O_i) \neq \emptyset$ (because f is a bijection).

Hence X can be covered by n disjoint non-empty open sets. We deduce that X admits at least n connected components.

Proposition Two homeomorphic topological spaces admit the same number of connected components.

Proof: Let $f: X \to Y$ be a homeomorphism. Let n be the number of connected components of Y, and m the number of X. Let us show that m = n.

Suppose that Y admits n connected components. We can write $Y = \bigcup_{1 \le i \le n} O_i$ where

the O_i are disjoint non-empty connected sets. Also, we have seen that the O_i are open.

For all $i \in \llbracket 1, n \rrbracket$, define $O'_i = f^{-1}(O_i)$. We have:

- for all $i \in \llbracket 1, n \rrbracket O'_i = f^{-1}(O_i)$ is open (because f is continuous),
- $X = \bigcup_{1 \le i \le n} O'_i$ (because f is a map)
- for all $i, j \in [\![1, n]\!]$ with $i \neq j$, $O'_i \cap O'_j = f^{-1}(O_i) \cap f^{-1}(O_j) = f^{-1}(O_i \cap O_j) = \emptyset$
- for all $i \in [\![1,n]\!]$, $O'_i = f^{-1}(O_i) \neq \emptyset$ (because f is a bijection).

Hence X can be covered by n disjoint non-empty open sets. We deduce that X admits at least n connected components.

Now, suppose that X admits m connected components. Using the same reasoning, one shows that Y admits at least m connected components. Hence we have $n \ge m \ge n$, that is, n = m.

Proposition Two homeomorphic topological spaces admit the same number of connected components.

Example: The subsets [0,1] and $[0,1] \cup [2,3]$ of \mathbb{R} are not homeomorphic. Indeed, the first one has one connected component, and the second one two.

Proposition Two homeomorphic topological spaces admit the same number of connected components.

Example: The interval $[0, 2\pi)$ and the circle $\mathbb{S}(0, 1) \subset \mathbb{R}^2$ are not homeomorphic.

We will prove this by contradiction. Suppose that they are homeomorphic. By definition, this means that there exists a map $f: [0, 2\pi) \to \mathbb{S}(0, 1)$ which is continuous, inversible, and with continuous inverse.

Proposition Two homeomorphic topological spaces admit the same number of connected components.

Example: The interval $[0, 2\pi)$ and the circle $\mathbb{S}(0, 1) \subset \mathbb{R}^2$ are not homeomorphic.

We will prove this by contradiction. Suppose that they are homeomorphic. By definition, this means that there exists a map $f: [0, 2\pi) \to \mathbb{S}(0, 1)$ which is continuous, inversible, and with continuous inverse.

Let $x \in [0, 2\pi)$ such that $x \neq 0$. Consider the subsets $[0, 2\pi) \setminus \{x\} \subset [0, 2\pi)$ and $\mathbb{S}(0, 1) \setminus \{f(x)\} \subset \mathbb{S}(0, 1)$, and the induced map

$$g: [0, 2\pi) \setminus \{x\} \to \mathbb{S}(0, 1) \setminus \{f(x)\}.$$

The map g is a homeomorphism.

Proposition Two homeomorphic topological spaces admit the same number of connected components.

Example: The interval $[0, 2\pi)$ and the circle $\mathbb{S}(0, 1) \subset \mathbb{R}^2$ are not homeomorphic.

We will prove this by contradiction. Suppose that they are homeomorphic. By definition, this means that there exists a map $f: [0, 2\pi) \to \mathbb{S}(0, 1)$ which is continuous, inversible, and with continuous inverse.

Let $x \in [0, 2\pi)$ such that $x \neq 0$. Consider the subsets $[0, 2\pi) \setminus \{x\} \subset [0, 2\pi)$ and $\mathbb{S}(0, 1) \setminus \{f(x)\} \subset \mathbb{S}(0, 1)$, and the induced map

$$g: [0, 2\pi) \setminus \{x\} \to \mathbb{S}(0, 1) \setminus \{f(x)\}.$$

The map g is a homeomorphism.

Moreover, $[0, 2\pi) \setminus \{x\}$ has two connected components, and $\mathbb{S}(0, 1) \setminus \{f(x)\}$ only one. This is absurd.

I - Homeomorphic topological spaces

II - Connected components

III - Connectedness as an invariant

 VI - Dimension

Invariance of domain

≠

Theorem: If $m \neq n$, the Euclidean spaces \mathbb{R}^m and \mathbb{R}^n are not homeomorphic.

We will have to wait a little bit before proving this result.

However, we can prove some particular cases.

Example: \mathbb{R} and \mathbb{R}^2 are not homeomorphic. Just as before, we will prove this by contradiction. Suppose that there exists a homeomorphism $f: \mathbb{R} \to \mathbb{R}^2$. Choose any $x \in \mathbb{R}$. The induced map

 $g \colon \mathbb{R} \setminus \{x\} \to \mathbb{R}^2 \setminus \{f(x)\}$

is still a homeomorphism, but $\mathbb{R} \setminus \{x\}$ has two connected components, while $\mathbb{R}^2 \setminus \{f(x)\}$ has one. This is a contradiction.

Invariance of domain

Theorem: If $m \neq n$, the Euclidean spaces \mathbb{R}^m and \mathbb{R}^n are not homeomorphic.

We will have to wait a little bit before proving this result.

However, we can prove some particular cases.

Example: \mathbb{R} and \mathbb{R}^2 are not homeomorphic. Just as before, we will prove this by contradiction. Suppose that there exists a homeomorphism $f: \mathbb{R} \to \mathbb{R}^2$. Choose any $x \in \mathbb{R}$. The induced map

 $g \colon \mathbb{R} \setminus \{x\} \to \mathbb{R}^2 \setminus \{f(x)\}$

is still a homeomorphism, but $\mathbb{R} \setminus \{x\}$ has two connected components, while $\mathbb{R}^2 \setminus \{f(x)\}$ has one. This is a contradiction.

The same reasoning shows that \mathbb{R} and \mathbb{R}^n are not homeomorphic either.

Dimension

15/17 (1/3)

Definition: Let (X, \mathcal{T}) be a topological space, and $n \ge 0$. We say that it *has dimension* n if the following is true: for every $x \in X$, there exists an open set O such that $x \in O$, and a homeomorphism $O \to \mathbb{R}^n$.

Example: The circle has dimension 1.

Dimension

15/17 (2/3)

Definition: Let (X, \mathcal{T}) be a topological space, and $n \ge 0$. We say that it *has dimension* n if the following is true: for every $x \in X$, there exists an open set O such that $x \in O$, and a homeomorphism $O \to \mathbb{R}^n$.

Example: The circle has dimension 1.

Dimension

15/17 (3/3)

Definition: Let (X, \mathcal{T}) be a topological space, and $n \ge 0$. We say that it *has dimension* n if the following is true: for every $x \in X$, there exists an open set O such that $x \in O$, and a homeomorphism $O \to \mathbb{R}^n$.

Example: The circle has dimension 1.

Interpretation: a topological space of dimension n is a topological space that locally looks like the Euclidean space \mathbb{R}^n .

Dimension invariant

Theorem: Let X, Y be two homeomorphic topological spaces. If X has dimension n, then Y also has dimension n.

In other words, **dimension is an invariant**.

We can use it to show that two spaces are not homeomorphic.

Example: The unit circle $\mathbb{S}_1 \subset \mathbb{R}^2$ and the unit sphere $\mathbb{S}_2 \subset \mathbb{R}^3$ are not homeomorphic. Indeed, the first one has dimension 1, and the second one dimension 2.

Dimension invariant

16/17 (2/2)

Theorem: Let X, Y be two homeomorphic topological spaces. If X has dimension n, then Y also has dimension n.

Proof: Let *n* be the dimension of *X*, and consider a homeomorphism $g: Y \to X$.

Let $y \in Y$, and x = g(y). Since x has dimension n, there exists an open set O of X, with $x \in O$, and a homeomorphism $h: O \to \mathbb{R}^n$.

Define $O' = g^{-1}(O)$. It is an open set of Y, with $y \in O'$. Moreover, the map $h \circ g \colon O' \to \mathbb{R}^n$ is a homeomorphism.

This being true for every $y \in Y$, we deduce that Y has dimension n.

Conclusion

We learnt to look at topological spaces from a homeomorphic-equivalence perspective.

We study two invariants: number of connected components and dimension. This allows to understand whether two topological spaces are homeomorphic or not.

Homework for tomorrow: Exercise 8 and 11 Facultative exercise: Exercise 10

Conclusion

We learnt to look at topological spaces from a homeomorphic-equivalence perspective.

We study two invariants: number of connected components and dimension. This allows to understand whether two topological spaces are homeomorphic or not.

Homework for tomorrow: Exercise 8 and 11 Facultative exercise: Exercise 10

Obrigado!