EMAp Summer Course

Topological Data Analysis with Persistent Homology

https://raphaeltinarrage.github.io/EMAp.html

Lesson 10: Stability of persistence modules

Introduction

2/11 (1/2)

Let $X \subset \mathbb{R}^n$ finite, seen as a sample of \mathcal{M} .

Introduction

2/11 (2/2)

Let $X \subset \mathbb{R}^n$ finite, seen as a sample of \mathcal{M} .

I - Distances between persistence modules

II - Isometry theorem

III - Stability theorem

4/11 (1/12)

Consider two barcodes P and Q, that is, multisets of intervals $\{(a_i, b_i), i \in \mathcal{I}\}$ of $(\overline{\mathbb{R}^+})^2$ such that $a_i \leq b_i$ for all $i \in \mathcal{I}$.

4/11 (2/12)

Consider two barcodes P and Q, that is, multisets of intervals $\{(a_i, b_i), i \in \mathcal{I}\}$ of $(\overline{\mathbb{R}^+})^2$ such that $a_i \leq b_i$ for all $i \in \mathcal{I}$.

A partial matching between the barcodes is a subset $M \subset P \times Q$ such that

- for every $p \in P$, there exists at most one $q \in Q$ such that $(p,q) \in M$,
- for every $q \in Q$, there exists at most one $p \in P$ such that $(p,q) \in M$.

4/11 (3/12)

Consider two barcodes P and Q, that is, multisets of intervals $\{(a_i, b_i), i \in \mathcal{I}\}$ of $(\overline{\mathbb{R}^+})^2$ such that $a_i \leq b_i$ for all $i \in \mathcal{I}$.

A partial matching between the barcodes is a subset $M \subset P \times Q$ such that

- for every $p \in P$, there exists at most one $q \in Q$ such that $(p,q) \in M$,
- for every $q \in Q$, there exists at most one $p \in P$ such that $(p,q) \in M$.

4/11 (4/12)

Consider two barcodes P and Q, that is, multisets of intervals $\{(a_i, b_i), i \in \mathcal{I}\}$ of $(\overline{\mathbb{R}^+})^2$ such that $a_i \leq b_i$ for all $i \in \mathcal{I}$.

A partial matching between the barcodes is a subset $M \subset P \times Q$ such that

- for every $p \in P$, there exists at most one $q \in Q$ such that $(p,q) \in M$,
- for every $q \in Q$, there exists at most one $p \in P$ such that $(p,q) \in M$.

4/11 (5/12)

Consider two barcodes P and Q, that is, multisets of intervals $\{(a_i, b_i), i \in \mathcal{I}\}$ of $(\overline{\mathbb{R}^+})^2$ such that $a_i \leq b_i$ for all $i \in \mathcal{I}$.

A partial matching between the barcodes is a subset $M \subset P \times Q$ such that

- for every $p \in P$, there exists at most one $q \in Q$ such that $(p,q) \in M$,
- for every $q \in Q$, there exists at most one $p \in P$ such that $(p,q) \in M$.

4/11 (6/12)

Consider two barcodes P and Q, that is, multisets of intervals $\{(a_i, b_i), i \in \mathcal{I}\}$ of $(\overline{\mathbb{R}^+})^2$ such that $a_i \leq b_i$ for all $i \in \mathcal{I}$.

A partial matching between the barcodes is a subset $M \subset P \times Q$ such that

- for every $p \in P$, there exists at most one $q \in Q$ such that $(p,q) \in M$,
- for every $q \in Q$, there exists at most one $p \in P$ such that $(p,q) \in M$.

The points $p \in P$ (resp. $q \in Q$) such that there exists $q \in Q$ (resp. $p \in P$) with $(p,q) \in M$ are said **matched** by M.

If a point $p \in P$ (resp. $q \in Q$) is not matched by M, we consider that it is matched with the singleton $\overline{p} = \left[\frac{p_1+p_2}{2}, \frac{p_1+p_2}{2}\right]$ (resp. $\overline{q} = \left[\frac{q_1+q_2}{2}, \frac{q_1+q_2}{2}\right]$).

4/11 (7/12)

Consider two barcodes P and Q, that is, multisets of intervals $\{(a_i, b_i), i \in \mathcal{I}\}$ of $(\overline{\mathbb{R}^+})^2$ such that $a_i \leq b_i$ for all $i \in \mathcal{I}$.

A partial matching between the barcodes is a subset $M \subset P \times Q$ such that

- for every $p \in P$, there exists at most one $q \in Q$ such that $(p,q) \in M$,
- for every $q \in Q$, there exists at most one $p \in P$ such that $(p,q) \in M$.

The points $p \in P$ (resp. $q \in Q$) such that there exists $q \in Q$ (resp. $p \in P$) with $(p,q) \in M$ are said **matched** by M.

If a point $p \in P$ (resp. $q \in Q$) is not matched by M, we consider that it is matched with the singleton $\overline{p} = \left[\frac{p_1+p_2}{2}, \frac{p_1+p_2}{2}\right]$ (resp. $\overline{q} = \left[\frac{q_1+q_2}{2}, \frac{q_1+q_2}{2}\right]$).

The **cost** of a matched pair (p,q) (resp. (p,\overline{p}) , resp. (\overline{q},q)) is the sup norm $\|p-q\|_{\infty} = \sup\{|p_1-q_1|, |p_2-q_2|\}$ (resp. $\|p-\overline{p}\|_{\infty}$, resp. $\|\overline{q}-q\|_{\infty}$).

The **cost** of the partial matching M, denoted cost(M), is the supremum of all costs.

4/11 (8/12)

Consider two barcodes P and Q, that is, multisets of intervals $\{(a_i, b_i), i \in \mathcal{I}\}$ of $(\overline{\mathbb{R}^+})^2$ such that $a_i \leq b_i$ for all $i \in \mathcal{I}$.

Definition: The *bottleck distance* between P and Q is defined as the infimum of costs over all the partial matchings:

 $d_b(P,Q) = \inf \{ cost(M), M \text{ is a partial matching between } P \text{ and } Q \}.$

4/11 (9/12)

Consider two barcodes P and Q, that is, multisets of intervals $\{(a_i, b_i), i \in \mathcal{I}\}$ of $(\overline{\mathbb{R}^+})^2$ such that $a_i \leq b_i$ for all $i \in \mathcal{I}$.

Definition: The *bottleck distance* between P and Q is defined as the infimum of costs over all the partial matchings:

 $d_b(P,Q) = \inf \{ cost(M), M \text{ is a partial matching between } P \text{ and } Q \}.$

4/11 (10/12)

Consider two barcodes P and Q, that is, multisets of intervals $\{(a_i, b_i), i \in \mathcal{I}\}$ of $(\overline{\mathbb{R}^+})^2$ such that $a_i \leq b_i$ for all $i \in \mathcal{I}$.

Definition: The *bottleck distance* between P and Q is defined as the infimum of costs over all the partial matchings:

 $d_b(P,Q) = \inf \{ cost(M), M \text{ is a partial matching between } P \text{ and } Q \}.$

If $\mathbb U$ and $\mathbb V$ are two decomposable persistence modules, we define their bottleneck distance as

 $d_{b}(\mathbb{U},\mathbb{V}) = d_{b}(Diagram(\mathbb{U}), Diagram(\mathbb{V})).$

4/11 (11/12)

Example: Let $a, a', b, b' \in \mathbb{R}^+$ such that $a \leq b$ and $a' \leq b'$. Define the barcodes $P = \{[a, b]\}$ and $Q = \{[a', b']\}$.

First, consider the empty matching $M = \emptyset$. The intervals are matched to their midpoint, and the cost is

$$\left| (a,b) - \left(\frac{a+b}{2}, \frac{a+b}{2} \right) \right|_{\infty} = \frac{b-a}{2}, \qquad \left| (a',b') - \left(\frac{a'+b'}{2}, \frac{a'+b'}{2} \right) \right|_{\infty} = \frac{b'-a'}{2}$$

The total cost is $cost(M) = max\left\{\frac{b-a}{2}, \frac{b'-a'}{2}\right\}$.

Next, consider the matching $M' = \{((a, b), (a', b'))\}$. The intervals are matched together, and the cost of the pair is

$$|(a,b) - (a',b')|_{\infty} = \max\{|a - a'|, |b - b'|\}.$$

which is also cost(M').

These are the only two partial matchings, and we deduce the bottleneck distance

$$d_{b}(P,Q) = \min\left\{\max\left\{\frac{b-a}{2}, \frac{b'-a'}{2}\right\}, \max\{|a-a'|, |b-b'|\}\right\}.$$

4/11 (12/12)

Example: Let $a, a', b, b' \in \mathbb{R}^+$ such that $a \leq b$ and $a' \leq b'$. Define the barcodes $P = \{[a, b]\}$ and $Q = \{[a', b']\}$. We have

$$d_{b}(P,Q) = \min\left\{\max\left\{\frac{b-a}{2}, \frac{b'-a'}{2}\right\}, \max\{|a-a'|, |b-b'|\}\right\}.$$

Example: Let $a, a', b, b' \in \mathbb{R}^+$ such that $a \leq b$ and $a' \leq b'$. Consider the interval-modules $\mathbb{B}[a, b]$ and $\mathbb{B}[a', b']$.

Their barcodes are the sets P and Q of the previous example, from which we deduce

$$d_{b} \left(\mathbb{B}[a, b], \mathbb{B}[a', b'] \right) = \min \left\{ \max \left\{ \frac{b-a}{2}, \frac{b'-a'}{2} \right\}, \max\{|a-a'|, |b-b'|\} \right\}.$$

5/11 (1/12)

Given $\epsilon \geq 0$, an ϵ -morphism between \mathbb{V} and \mathbb{W} is a family of linear maps $\phi = (\phi_t \colon V^t \to W^{t+\epsilon})_{t \in \mathbb{R}^+}$ such that the following diagram commutes for every $s \leq t \in \mathbb{R}^+$: $V^s = V^t = V^t$

5/11 (2/12)

 $V^{s} \xrightarrow{v_{s}^{t}} V^{t}$ $\downarrow \phi_{s} \qquad \qquad \downarrow \phi_{t}$ $W^{s+\epsilon} \xrightarrow{w_{s+\epsilon}^{t+\epsilon}} W^{t+\epsilon}$

An ϵ -interleaving between \mathbb{V} and \mathbb{W} is a pair of ϵ -morphisms $(\phi_t \colon V^t \to W^{t+\epsilon})_{t \in \mathbb{R}^+}$ and $(\psi_t \colon W^t \to V^{t+\epsilon})_{t \in \mathbb{R}^+}$ such that the following diagrams commute for every $t \in \mathbb{R}^+$: $V^t = V^{t+\epsilon}$

5/11 (3/12)

An ϵ -interleaving between \mathbb{V} and \mathbb{W} is a pair of ϵ -morphisms $(\phi_t \colon V^t \to W^{t+\epsilon})_{t \in \mathbb{R}^+}$ and $(\psi_t \colon W^t \to V^{t+\epsilon})_{t \in \mathbb{R}^+}$ such that the following diagrams commute for every $t \in \mathbb{R}^+$:

The interleaving distance is: $d_i(\mathbb{V}, \mathbb{W}) = \inf\{\epsilon \ge 0, \mathbb{V} \text{ and } \mathbb{W} \text{ are } \epsilon\text{-interleaved}\}.$

5/11 (4/12)

 \mathbb{R}^+

Example: Let $a, a', b, b' \in \mathbb{R}^+$ such that $a \leq b$ and $a' \leq b'$. Consider the interval-modules $\mathbb{B}[a, b]$ and $\mathbb{B}[a', b']$.

Let us find an $\epsilon\text{-interleaving.}$

5/11 (5/12)

Example: Let $a, a', b, b' \in \mathbb{R}^+$ such that $a \leq b$ and $a' \leq b'$. Consider the interval-modules $\mathbb{B}[a, b]$ and $\mathbb{B}[a', b']$.

Let us find an ϵ -interleaving.

Given $\epsilon \ge 0$, an ϵ -morphism between \mathbb{V} and \mathbb{W} is a family of linear maps $\phi = (\phi_t \colon V^t \to W^{t+\epsilon})_{t \in \mathbb{R}^+}$ such that the following diagram commutes for every $s \le t \in \mathbb{R}^+$:

5/11 (6/12)

Example: Let $a, a', b, b' \in \mathbb{R}^+$ such that $a \leq b$ and $a' \leq b'$. Consider the interval-modules $\mathbb{B}[a, b]$ and $\mathbb{B}[a', b']$.

Let us find an ϵ -interleaving.

Given $\epsilon \ge 0$, an ϵ -morphism between \mathbb{V} and \mathbb{W} is a family of linear maps $\phi = (\phi_t \colon V^t \to W^{t+\epsilon})_{t \in \mathbb{R}^+}$ such that the following diagram commutes for every $s \le t \in \mathbb{R}^+$:

$$V^{s} \xrightarrow{v_{s}^{\iota}} V^{t}$$

$$\downarrow \phi_{s} \qquad \qquad \downarrow \phi_{t}$$

$$W^{s+\epsilon} \xrightarrow{w_{s+\epsilon}^{t+\epsilon}} W^{t+\epsilon}$$

5/11 (7/12)

Example: Let $a, a', b, b' \in \mathbb{R}^+$ such that $a \leq b$ and $a' \leq b'$. Consider the interval-modules $\mathbb{B}[a, b]$ and $\mathbb{B}[a', b']$.

Let us find an ϵ -interleaving.

Given $\epsilon \ge 0$, an ϵ -morphism between \mathbb{V} and \mathbb{W} is a family of linear maps $\phi = (\phi_t \colon V^t \to W^{t+\epsilon})_{t \in \mathbb{R}^+}$ such that the following diagram commutes for every $s \le t \in \mathbb{R}^+$:

5/11 (8/12)

Example: Let $a, a', b, b' \in \mathbb{R}^+$ such that $a \leq b$ and $a' \leq b'$. Consider the interval-modules $\mathbb{B}[a, b]$ and $\mathbb{B}[a', b']$.

Let us find an ϵ -interleaving.

Given $\epsilon \ge 0$, an ϵ -morphism between \mathbb{V} and \mathbb{W} is a family of linear maps $\phi = (\phi_t \colon V^t \to W^{t+\epsilon})_{t \in \mathbb{R}^+}$ such that the following diagram commutes for every $s \le t \in \mathbb{R}^+$: v^t

• Only two possibilities for ϕ : • always the zero map

 \bullet always nonzero when V^t and $W^{t+\epsilon}$ are nonzero

5/11 (9/12)

Example: Let $a, a', b, b' \in \mathbb{R}^+$ such that $a \leq b$ and $a' \leq b'$. Consider the interval-modules $\mathbb{B}[a, b]$ and $\mathbb{B}[a', b']$.

Let us find an ϵ -interleaving.

An ϵ -interleaving between \mathbb{V} and \mathbb{W} is a pair of ϵ -morphisms $(\phi_t \colon V^t \to W^{t+\epsilon})_{t \in \mathbb{R}^+}$ and $(\psi_t \colon W^t \to V^{t+\epsilon})_{t \in \mathbb{R}^+}$ such that the following diagrams commute for every $t \in \mathbb{R}^+$: $V^t \xrightarrow{v_t^{t+2\epsilon}} V^{t+2\epsilon} \qquad V^{t+\epsilon}$ $W^{t+\epsilon} \qquad W^t \xrightarrow{\psi_t^{t+2\epsilon}} W^{t+\epsilon}$ $W^t \xrightarrow{\psi_t^{t+2\epsilon}} W^{t+\epsilon}$ $W^{t+\epsilon} \qquad W^{t+\epsilon}$

5/11 (10/12)

Example: Let $a, a', b, b' \in \mathbb{R}^+$ such that $a \leq b$ and $a' \leq b'$. Consider the interval-modules $\mathbb{B}[a, b]$ and $\mathbb{B}[a', b']$.

Let us find an ϵ -interleaving.

An ϵ -interleaving between \mathbb{V} and \mathbb{W} is a pair of ϵ -morphisms $(\phi_t \colon V^t \to W^{t+\epsilon})_{t \in \mathbb{R}^+}$ and $(\psi_t \colon W^t \to V^{t+\epsilon})_{t \in \mathbb{R}^+}$ such that the following diagrams commute for every $t \in \mathbb{R}^+$:

• $\psi_{t+\epsilon} \circ \phi_t$ must be nonzero when $[t, t+\epsilon] \subset [a, b]$

5/11 (11/12)

Example: Let $a, a', b, b' \in \mathbb{R}^+$ such that $a \leq b$ and $a' \leq b'$. Consider the interval-modules $\mathbb{B}[a, b]$ and $\mathbb{B}[a', b']$.

Let us find an ϵ -interleaving.

► $\psi_{t+\epsilon} \circ \phi_t$ must be nonzero when $[t, t+\epsilon] \subset [a, b]$ $\phi_{t+\epsilon} \circ \psi_t$ must be nonzero when $[t, t+\epsilon] \subset [a', b']$

 $W^{t+\epsilon}$

5/11 (12/12)

Example: Let $a, a', b, b' \in \mathbb{R}^+$ such that $a \leq b$ and $a' \leq b'$. Consider the interval-modules $\mathbb{B}[a, b]$ and $\mathbb{B}[a', b']$.

Let us find an ϵ -interleaving.

I - Distances between persistence modules

II - Isometry theorem

III - Stability theorem

Isometry theorem

7/11 (1/3)

Theorem (Chazal, de Silva, Glisse, Oudot, 2009): If the persistence modules \mathbb{U} and \mathbb{V} are interval-decomposable, then $d_i(\mathbb{U}, \mathbb{V}) = d_b(\mathbb{U}, \mathbb{V})$.

→ Converse stability: $d_i(\mathbb{U}, \mathbb{V}) \leq d_b(\mathbb{U}, \mathbb{V})$

Isometry theorem

Theorem (Chazal, de Silva, Glisse, Oudot, 2009): If the persistence modules \mathbb{U} and \mathbb{V} are interval-decomposable, then $d_i(\mathbb{U}, \mathbb{V}) = d_b(\mathbb{U}, \mathbb{V})$.

Proof: Let us write the decomposition of the persistence modules in intervals:

$$\mathbb{V} \simeq \bigoplus_{I \in \mathcal{I}} \mathbb{B}[I] \qquad \qquad \mathbb{W} \simeq \bigoplus_{J \in \mathcal{J}} \mathbb{B}[J]$$

Suppose that we have a ϵ -partial matching $M \subset \mathcal{I} \times \mathcal{J}$. This gives a matching of some intervals (I, J), where I = (a, b) and J = (a', b'), such that $|a - a'| \leq \epsilon$ and $|b - b'| \leq \epsilon$.

We can build an ϵ -interleaving between $\mathbb{B}[I]$ and $\mathbb{B}[J]$, that we denote $(\phi_{(I,J)}, \psi_{(I,J)})$.

Some intervals I (resp. J) are not matched, in which case their length is not greater than 2ϵ , and we can build an ϵ -interleaving with the zero persistence module. We denote this interleaving $(\phi_{(I,0)}, \psi_{(I,0)})$ (resp. $(\phi_{(0,J)}, \psi_{(0,J)})$).

Now, let us consider the sums of all these linear maps:

Isometry theorem

Theorem (Chazal, de Silva, Glisse, Oudot, 2009): If the persistence modules \mathbb{U} and \mathbb{V} are interval-decomposable, then $d_i(\mathbb{U}, \mathbb{V}) = d_b(\mathbb{U}, \mathbb{V})$.

The stability part is more difficult.

A first strategy uses the interpolation lemma, and concludes with the box lemma.

Interpolation lemma: If \mathbb{U} and \mathbb{V} are δ -interleaved, then there exists a family of persistence modules $(\mathbb{U}_t)_{t\in[0,\delta]}$ such that $\mathbb{U}_0 = \mathbb{U}$, $\mathbb{U}_{\delta} = \mathbb{V}$ and $d_i(\mathbb{U}_s, \mathbb{U}_t) \le |s-t|$ for every $s, t \in [0, \delta]$.

Another proof builds an explicit partial matching from an interleaving (Bauer, Lesnick, 2013).

I - Distances between persistence modules

II - Isometry theorem

III - Stability theorem

9/11 (1/9)

Let X and Y be two subets of \mathbb{R}^n . Define $\epsilon = d_H(X, Y)$ (Hausdorff distance).

We have seen that $X \subset Y^{\epsilon}$ and $Y \subset X^{\epsilon}$. We even have that $X^t \subset Y^{t+\epsilon}$ and $Y^t \subset X^{t+\epsilon}$ for all $t \ge 0$.

By denoting j and k these inclusions, we have a commutative diagram

9/11 (2/9)

Let X and Y be two subets of \mathbb{R}^n . Define $\epsilon = d_H(X, Y)$ (Hausdorff distance).

We have seen that $X \subset Y^{\epsilon}$ and $Y \subset X^{\epsilon}$. We even have that $X^t \subset Y^{t+\epsilon}$ and $Y^t \subset X^{t+\epsilon}$ for all $t \ge 0$.

By denoting j and k these inclusions, we have a commutative diagram

This also gives inclusions between Čech complexes:

9/11 (3/9)

[...] This also gives inclusions between Čech complexes:

Now, we apply the i^{th} homology functor.

9/11 (4/9)

[...] This also gives inclusions between Čech complexes:

Now, we apply the i^{th} homology functor.

persistence module of Čech complex of X

9/11 (5/9)

[...] This also gives inclusions between Čech complexes:

Now, we apply the i^{th} homology functor.

persistence module of Čech complex of Y

9/11 (6/9)

[...] This also gives inclusions between Čech complexes:

Now, we apply the i^{th} homology functor.

9/11 (7/9)

[...]

Hence the persistence modules $\left(H_i(\operatorname{\check{Cech}}^t(X))\right)_{t\geq 0}$ and $\left(H_i(\operatorname{\check{Cech}}^t(Y))\right)_{t\geq 0}$ are ϵ -interleaved.

Hence $d_i(\mathbb{U},\mathbb{V}) \leq \epsilon$.

9/11 (8/9)

[...]

Hence the persistence modules $\left(H_i(\operatorname{\check{Cech}}^t(X))\right)_{t\geq 0}$ and $\left(H_i(\operatorname{\check{Cech}}^t(Y))\right)_{t\geq 0}$ are ϵ -interleaved.

Hence $d_i(\mathbb{U},\mathbb{V}) \leq \epsilon$.

We use the isometry theorem: $d_{b}(\mathbb{U},\mathbb{V}) = d_{i}(\mathbb{U},\mathbb{V}) \leq \epsilon$.

9/11 (9/9)

[...]

Hence the persistence modules $\left(H_i(\operatorname{\check{Cech}}^t(X))\right)_{t\geq 0}$ and $\left(H_i(\operatorname{\check{Cech}}^t(Y))\right)_{t\geq 0}$ are ϵ -interleaved.

Hence $d_i(\mathbb{U},\mathbb{V}) \leq \epsilon$.

We use the isometry theorem: $d_{b}(\mathbb{U},\mathbb{V}) = d_{i}(\mathbb{U},\mathbb{V}) \leq \epsilon$.

Theorem (Cohen-Steiner, Edelsbrunner, Harer, 2005): Let X and Y be two subsets of \mathbb{R}^n . Consider their Čech (resp. Rips) filtrations, and the corresponding i^{th} homology persistence modules, \mathbb{U} and \mathbb{V} . Suppose that they are interval-decomposables. Then $d_b(\mathbb{U}, \mathbb{V}) \leq d_H(X, Y)$.

Summary

10/11 (1/2)

Summary

10/11 (2/2)

Conclusion

We interpreted topological noise as small bars in barcodes.

We defined a distance between barcodes that is not too sensitive to small bars.

We linked this distance with an algebraic-flavoured distance.

We deduced a satisfactory result of stability.

Homework: Exercise 53

Conclusion

We interpreted topological noise as small bars in barcodes.

We defined a distance between barcodes that is not too sensitive to small bars.

We linked this distance with an algebraic-flavoured distance.

We deduced a satisfactory result of stability.

Homework: Exercise 53

Last lesson tomorrow! Merci !