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Consider two barcodes P and Q, that is, multisets of intervals {(ai, bi), i ∈ I} of (R+)2
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A partial matching between the barcodes is a subset M ⊂ P ×Q such that
• for every p ∈ P , there exists at most one q ∈ Q such that (p, q) ∈M ,

• for every q ∈ Q, there exists at most one p ∈ P such that (p, q) ∈M .

The points p ∈ P (resp. q ∈ Q) such that there exists q ∈ Q (resp. p ∈ P ) with
(p, q) ∈M are said matched by M .

If a point p ∈ P (resp. q ∈ Q) is not matched by M , we consider that it is matched
with the singleton p =

[
p1+p2

2 , p1+p22
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(resp. q =

[
q1+q2

2 , q1+q22

]
).

The cost of a matched pair (p, q) (resp. (p, p), resp. (q, q)) is the sup norm
‖p− q‖∞ = sup{|p1 − q1|, |p2 − q2|} (resp. ‖p− p‖∞, resp. ‖q − q‖∞).

The cost of the partial matching M , denoted cost(M), is the supremum of all costs.
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Consider two barcodes P and Q, that is, multisets of intervals {(ai, bi), i ∈ I} of (R+)2

such that ai ≤ bi for all i ∈ I.

Definition: The bottleck distance between P and Q is defined as the infimum of costs
over all the partial matchings:

db (P,Q) = inf{cost(M), M is a partial matching between P and Q}.

If U and V are two decomposable persistence modules, we define their bottleneck
distance as

db (U,V) = db (Diagram (U) ,Diagram (V)) .
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Example: Let a, a′, b, b′ ∈ R+ such that a ≤ b and a′ ≤ b′. Define the barcodes
P = {[a, b]} and Q = {[a′, b′]}.

First, consider the empty matching M = ∅. The intervals are matched to their
midpoint, and the cost is∣∣∣∣(a, b)− (a+ b

2
,
a+ b

2

)∣∣∣∣
∞

=
b− a

2
,

∣∣∣∣(a′, b′)− (a′ + b′

2
,
a′ + b′

2

)∣∣∣∣
∞

=
b′ − a′

2

The total cost is cost(M) = max
{
b−a
2 , b

′−a′
2

}
.

Next, consider the matching M ′ =
{(

(a, b), (a′, b′)
)}

. The intervals are matched
together, and the cost of the pair is

|(a, b)− (a′, b′)|∞ = max{|a− a′|, |b− b′|}.

which is also cost(M ′).

These are the only two partial matchings, and we deduce the bottleneck distance

db (P,Q) = min

{
max

{
b− a

2
,
b′ − a′

2

}
,max{|a− a′|, |b− b′|}

}
.
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Example: Let a, a′, b, b′ ∈ R+ such that a ≤ b and a′ ≤ b′. Define the barcodes
P = {[a, b]} and Q = {[a′, b′]}. We have

db (P,Q) = min

{
max

{
b− a

2
,
b′ − a′

2

}
,max{|a− a′|, |b− b′|}

}
.

Example: Let a, a′, b, b′ ∈ R+ such that a ≤ b and a′ ≤ b′. Consider the
interval-modules B[a, b] and B[a′, b′].

Their barcodes are the sets P and Q of the previous example, from which we deduce

db (B[a, b],B[a′, b′]) = min

{
max

{
b− a

2
,
b′ − a′

2

}
,max{|a− a′|, |b− b′|}

}
.
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Consider two persistence modules V and W:

V t1 V t2 V t3 V t4

W t1 W t2 W t3 W t4

v
t2
t1

v
t3
t2

v
t4
t3

w
t2
t1

w
t3
t2

w
t4
t3

Given ε ≥ 0, an ε-morphism between V and W is a family of linear maps
φ = (φt : V

t →W t+ε)t∈R+ such that the following diagram commutes for every
s ≤ t ∈ R+:

V s V t

W s+ε W t+ε

φs

vts

φt

wt+εs+ε
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Let us find an ε-interleaving.
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Example: Let a, a′, b, b′ ∈ R+ such that a ≤ b and a′ ≤ b′. Consider the
interval-modules B[a, b] and B[a′, b′].

Let us find an ε-interleaving.

R+

Given ε ≥ 0, an ε-morphism between V and W is a family of linear maps
φ = (φt : V
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W s+ε W t+ε

φs
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Z/2Z

Only two possibilities for φ: • always the zero map
• always nonzero when V t and W t+ε are nonzero
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Example: Let a, a′, b, b′ ∈ R+ such that a ≤ b and a′ ≤ b′. Consider the
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Example: Let a, a′, b, b′ ∈ R+ such that a ≤ b and a′ ≤ b′. Consider the
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R+
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t
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t
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Example: Let a, a′, b, b′ ∈ R+ such that a ≤ b and a′ ≤ b′. Consider the
interval-modules B[a, b] and B[a′, b′].

Let us find an ε-interleaving.

R+

ψt+ε ◦ φt must be nonzero when [t, t+ ε] ⊂ [a, b]

φt+ε ◦ ψt must be nonzero when [t, t+ ε] ⊂ [a′, b′]

Only two possibilities for φ: • always the zero map
• always nonzero when V t and W t+ε are nonzero

We deduce that either
• |a− b| ≤ 2ε and |a′ − b′| ≤ 2ε, or
• |a− a′| ≤ ε and |b− b′| ≤ ε

Conclusion: di (B[a, b],B[a′, b′]) = min

{
max

{
b− a

2
,
b′ − a′

2

}
,max{|a− a′|, |b− b′|}

}
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Theorem (Chazal, de Silva, Glisse, Oudot, 2009): If the persistence modules U and V
are interval-decomposable, then di (U,V) = db (U,V).

Stability : di (U,V) ≥ db (U,V)

Converse stability : di (U,V) ≤ db (U,V)



7/11 (2/3)Isometry theorem

Theorem (Chazal, de Silva, Glisse, Oudot, 2009): If the persistence modules U and V
are interval-decomposable, then di (U,V) = db (U,V).

Proof: Let us write the decomposition of the persistence modules in intervals:

V '
⊕
I∈I

B[I] W '
⊕
J∈J

B[J ]

Suppose that we have a ε-partial matching M ⊂ I × J . This gives a matching of some
intervals (I, J), where I = (a, b) and J = (a′, b′), such that |a− a′| ≤ ε and
|b− b′| ≤ ε.

We can build an ε-interleaving between B[I] and B[J ], that we denote (φ(I,J), ψ(I,J)).

Some intervals I (resp. J) are not matched, in which case their length is not greater
than 2ε, and we can build an ε-interleaving with the zero persistence module. We
denote this interleaving (φ(I,0), ψ(I,0)) (resp. (φ(0,J), ψ(0,J))).

Now, let us consider the sums of all these linear maps:

φ =
⊕

(I,J) matched

φ(I,J)
⊕

I not matched

φ(I,0), ψ =
⊕

(I,J) matched

ψ(I,J)

⊕
J not matched

φ(0,J)

(φ, ψ) is an ε-interleaving di (U,V) ≤ db (U,V)



7/11 (3/3)Isometry theorem

Theorem (Chazal, de Silva, Glisse, Oudot, 2009): If the persistence modules U and V
are interval-decomposable, then di (U,V) = db (U,V).

Stability : di (U,V) ≥ db (U,V)

Converse stability : di (U,V) ≤ db (U,V)

The stability part is more difficult.

A first strategy uses the interpolation lemma, and concludes with the box lemma.

Interpolation lemma: If U and V are δ-interleaved, then there exists a family of
persistence modules (Ut)t∈[0,δ] such that U0 = U, Uδ = V and di (Us,Ut) ≤ |s− t| for
every s, t ∈ [0, δ].

Another proof builds an explicit partial matching from an interleaving (Bauer, Lesnick,
2013).
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9/11 (1/9)Back to the thickenings

Let X and Y be two subets of Rn. Define ε = dH (X,Y ) (Hausdorff distance).

We have seen that X ⊂ Y ε and Y ⊂ Xε. We even have that Xt ⊂ Y t+ε and Y t ⊂ Xt+ε

for all t ≥ 0.

By denoting j and k these inclusions, we have a commutative diagram

Xt Xt+2ε Xt+4ε

Y t+ε Y t+3ε Y t+5ε

jt jt+2ε jt+4ε

kt+ε kt+3ε
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[...] This also gives inclusions between Čech complexes:
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(Y )) Hi(Čech
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(Y ))

(jt)∗ (jt+2ε)∗ (jt+4ε)∗

(kt+ε)∗ (kt+3ε)∗
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[...] This also gives inclusions between Čech complexes:
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Hi(Čech
t+ε

(Y )) Hi(Čech
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ε-interleaving between the persistence modules
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[...]

Hence the persistence modules
(
Hi(Čech

t
(X))

)
t≥0

and
(
Hi(Čech

t
(Y ))

)
t≥0

are

ε-interleaved.

We use the isometry theorem: db (U,V) = di (U,V) ≤ ε.

U V

Theorem (Cohen-Steiner, Edelsbrunner, Harer, 2005): Let X and Y be two subsets of
Rn. Consider their Čech (resp. Rips) filtrations, and the corresponding ith homology
persistence modules, U and V. Suppose that they are interval-decomposables. Then
db (U,V) ≤ dH (X,Y ).

Hence di (U,V) ≤ ε.
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Hausdorff
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Conclusion

We interpreted topological noise as small bars in barcodes.

We defined a distance between barcodes that is not too sensitive to small bars.

We linked this distance with an algebraic-flavoured distance.

We deduced a satisfactory result of stability.

Homework: Exercise 53
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We deduced a satisfactory result of stability.

Homework: Exercise 53

Merci !

Last lesson tomorrow!


