EMAp Summer Course

Topological Data Analysis with Persistent Homology

https://raphaeltinarrage.github.io/EMAp.html

Lesson 10: Stability of persistence modules

Introduction

Let $X \subset \mathbb{R}^{n}$ finite, seen as a sample of \mathcal{M}.

Barcodes of the Čech filtration

H_{0}

H_{1}

Introduction

Let $X \subset \mathbb{R}^{n}$ finite, seen as a sample of \mathcal{M}.

Barcodes of the Čech filtration
H_{0}

H_{1}

stability

I - Distances between persistence modules

II - Isometry theorem

III - Stability theorem

Bottleneck distance

Consider two barcodes P and Q, that is, multisets of intervals $\left\{\left(a_{i}, b_{i}\right), i \in \mathcal{I}\right\}$ of $\left(\overline{\mathbb{R}^{+}}\right)^{2}$ such that $a_{i} \leq b_{i}$ for all $i \in \mathcal{I}$.

Bottleneck distance

Consider two barcodes P and Q, that is, multisets of intervals $\left\{\left(a_{i}, b_{i}\right), i \in \mathcal{I}\right\}$ of $\left(\overline{\mathbb{R}^{+}}\right)^{2}$ such that $a_{i} \leq b_{i}$ for all $i \in \mathcal{I}$.

A partial matching between the barcodes is a subset $M \subset P \times Q$ such that

- for every $p \in P$, there exists at most one $q \in Q$ such that $(p, q) \in M$,
- for every $q \in Q$, there exists at most one $p \in P$ such that $(p, q) \in M$.

The points $p \in P($ resp. $q \in Q$) such that there exists $q \in Q$ (resp. $p \in P$) with $(p, q) \in M$ are said matched by M.

Bottleneck distance

Consider two barcodes P and Q, that is, multisets of intervals $\left\{\left(a_{i}, b_{i}\right), i \in \mathcal{I}\right\}$ of $\left(\overline{\mathbb{R}^{+}}\right)^{2}$ such that $a_{i} \leq b_{i}$ for all $i \in \mathcal{I}$.

A partial matching between the barcodes is a subset $M \subset P \times Q$ such that

- for every $p \in P$, there exists at most one $q \in Q$ such that $(p, q) \in M$,
- for every $q \in Q$, there exists at most one $p \in P$ such that $(p, q) \in M$.

The points $p \in P($ resp. $q \in Q$) such that there exists $q \in Q$ (resp. $p \in P$) with $(p, q) \in M$ are said matched by M.

Bottleneck distance

Consider two barcodes P and Q, that is, multisets of intervals $\left\{\left(a_{i}, b_{i}\right), i \in \mathcal{I}\right\}$ of $\left(\overline{\mathbb{R}^{+}}\right)^{2}$ such that $a_{i} \leq b_{i}$ for all $i \in \mathcal{I}$.

A partial matching between the barcodes is a subset $M \subset P \times Q$ such that

- for every $p \in P$, there exists at most one $q \in Q$ such that $(p, q) \in M$,
- for every $q \in Q$, there exists at most one $p \in P$ such that $(p, q) \in M$.

The points $p \in P($ resp. $q \in Q$) such that there exists $q \in Q$ (resp. $p \in P$) with $(p, q) \in M$ are said matched by M.

Bottleneck distance

Consider two barcodes P and Q, that is, multisets of intervals $\left\{\left(a_{i}, b_{i}\right), i \in \mathcal{I}\right\}$ of $\left(\overline{\mathbb{R}^{+}}\right)^{2}$ such that $a_{i} \leq b_{i}$ for all $i \in \mathcal{I}$.

A partial matching between the barcodes is a subset $M \subset P \times Q$ such that

- for every $p \in P$, there exists at most one $q \in Q$ such that $(p, q) \in M$,
- for every $q \in Q$, there exists at most one $p \in P$ such that $(p, q) \in M$.

The points $p \in P($ resp. $q \in Q$) such that there exists $q \in Q$ (resp. $p \in P$) with $(p, q) \in M$ are said matched by M.

Bottleneck distance

Consider two barcodes P and Q, that is, multisets of intervals $\left\{\left(a_{i}, b_{i}\right), i \in \mathcal{I}\right\}$ of $\left(\overline{\mathbb{R}^{+}}\right)^{2}$ such that $a_{i} \leq b_{i}$ for all $i \in \mathcal{I}$.

A partial matching between the barcodes is a subset $M \subset P \times Q$ such that

- for every $p \in P$, there exists at most one $q \in Q$ such that $(p, q) \in M$,
- for every $q \in Q$, there exists at most one $p \in P$ such that $(p, q) \in M$.

The points $p \in P($ resp. $q \in Q$) such that there exists $q \in Q$ (resp. $p \in P$) with $(p, q) \in M$ are said matched by M.

If a point $p \in P($ resp. $q \in Q)$ is not matched by M, we consider that it is matched with the singleton $\bar{p}=\left[\frac{p_{1}+p_{2}}{2}, \frac{p_{1}+p_{2}}{2}\right]\left(\operatorname{resp} . \bar{q}=\left[\frac{q_{1}+q_{2}}{2}, \frac{q_{1}+q_{2}}{2}\right]\right)$.

Bottleneck distance

Consider two barcodes P and Q, that is, multisets of intervals $\left\{\left(a_{i}, b_{i}\right), i \in \mathcal{I}\right\}$ of $\left(\overline{\mathbb{R}^{+}}\right)^{2}$ such that $a_{i} \leq b_{i}$ for all $i \in \mathcal{I}$.

A partial matching between the barcodes is a subset $M \subset P \times Q$ such that

- for every $p \in P$, there exists at most one $q \in Q$ such that $(p, q) \in M$,
- for every $q \in Q$, there exists at most one $p \in P$ such that $(p, q) \in M$.

The points $p \in P($ resp. $q \in Q$) such that there exists $q \in Q$ (resp. $p \in P$) with $(p, q) \in M$ are said matched by M.

If a point $p \in P($ resp. $q \in Q)$ is not matched by M, we consider that it is matched with the singleton $\bar{p}=\left[\frac{p_{1}+p_{2}}{2}, \frac{p_{1}+p_{2}}{2}\right]\left(\right.$ resp. $\left.\bar{q}=\left[\frac{q_{1}+q_{2}}{2}, \frac{q_{1}+q_{2}}{2}\right]\right)$.

The cost of a matched pair (p, q) (resp. (p, \bar{p}), resp. $(\bar{q}, q))$ is the sup norm $\|p-q\|_{\infty}=\sup \left\{\left|p_{1}-q_{1}\right|,\left|p_{2}-q_{2}\right|\right\}\left(\right.$ resp. $\|p-\bar{p}\|_{\infty}$, resp. $\left.\|\bar{q}-q\|_{\infty}\right)$.

The cost of the partial matching M, denoted $\operatorname{cost}(M)$, is the supremum of all costs.

Bottleneck distance

Consider two barcodes P and Q, that is, multisets of intervals $\left\{\left(a_{i}, b_{i}\right), i \in \mathcal{I}\right\}$ of $\left(\overline{\mathbb{R}^{+}}\right)^{2}$ such that $a_{i} \leq b_{i}$ for all $i \in \mathcal{I}$.

Definition: The bottleck distance between P and Q is defined as the infimum of costs over all the partial matchings:

$$
\mathrm{d}_{\mathrm{b}}(P, Q)=\inf \{\operatorname{cost}(M), M \text { is a partial matching between } P \text { and } Q\} .
$$

Bottleneck distance

Consider two barcodes P and Q, that is, multisets of intervals $\left\{\left(a_{i}, b_{i}\right), i \in \mathcal{I}\right\}$ of $\left(\overline{\mathbb{R}^{+}}\right)^{2}$ such that $a_{i} \leq b_{i}$ for all $i \in \mathcal{I}$.

Definition: The bottleck distance between P and Q is defined as the infimum of costs over all the partial matchings:

$$
\mathrm{d}_{\mathrm{b}}(P, Q)=\inf \{\operatorname{cost}(M), M \text { is a partial matching between } P \text { and } Q\} .
$$

Bottleneck distance

Consider two barcodes P and Q, that is, multisets of intervals $\left\{\left(a_{i}, b_{i}\right), i \in \mathcal{I}\right\}$ of $\left(\overline{\mathbb{R}^{+}}\right)^{2}$ such that $a_{i} \leq b_{i}$ for all $i \in \mathcal{I}$.

Definition: The bottleck distance between P and Q is defined as the infimum of costs over all the partial matchings:

$$
\mathrm{d}_{\mathrm{b}}(P, Q)=\inf \{\operatorname{cost}(M), M \text { is a partial matching between } P \text { and } Q\} .
$$

If \mathbb{U} and \mathbb{V} are two decomposable persistence modules, we define their bottleneck distance as

$$
\mathrm{d}_{\mathrm{b}}(\mathbb{U}, \mathbb{V})=\mathrm{d}_{\mathrm{b}}(\operatorname{Diagram}(\mathbb{U}), \operatorname{Diagram}(\mathbb{V}))
$$

Bottleneck distance

Example: Let $a, a^{\prime}, b, b^{\prime} \in \mathbb{R}^{+}$such that $a \leq b$ and $a^{\prime} \leq b^{\prime}$. Define the barcodes $P=\{[a, b]\}$ and $Q=\left\{\left[a^{\prime}, b^{\prime}\right]\right\}$.
First, consider the empty matching $M=\emptyset$. The intervals are matched to their midpoint, and the cost is
$\left|(a, b)-\left(\frac{a+b}{2}, \frac{a+b}{2}\right)\right|_{\infty}=\frac{b-a}{2}, \quad\left|\left(a^{\prime}, b^{\prime}\right)-\left(\frac{a^{\prime}+b^{\prime}}{2}, \frac{a^{\prime}+b^{\prime}}{2}\right)\right|_{\infty}=\frac{b^{\prime}-a^{\prime}}{2}$
The total cost is $\operatorname{cost}(M)=\max \left\{\frac{b-a}{2}, \frac{b^{\prime}-a^{\prime}}{2}\right\}$.
Next, consider the matching $M^{\prime}=\left\{\left((a, b),\left(a^{\prime}, b^{\prime}\right)\right)\right\}$. The intervals are matched together, and the cost of the pair is

$$
\left|(a, b)-\left(a^{\prime}, b^{\prime}\right)\right|_{\infty}=\max \left\{\left|a-a^{\prime}\right|,\left|b-b^{\prime}\right|\right\}
$$

which is also $\operatorname{cost}\left(M^{\prime}\right)$.
These are the only two partial matchings, and we deduce the bottleneck distance

$$
\mathrm{d}_{\mathrm{b}}(P, Q)=\min \left\{\max \left\{\frac{b-a}{2}, \frac{b^{\prime}-a^{\prime}}{2}\right\}, \max \left\{\left|a-a^{\prime}\right|,\left|b-b^{\prime}\right|\right\}\right\}
$$

Bottleneck distance

Example: Let $a, a^{\prime}, b, b^{\prime} \in \mathbb{R}^{+}$such that $a \leq b$ and $a^{\prime} \leq b^{\prime}$. Define the barcodes $P=\{[a, b]\}$ and $Q=\left\{\left[a^{\prime}, b^{\prime}\right]\right\}$. We have

$$
\mathrm{d}_{\mathrm{b}}(P, Q)=\min \left\{\max \left\{\frac{b-a}{2}, \frac{b^{\prime}-a^{\prime}}{2}\right\}, \max \left\{\left|a-a^{\prime}\right|,\left|b-b^{\prime}\right|\right\}\right\} .
$$

Example: Let $a, a^{\prime}, b, b^{\prime} \in \mathbb{R}^{+}$such that $a \leq b$ and $a^{\prime} \leq b^{\prime}$. Consider the interval-modules $\mathbb{B}[a, b]$ and $\mathbb{B}\left[a^{\prime}, b^{\prime}\right]$.

Their barcodes are the sets P and Q of the previous example, from which we deduce

$$
\mathrm{d}_{\mathrm{b}}\left(\mathbb{B}[a, b], \mathbb{B}\left[a^{\prime}, b^{\prime}\right]\right)=\min \left\{\max \left\{\frac{b-a}{2}, \frac{b^{\prime}-a^{\prime}}{2}\right\}, \max \left\{\left|a-a^{\prime}\right|,\left|b-b^{\prime}\right|\right\}\right\} .
$$

Interleaving distance

Consider two persistence modules \mathbb{V} and \mathbb{W} :

Given $\epsilon \geq 0$, an ϵ-morphism between \mathbb{V} and \mathbb{W} is a family of linear maps $\phi=\left(\phi_{t}: V^{t} \rightarrow W^{t+\epsilon}\right)_{t \in \mathbb{R}^{+}}$such that the following diagram commutes for every $s \leq t \in \mathbb{R}^{+}:$

Interleaving distance

Consider two persistence modules \mathbb{V} and \mathbb{W} :

Given $\epsilon \geq 0$, an ϵ-morphism between \mathbb{V} and \mathbb{W} is a family of linear maps $\phi=\left(\phi_{t}: V^{t} \rightarrow W^{t+\epsilon}\right)_{t \in \mathbb{R}^{+}}$such that the following diagram commutes for every $s \leq t \in \mathbb{R}^{+}$:

An ϵ-interleaving between \mathbb{V} and \mathbb{W} is a pair of ϵ-morphisms $\left(\phi_{t}: V^{t} \rightarrow W^{t+\epsilon}\right)_{t \in \mathbb{R}^{+}}$ and $\left(\psi_{t}: W^{t} \rightarrow V^{t+\epsilon}\right)_{t \in \mathbb{R}^{+}}$such that the following diagrams commute for every $t \in \mathbb{R}^{+}$:

Interleaving distance

Consider two persistence modules \mathbb{V} and \mathbb{W} :

Given $\epsilon \geq 0$, an ϵ-morphism between \mathbb{V} and \mathbb{W} is a family of linear maps $\phi=\left(\phi_{t}: V^{t} \rightarrow W^{t+\epsilon}\right)_{t \in \mathbb{R}^{+}}$such that the following diagram commutes for every $s \leq t \in \mathbb{R}^{+}$:

An ϵ-interleaving between \mathbb{V} and \mathbb{W} is a pair of ϵ-morphisms $\left(\phi_{t}: V^{t} \rightarrow W^{t+\epsilon}\right)_{t \in \mathbb{R}^{+}}$ and $\left(\psi_{t}: W^{t} \rightarrow V^{t+\epsilon}\right)_{t \in \mathbb{R}^{+}}$such that the following diagrams commute for every $t \in \mathbb{R}^{+}$:

The interleaving distance is: $\quad \mathrm{d}_{\mathbf{i}}(\mathbb{V}, \mathbb{W})=\inf \{\epsilon \geq 0, \mathbb{V}$ and \mathbb{W} are ϵ-interleaved $\}$.

Interleaving distance

Example: Let $a, a^{\prime}, b, b^{\prime} \in \mathbb{R}^{+}$such that $a \leq b$ and $a^{\prime} \leq b^{\prime}$. Consider the interval-modules $\mathbb{B}[a, b]$ and $\mathbb{B}\left[a^{\prime}, b^{\prime}\right]$.

Let us find an ϵ-interleaving.

Interleaving distance

Example: Let $a, a^{\prime}, b, b^{\prime} \in \mathbb{R}^{+}$such that $a \leq b$ and $a^{\prime} \leq b^{\prime}$. Consider the interval-modules $\mathbb{B}[a, b]$ and $\mathbb{B}\left[a^{\prime}, b^{\prime}\right]$.

Let us find an ϵ-interleaving.

Given $\epsilon \geq 0$, an ϵ-morphism between \mathbb{V} and \mathbb{W} is a family of linear maps $\phi=\left(\phi_{t}: V^{t} \rightarrow W^{t+\epsilon}\right)_{t \in \mathbb{R}^{+}}$such that the following diagram commutes for every $s \leq t \in \mathbb{R}^{+}$:

Interleaving distance

Example: Let $a, a^{\prime}, b, b^{\prime} \in \mathbb{R}^{+}$such that $a \leq b$ and $a^{\prime} \leq b^{\prime}$. Consider the interval-modules $\mathbb{B}[a, b]$ and $\mathbb{B}\left[a^{\prime}, b^{\prime}\right]$.

Let us find an ϵ-interleaving.

Given $\epsilon \geq 0$, an ϵ-morphism between \mathbb{V} and \mathbb{W} is a family of linear maps $\phi=\left(\phi_{t}: V^{t} \rightarrow W^{t+\epsilon}\right)_{t \in \mathbb{R}^{+}}$such that the following diagram commutes for every $s \leq t \in \mathbb{R}^{+}$:

Interleaving distance

Example: Let $a, a^{\prime}, b, b^{\prime} \in \mathbb{R}^{+}$such that $a \leq b$ and $a^{\prime} \leq b^{\prime}$. Consider the interval-modules $\mathbb{B}[a, b]$ and $\mathbb{B}\left[a^{\prime}, b^{\prime}\right]$.

Let us find an ϵ-interleaving.

Given $\epsilon \geq 0$, an ϵ-morphism between \mathbb{V} and \mathbb{W} is a family of linear maps $\phi=\left(\phi_{t}: V^{t} \rightarrow W^{t+\epsilon}\right)_{t \in \mathbb{R}^{+}}$such that the following diagram commutes for every $s \leq t \in \mathbb{R}^{+}$:

Interleaving distance

Example: Let $a, a^{\prime}, b, b^{\prime} \in \mathbb{R}^{+}$such that $a \leq b$ and $a^{\prime} \leq b^{\prime}$. Consider the interval-modules $\mathbb{B}[a, b]$ and $\mathbb{B}\left[a^{\prime}, b^{\prime}\right]$.

Let us find an ϵ-interleaving.

Given $\epsilon \geq 0$, an ϵ-morphism between \mathbb{V} and \mathbb{W} is a family of linear maps $\phi=\left(\phi_{t}: V^{t} \rightarrow W^{t+\epsilon}\right)_{t \in \mathbb{R}^{+}}$such that the following diagram commutes for every $s \leq t \in \mathbb{R}^{+}$:

\rightarrow Only two possibilities for ϕ :

- always the zero map
- always nonzero when V^{t} and $W^{t+\epsilon}$ are nonzero

Interleaving distance

Example: Let $a, a^{\prime}, b, b^{\prime} \in \mathbb{R}^{+}$such that $a \leq b$ and $a^{\prime} \leq b^{\prime}$. Consider the interval-modules $\mathbb{B}[a, b]$ and $\mathbb{B}\left[a^{\prime}, b^{\prime}\right]$.

Let us find an ϵ-interleaving.

An ϵ-interleaving between \mathbb{V} and \mathbb{W} is a pair of ϵ-morphisms $\left(\phi_{t}: V^{t} \rightarrow W^{t+\epsilon}\right)_{t \in \mathbb{R}^{+}}$ and $\left(\psi_{t}: W^{t} \rightarrow V^{t+\epsilon}\right)_{t \in \mathbb{R}^{+}}$such that the following diagrams commute for every $t \in \mathbb{R}^{+}$:

$\longrightarrow \psi_{t+\epsilon} \circ \phi_{t}$ must be nonzero when $[t, t+\epsilon] \subset[a, b]$

Interleaving distance

Example: Let $a, a^{\prime}, b, b^{\prime} \in \mathbb{R}^{+}$such that $a \leq b$ and $a^{\prime} \leq b^{\prime}$. Consider the interval-modules $\mathbb{B}[a, b]$ and $\mathbb{B}\left[a^{\prime}, b^{\prime}\right]$.

Let us find an ϵ-interleaving.

An ϵ-interleaving between \mathbb{V} and \mathbb{W} is a pair of ϵ-morphisms $\left(\phi_{t}: V^{t} \rightarrow W^{t+\epsilon}\right)_{t \in \mathbb{R}^{+}}$ and $\left(\psi_{t}: W^{t} \rightarrow V^{t+\epsilon}\right)_{t \in \mathbb{R}^{+}}$such that the following diagrams commute for every $t \in \mathbb{R}^{+}$:

$\longrightarrow \psi_{t+\epsilon} \circ \phi_{t}$ must be nonzero when $[t, t+\epsilon] \subset[a, b]$

Interleaving distance

Example: Let $a, a^{\prime}, b, b^{\prime} \in \mathbb{R}^{+}$such that $a \leq b$ and $a^{\prime} \leq b^{\prime}$. Consider the interval-modules $\mathbb{B}[a, b]$ and $\mathbb{B}\left[a^{\prime}, b^{\prime}\right]$.

Let us find an ϵ-interleaving.

An ϵ-interleaving between \mathbb{V} and \mathbb{W} is a pair of ϵ-morphisms $\left(\phi_{t}: V^{t} \rightarrow W^{t+\epsilon}\right)_{t \in \mathbb{R}^{+}}$ and $\left(\psi_{t}: W^{t} \rightarrow V^{t+\epsilon}\right)_{t \in \mathbb{R}^{+}}$such that the following diagrams commute for every $t \in \mathbb{R}^{+}$:

$\longrightarrow \psi_{t+\epsilon} \circ \phi_{t}$ must be nonzero when $[t, t+\epsilon] \subset[a, b]$ $\phi_{t+\epsilon} \circ \psi_{t}$ must be nonzero when $[t, t+\epsilon] \subset\left[a^{\prime}, b^{\prime}\right]$

Interleaving distance

Example: Let $a, a^{\prime}, b, b^{\prime} \in \mathbb{R}^{+}$such that $a \leq b$ and $a^{\prime} \leq b^{\prime}$. Consider the interval-modules $\mathbb{B}[a, b]$ and $\mathbb{B}\left[a^{\prime}, b^{\prime}\right]$.

Let us find an ϵ-interleaving.
\longrightarrow Only two possibilities for $\phi: \bullet$ always the zero map

- always nonzero when V^{t} and $W^{t+\epsilon}$ are nonzero
$\longrightarrow \psi_{t+\epsilon} \circ \phi_{t}$ must be nonzero when $[t, t+\epsilon] \subset[a, b]$ $\phi_{t+\epsilon} \circ \psi_{t}$ must be nonzero when $[t, t+\epsilon] \subset\left[a^{\prime}, b^{\prime}\right]$

We deduce that either

- $|a-b| \leq 2 \epsilon$ and $\left|a^{\prime}-b^{\prime}\right| \leq 2 \epsilon$, or
- $\left|a-a^{\prime}\right| \leq \epsilon$ and $\left|b-b^{\prime}\right| \leq \epsilon$

Conclusion: $\quad \mathrm{d}_{\mathrm{i}}\left(\mathbb{B}[a, b], \mathbb{B}\left[a^{\prime}, b^{\prime}\right]\right)=\min \left\{\max \left\{\frac{b-a}{2}, \frac{b^{\prime}-a^{\prime}}{2}\right\}, \max \left\{\left|a-a^{\prime}\right|,\left|b-b^{\prime}\right|\right\}\right\}$

I - Distances between persistence modules

II - Isometry theorem

III - Stability theorem

Isometry theorem

Theorem (Chazal, de Silva, Glisse, Oudot, 2009): If the persistence modules \mathbb{U} and \mathbb{V} are interval-decomposable, then $\mathrm{d}_{\mathrm{i}}(\mathbb{U}, \mathbb{V})=\mathrm{d}_{\mathrm{b}}(\mathbb{U}, \mathbb{V})$.

Isometry theorem

Theorem (Chazal, de Silva, Glisse, Oudot, 2009): If the persistence modules \mathbb{U} and \mathbb{V} are interval-decomposable, then $d_{i}(\mathbb{U}, \mathbb{V})=d_{b}(\mathbb{U}, \mathbb{V})$.
Proof: Let us write the decomposition of the persistence modules in intervals:

$$
\mathbb{V} \simeq \bigoplus_{I \in \mathcal{I}} \mathbb{B}[I]
$$

$$
\mathbb{W} \simeq \bigoplus_{J \in \mathcal{J}} \mathbb{B}[J]
$$

Suppose that we have a ϵ-partial matching $M \subset \mathcal{I} \times \mathcal{J}$. This gives a matching of some intervals (I, J), where $I=(a, b)$ and $J=\left(a^{\prime}, b^{\prime}\right)$, such that $\left|a-a^{\prime}\right| \leq \epsilon$ and $\left|b-b^{\prime}\right| \leq \epsilon$.

We can build an ϵ-interleaving between $\mathbb{B}[I]$ and $\mathbb{B}[J]$, that we denote $\left(\phi_{(I, J)}, \psi_{(I, J)}\right)$.
Some intervals I (resp. J) are not matched, in which case their length is not greater than 2ϵ, and we can build an ϵ-interleaving with the zero persistence module. We denote this interleaving $\left(\phi_{(I, 0)}, \psi_{(I, 0)}\right)$ (resp. $\left(\phi_{(0, J)}, \psi_{(0, J)}\right)$).
Now, let us consider the sums of all these linear maps:

$$
\bar{\phi}=\bigoplus_{(I, J) \text { matched }} \phi_{(I, J)} \bigoplus_{I \text { not matched }} \phi_{(I, 0)}, \quad \bar{\psi}=\bigoplus_{(I, J) \text { matched }} \psi_{(I, J)} \bigoplus_{J \text { not matched }} \phi_{(0, J)}
$$

$$
\longrightarrow(\bar{\phi}, \bar{\psi}) \text { is an } \epsilon \text {-interleaving } \longrightarrow \mathrm{d}_{\mathrm{i}}(\mathbb{U}, \mathbb{V}) \leq \mathrm{d}_{\mathrm{b}}(\mathbb{U}, \mathbb{V})
$$

Isometry theorem

Theorem (Chazal, de Silva, Glisse, Oudot, 2009): If the persistence modules \mathbb{U} and \mathbb{V} are interval-decomposable, then $\mathrm{d}_{\mathrm{i}}(\mathbb{U}, \mathbb{V})=\mathrm{d}_{\mathrm{b}}(\mathbb{U}, \mathbb{V})$.

```
\(\rightarrow\) Stability:
    \(\mathrm{d}_{\mathrm{i}}(\mathbb{U}, \mathbb{V}) \geq \mathrm{d}_{\mathrm{b}}(\mathbb{U}, \mathbb{V})\)
\(\longrightarrow\) Converse stability: \(\mathrm{d}_{\mathrm{i}}(\mathbb{U}, \mathbb{V}) \leq \mathrm{d}_{\mathrm{b}}(\mathbb{U}, \mathbb{V})\)
```

The stability part is more difficult.

A first strategy uses the interpolation lemma, and concludes with the box lemma.
Interpolation lemma: If \mathbb{U} and \mathbb{V} are δ-interleaved, then there exists a family of persistence modules $\left(\mathbb{U}_{t}\right)_{t \in[0, \delta]}$ such that $\mathbb{U}_{0}=\mathbb{U}, \mathbb{U}_{\delta}=\mathbb{V}$ and $\mathrm{d}_{\mathrm{i}}\left(\mathbb{U}_{s}, \mathbb{U}_{t}\right) \leq|s-t|$ for every $s, t \in[0, \delta]$.

Another proof builds an explicit partial matching from an interleaving (Bauer, Lesnick, 2013).

I - Distances between persistence modules

II - Isometry theorem

III - Stability theorem

Back to the thickenings

Let X and Y be two subets of \mathbb{R}^{n}. Define $\epsilon=\mathrm{d}_{\mathrm{H}}(X, Y)$ (Hausdorff distance).
We have seen that $X \subset Y^{\epsilon}$ and $Y \subset X^{\epsilon}$. We even have that $X^{t} \subset Y^{t+\epsilon}$ and $Y^{t} \subset X^{t+\epsilon}$ for all $t \geq 0$.

By denoting j and k these inclusions, we have a commutative diagram

Back to the thickenings

Let X and Y be two subets of \mathbb{R}^{n}. Define $\epsilon=\mathrm{d}_{\mathrm{H}}(X, Y)$ (Hausdorff distance).
We have seen that $X \subset Y^{\epsilon}$ and $Y \subset X^{\epsilon}$. We even have that $X^{t} \subset Y^{t+\epsilon}$ and $Y^{t} \subset X^{t+\epsilon}$ for all $t \geq 0$.
By denoting j and k these inclusions, we have a commutative diagram

This also gives inclusions between Čech complexes:

Back to the thickenings

[...] This also gives inclusions between Čech complexes:

Now, we apply the $i^{\text {th }}$ homology functor.

Back to the thickenings

[...] This also gives inclusions between Čech complexes:

Now, we apply the $i^{\text {th }}$ homology functor.

$$
\begin{aligned}
& H_{i}\left(\text { Čech }^{t}(X)\right) \longrightarrow H_{i}\left(\text { С̌ech }^{t+2 \epsilon}(X)\right) \longrightarrow H_{i}\left(\text { Cech }^{t+4 \epsilon}(X)\right) \\
& \left(j_{t}\right)_{*} \\
& \longrightarrow H_{i}\left(\operatorname{Cech}^{t+\epsilon}(Y)\right) \longrightarrow H_{i}\left(\check{\operatorname{Cech}}^{t+3 \epsilon}(Y)\right) \longrightarrow H_{i}\left(\operatorname{Čech}^{t+5 \epsilon}(Y)\right)
\end{aligned}
$$

\rightarrow persistence module of Čech complex of X

Back to the thickenings

[...] This also gives inclusions between Čech complexes:

Now, we apply the $i^{\text {th }}$ homology functor.

$$
H_{i}\left(\operatorname{Cech}^{t}(X)\right) \longrightarrow H_{i}\left(\operatorname{Cech}^{t+2 \epsilon}(X)\right) \longrightarrow H_{i}\left(\operatorname{Čch}^{t+4 \epsilon}(X)\right) \cdots H^{\left(k_{t+\epsilon}\right)_{*}}
$$

\rightarrow persistence module of Čech complex of X
\rightarrow persistence module of Čech complex of Y

Back to the thickenings

[...] This also gives inclusions between Čech complexes:

Now, we apply the $i^{\text {th }}$ homology functor.

persistence module of Čech complex of X
persistence module of Čech complex of Y
ϵ-interleaving between the persistence modules

Back to the thickenings

[...]
Hence the persistence modules $\left(H_{i}\left(\text { Cech }^{t}(X)\right)\right)_{t \geq 0}$ and $\left(H_{i}\left(\text { Čech }^{t}(Y)\right)\right)_{t \geq 0}$ are ϵ-interleaved.

Back to the thickenings

[...]
Hence the persistence modules $\left(H_{i}\left(\text { Čech }^{t}(X)\right)\right)_{t \geq 0}$ and $\left(H_{i}\left(\text { Čech }^{t}(Y)\right)\right)_{t \geq 0}$ are ϵ-interleaved.

Hence $\mathrm{d}_{\mathrm{i}}(\mathbb{U}, \mathbb{V}) \leq \epsilon$.

We use the isometry theorem: $\mathrm{d}_{\mathrm{b}}(\mathbb{U}, \mathbb{V})=\mathrm{d}_{\mathrm{i}}(\mathbb{U}, \mathbb{V}) \leq \epsilon$.

Back to the thickenings

[...]
Hence the persistence modules $\left(H_{i}\left(\text { Cech }^{t}(X)\right)\right)_{t \geq 0}$ and $\left(H_{i}\left(\text { Čech }^{t}(Y)\right)\right)_{t \geq 0}$ are ϵ-interleaved.

Hence $\mathrm{d}_{\mathrm{i}}(\mathbb{U}, \mathbb{V}) \leq \epsilon$.

We use the isometry theorem: $\mathrm{d}_{\mathrm{b}}(\mathbb{U}, \mathbb{V})=\mathrm{d}_{\mathrm{i}}(\mathbb{U}, \mathbb{V}) \leq \epsilon$.

Theorem (Cohen-Steiner, Edelsbrunner, Harer, 2005): Let X and Y be two subsets of \mathbb{R}^{n}. Consider their Čech (resp. Rips) filtrations, and the corresponding $i^{\text {th }}$ homology persistence modules, \mathbb{U} and \mathbb{V}. Suppose that they are interval-decomposables. Then $\mathrm{d}_{\mathrm{b}}(\mathbb{U}, \mathbb{V}) \leq \mathrm{d}_{\mathrm{H}}(X, Y)$.

Summary

Summary

10/11 (2/2)

Conclusion

We interpreted topological noise as small bars in barcodes.
We defined a distance between barcodes that is not too sensitive to small bars.
We linked this distance with an algebraic-flavoured distance.
We deduced a satisfactory result of stability.

Homework: Exercise 53

Conclusion

We interpreted topological noise as small bars in barcodes.
We defined a distance between barcodes that is not too sensitive to small bars.
We linked this distance with an algebraic-flavoured distance.
We deduced a satisfactory result of stability.

Homework: Exercise 53

Last lesson tomorrow!
Merci!

