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I - Distances between persistence modules



Bottleneck distance 4/11 (1/12)

Consider two barcodes P and @, that is, multisets of intervals {(a;, b;),i € Z} of (R+)?
such that a; < b; for all 7 € 7.




Bottleneck distance 4/11 (2/12)

Consider two barcodes P and @, that is, multisets of intervals {(a;, b;),i € Z} of (R+)?
such that a; < b; for all 7 € 7.
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A partial matching between the barcodes is a subset M C P x () such that
e for every p € P, there exists at most one ¢ € ) such that (p,q) € M,

e for every g € @, there exists at most one p € P such that (p,q) € M.

The points p € P (resp. q € Q) such that there exists ¢ € @) (resp. p € P) with
(p,q) € M are said matched by M.
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Consider two barcodes P and @, that is, multisets of intervals {(a;, b;),i € Z} of (R+)?
such that a; < b; for all 7 € 7.
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A partial matching between the barcodes is a subset M C P x () such that
e for every p € P, there exists at most one ¢ € ) such that (p,q) € M,

e for every g € @, there exists at most one p € P such that (p,q) € M.

The points p € P (resp. q € Q) such that there exists ¢ € @) (resp. p € P) with
(p,q) € M are said matched by M.
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Consider two barcodes P and @, that is, multisets of intervals {(a;, b;),i € Z} of (R+)?
such that a; < b; for all 7 € 7.
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A partial matching between the barcodes is a subset M C P x () such that
e for every p € P, there exists at most one ¢ € ) such that (p,q) € M,

e for every g € @, there exists at most one p € P such that (p,q) € M.

The points p € P (resp. q € Q) such that there exists ¢ € @) (resp. p € P) with
(p,q) € M are said matched by M.
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Consider two barcodes P and @, that is, multisets of intervals {(a;, b;),i € Z} of (R+)?
such that a; < b; for all 7 € 7.
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A partial matching between the barcodes is a subset M C P x () such that
e for every p € P, there exists at most one ¢ € ) such that (p,q) € M,

e for every g € @, there exists at most one p € P such that (p,q) € M.

The points p € P (resp. q € Q) such that there exists ¢ € @) (resp. p € P) with
(p,q) € M are said matched by M.
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Consider two barcodes P and @, that is, multisets of intervals {(a;, b;),i € Z} of (R+)?
such that a; < b; for all 7 € 7.
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A partial matching between the barcodes is a subset M C P x () such that
e for every p € P, there exists at most one ¢ € ) such that (p,q) € M,

e for every g € @, there exists at most one p € P such that (p,q) € M.

The points p € P (resp. q € Q) such that there exists ¢ € @) (resp. p € P) with
(p,q) € M are said matched by M.

If a point p € P (resp. ¢ € Q) is not matched by M, we consider that it is matched

with the singleton p = [plgm : pl;pﬂ (resp. ¢ = [‘h;@, ql;qﬂ).




Bottleneck distance 4/11 (7/12)

Consider two barcodes P and @, that is, multisets of intervals {(a;, b;),i € Z} of (R+)?
such that a; < b; for all 7 € 7.
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A partial matching between the barcodes is a subset M C P x () such that
e for every p € P, there exists at most one ¢ € ) such that (p,q) € M,

e for every g € @, there exists at most one p € P such that (p,q) € M.

The points p € P (resp. q € Q) such that there exists ¢ € @) (resp. p € P) with
(p,q) € M are said matched by M.

If a point p € P (resp. ¢ € Q) is not matched by M, we consider that it is matched

with the singleton p = [plgm : pl;pﬂ (resp. ¢ = [‘h;‘”, ql;qﬂ).

The cost of a matched pair (p, q) (resp. (p,p), resp. (¢, q)) is the sup norm
1P = gqllc = sup{|p1 — a1|, [p2 — g2} (resp. |[p — Dl resp. (|7 — qllo)-

The cost of the partial matching M, denoted cost(M), is the supremum of all costs.
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Consider two barcodes P and @, that is, multisets of intervals {(a;, b;),i € Z} of (R+)?

such that a; < b; for all 7 € 7.
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Definition: The bottleck distance between P and () is defined as the infimum of costs
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over all the partial matchings:
dp (P, Q) = inf{cost(M), M is a partial matching between P and Q}.
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Consider two barcodes P and @, that is, multisets of intervals {(a;, b;),i € Z} of (R+)?

such that a; < b; for all 7 € 7.
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over all the partial matchings:
dp (P, Q) = inf{cost(M), M is a partial matching between P and Q}.
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Bottleneck distance 4/11 (10/12)

Consider two barcodes P and @, that is, multisets of intervals {(a;, b;),i € Z} of (R+)?

such that a; < b; for all 7 € 7.
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Definition: The bottleck distance between P and () is defined as the infimum of costs

over all the partial matchings:
dp (P, Q) = inf{cost(M), M is a partial matching between P and Q}.
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If U and V are two decomposable persistence modules, we define their bottleneck

distance as
dy (U, V) = dy, (Diagram (U) , Diagram (V))



Bottleneck distance 4/11 (11/12)

Example: Let a,a’,b,b’ € R such that a < b and o’ < b’. Define the barcodes
P ={[a,b]} and Q = {[a’, V'] }.

First, consider the empty matching M = (). The intervals are matched to their
midpoint, and the cost is

a+b a+b b—a
(m@—( 2 ' 2 Nw_'z ’

The total cost is cost(M) = max { boa, b/;“/ }

/ / / / / /
)y (@ Fb0 a’+b b —a
@) - ()| =55

Next, consider the matching M’ = {((a,b), (a’,V’)) }. The intervals are matched
together, and the cost of the pair is

[(a,b) — (a, ') = max{|a —a'l,|b—b'[}.
which is also cost(M").
These are the only two partial matchings, and we deduce the bottleneck distance

b—a b —ad
2 2

dy, (P,Q):min{max{ },max{|a—a’|,|b—b’|}}.



Bottleneck distance 4/11 (12/12)

Example: Let a,a’,b,b’ € R such that a < b and a’ < ¥’. Define the barcodes
P ={la,b]} and Q = {[d’,b’]}. We have

b—a b —a

db(P,Q):min{max{ R },max{|a—a/\,\b—b’\}}.

Example: Let a,a’,b,b’ € RT such that a < b and o’ < b’. Consider the
interval-modules B[a, b] and B[a’, b'].

Their barcodes are the sets P and (Q of the previous example, from which we deduce

b—a b —ad

db(IB%[a,b],IB%[a’,b’]):min{max{ —, },max{\a,—a’|,|b—b’|}}.




Interleaving distance

Consider two persistence modules V and W:
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Given € > 0, an e-morphism between V and W is a family of linear maps
¢ = (pp: VI — W), g+ such that the following diagram commutes for every

s<teRT:

t
v

Ve — 2 V!

\L¢s \L¢t
wt—l—e

s+e ste t+e
Wsre —— W



Interleaving distance 5/11 (2/12)

Consider two persistence modules V and W:
to t3 ty

¢ Ut ¢ Ut ¢
———————— > Vi > V2 > Vs

t Yt t Wi t Wtg t
———————— » W > W2 > W » W oo

Given € > 0, an e-morphism between V and W is a family of linear maps

¢ = (pp: VI — W), g+ such that the following diagram commutes for every
s<tE¢€ RT: ot
Ve

\L¢s \L¢t
wt—l—e

s+e ste t+e
W —— W

An e-interleaving between V and W is a pair of e-morphisms (¢;: Vi — W€, p+

and (Y : Wt — Vi€, cp+ such that the following diagrams commute for every t € R*:
’Ut+2€

Vt t y Vt—|—2e Vt—l—e

wt—|—2€

Wite W t s iR




Interleaving distance 5/11 (3/12)

Consider two persistence modules V and W:
to t3 ty

¢ Ut ¢ Ut ¢
———————— > Vi > V2 > Vs

t Yty t Wta t Yta t
———————— » W > W2 > W » W oo

Given € > 0, an e-morphism between V and W is a family of linear maps
¢ = (pp: VI — W), g+ such that the following diagram commutes for every
s<tE¢€ RT: t

VS Ys \ Vt

\qus \L¢t
wt—l—e

s+e ste t+e
W —— W

An e-interleaving between V and W is a pair of e-morphisms (¢;: Vi — W€, p+
and (Y : Wt — Vi€, cp+ such that the following diagrams commute for every t € R*:

; ’U€+2€
V y Vt—|—2e Vt—l—e
wt—|—2€
Wt—l—e Wt t y Wt—|—2e

The interleaving distance is:  d; (V,W) = inf{e > 0,V and W are e-interleaved}.



Interleaving distance 5/11 (4/12)

Example: Let a,a’,b,b’ € RT such that a < b and @’ < ¥’. Consider the
interval-modules B|a, b] and Bla’, V'].

Let us find an e-interleaving.
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Interleaving distance 5/11 (5/12)

Example: Let a,a’,b,b’ € RT such that a < b and @’ < ¥’. Consider the
interval-modules B|a, b] and Bla’, V'].

Let us find an e-interleaving.
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Given € > 0, an e-morphism between V and W is a family of linear maps

¢ = (¢s: VP — W), cp+ such that the following diagram commutes for every
s<te RT: ot
ve 2y

\L¢s \L¢t
wt—l—e

Wete =225 it
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Example: Let a,a’,b,b’ € RT such that a < b and @’ < ¥’. Consider the
interval-modules B|a, b] and Bla’, V'].

Let us find an e-interleaving.
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Wete =225 it




Interleaving distance 5/11 (7/12)

Example: Let a,a’,b,b’ € RT such that a < b and @’ < ¥’. Consider the
interval-modules B|a, b] and Bla’, V'].

Let us find an e-interleaving.
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Given € > 0, an e-morphism between V and W is a family of linear maps

¢ = (¢s: VP — W), cp+ such that the following diagram commutes for every
s<te RT: ot
ve 2y

\L¢s \L¢t
wt—l—e

Wete =225 it

0



Interleaving distance 5/11 (8/12)

Example: Let a,a’,b,b’ € RT such that a < b and @’ < ¥’. Consider the
interval-modules B|a, b] and Bla’, V'].

Let us find an e-interleaving.

J— R
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Given € > 0, an e-morphism between V and W is a family of linear maps

¢ = (¢s: VP — W), cp+ such that the following diagram commutes for every
s<te RT: ot
ve 2y

\L¢s \L¢t
wt—l—e

Wete =225 it

v

— Only two possibilities for ¢: e always the zero map
e always nonzero when V¥ and W€ are nonzero



Interleaving distance 5/11 (9/12)

Example: Let a,a’,b,b’ € RT such that a < b and @’ < ¥’. Consider the
interval-modules B|a, b] and Bla’, V'].

Let us find an e-interleaving.
id N
/N R

7\
Z/QZ\/‘Z/QZ

7./27

v

An e-interleaving between V and W is a pair of e-morphisms (¢;: V' — W'T€), cp+
and (Y : Wt — V*iT€), cp+ such that the following diagrams commute for every t € R*:

’Ut+2€

Vt t y Vt—|—26 Vt—l—e
wt+2€
Wt—l—e Wt t N Wt+26

— ;.. o ¢ must be nonzero when [t,t + €| C [a, b]
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Example: Let a,a’,b,b’ € RT such that a < b and @’ < ¥’. Consider the
interval-modules B|a, b] and Bla’, V'].

Let us find an e-interleaving.
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An e-interleaving between V and W is a pair of e-morphisms (¢;: V' — W'T€), cp+
and (Y : Wt — V*iT€), cp+ such that the following diagrams commute for every t € R*:

’Ut+2€

Vt t y Vt—|—26 Vt—l—e
wt+2€
Wt—l—e Wt t N Wt+26

— ;.. o ¢ must be nonzero when [t,t + €| C [a, b]
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Example: Let a,a’,b,b’ € RT such that a < b and @’ < ¥’. Consider the
interval-modules B|a, b] and Bla’, V'].

Let us find an e-interleaving.

R+

v

7.)2Z
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An e-interleaving between V and W is a pair of e-morphisms (¢;: V' — W'T€), cp+
and (Y : Wt — V*iT€), cp+ such that the following diagrams commute for every t € R*:

’Ut+2€

Vt t y Vt—|—26 Vt—l—e
wt+2€
Wt—l—e Wt t N Wt+26

— ;.. o ¢ must be nonzero when [t,t + €| C [a, b]
Gt1e © 1y must be nonzero when [t,t + €] C [a/, V]



Interleaving distance 5/11 (12/12)

Example: Let a,a’,b,b’ € RT such that a < b and @’ < ¥’. Consider the
interval-modules B|a, b] and Bla’, V'].

Let us find an e-interleaving.

v

— Only two possibilities for ¢: e always the zero map
e always nonzero when V* and W¥*€ are nonzero

— 41 0 ¢y must be nonzero when [t,t + €] C [a, b]
G++e © 1 must be nonzero when [t,t 4 €] C [a/, V]

We deduce that either
e |a—b| <2 and|a —b| < 2 or
e [a—d|<eand bV |<e
b—a b —ad

Conclusion: di(IB%[a,b],IB[a’,b’])zmin{max{ 5T },max{|a—a’\,\b—b’\}}




I1 - Isometry theorem



Isometry theorem 7/11 (1/3)

If the persistence modules U and V
are interval-decomposable, then d; (U, V) = dy, (U, V).

> Stability: d; (U, V) > dy, (U, V)

> Converse stability: d; (U,V) <d, (U,V

N——"



Isometry theorem 7/11 (2/3)

If the persistence modules U and V
are interval-decomposable, then d; (U, V) = dy, (U, V).

Proof: Let us write the decomposition of the persistence modules in intervals:

V ~ P B[] W~ €5 B[J]

IeZ JeJ

Suppose that we have a e-partial matching M C Z x J. This gives a matching of some
intervals (I, J), where I = (a,b) and J = (a’,b’), such that |a — a’| < € and
b—b] <e.

We can build an e-interleaving between B[I] and B[.J], that we denote (¢(1,5), ¥(1,7))-

Some intervals I (resp. J) are not matched, in which case their length is not greater
than 2¢, and we can build an e-interleaving with the zero persistence module. We

denote this interleaving (¢(1,0), ¥(1,0)) (resp. (¢0..1), Y(0,7)))-
Now, let us consider the sums of all these linear maps:

¢ = ED G1,9) ED P (1,0)5 P = GB Y1, @ b(0,.7)

(I,J) matched I not matched (I,J) matched J not matched

> (4,7) is an e-interleaving > d; (U, V) <dy (U, V)



Isometry theorem 7/11 (3/3)

If the persistence modules U and V
are interval-decomposable, then d; (U, V) = dy, (U, V).

> Stability: d; (U, V) > dy, (U, V)

> Converse stability: d; (U,V) <d, (U,V

N——"

The stability part is more difficult.

A first strategy uses the interpolation lemma, and concludes with the box lemma.

Interpolation lemma: If U and V are d-interleaved, then there exists a family of
persistence modules (Uy);c(o,5) such that Up = U, Us =V and d; (U, Uy) < |s — 2| for
every s,t € [0,4].

Another proof builds an explicit partial matching from an interleaving



IIT - Stability theorem



Back to the thickenings 9/11 (1/9)

Let X and Y be two subets of R™. Define ¢ = dyy (X,Y’) (Hausdorff distance).

We have seen that X C Y€ and Y C X¢. We even have that X! C Yi*€ and Y¢ C X?t+te
for all t > 0.

By denoting 7 and k these inclusions, we have a commutative diagram

______ 5 Xt 5 Xt+2€ c 5 Xt+4€ .

kite kit3e
jt+2€ ]t+46

_________________ % Yt+€ \ Yt+3€ C \ Yt‘|_5€ .




Back to the thickenings 9/11 (2/9)

Let X and Y be two subets of R™. Define ¢ = dyy (X,Y’) (Hausdorff distance).

We have seen that X C Y€ and Y C X¢. We even have that X! C Yi*€ and Y¢ C X?t+te
for all t > 0.

By denoting 7 and k these inclusions, we have a commutative diagram

______ >. Xt \ Xt+2€ C \ Xt+4€ -«
kiye kiy3e
jt+2€ ]t+46
_________________ % Yt+€ \ Yt+3€ C \ Yt‘|'5€ .

This also gives inclusions between Cech complexes:

CeCh s Cech Ce(;hltjul6 ____________

kt+€ kt—l—Se
Jt+42e Jt+4de

——————————— > CechtJre CeChtjLSE > Cech

t—|—26

t—|—5e

(Y)



Back to the thickenings 9/11 (3/9)

[...] This also gives inclusions between Cech complexes:

CeCh Cecht+2€ Cecht+4€ _____________
kt+3€
Jt+2e Jt+de
___________ ; CeChHe CechtJFSE (vjecht%6 (Y)
Now, we apply the i*" homology functor.
Cech — H,; CechtJr2€ Cecht+4€ _________
(Ktte), (ktt3e),
(Jt) (Jt+2e) (Jt+4e
————— » H, Cechlthe CeChH&E Cecht+5€(Y))




Back to the thickenings 9/11 (4/9)

[...] This also gives inclusions between Cech complexes:

Cech CechtJr2€ CechtJr4€ —————————————
ktye kii3e
Jt+2e Jt+de
——————————— > Cechlthe CechtJr3€ (vjecht%€ (Y)
Now, we apply the i*" homology functor.
H;(Cech’ (X)) ——— H;(Cech' (X)) s H;(Cech ™ (X)) ——--nm
(kev). (krsa0).
(J¢). (Jet2e). (Jt+ae),
----- s H;(Cech' (V) . H;(Cech™™ (V) . H;(Cech™™ (V)

persistence module of Cech complex of X



Back to the thickenings 9/11 (5/9)

[...] This also gives inclusions between Cech complexes:

Cech CechtJr2€ CechtJr4€ —————————————
ktye kii3e
Jt+2e Jt+de
——————————— > Ce(:ht+€ CechtJr3€ (vjecht%€ (Y)
Now, we apply the i*" homology functor.
H;(Cech’ (X)) ——— H;(Cech' (X)) s H;(Cech ™ (X)) ——--nm
(kev). (krsa0).
() N\, (Jet2e). { (Jt+ae), ,
----- s H;(Cech' (V) . H;(Cech™™ (V) . H;(Cech™™ (V)

persistence module of Cech complex of X

persistence module of Cech complex of Y



Back to the thickenings 9/11 (6/9)

[...] This also gives inclusions between Cech complexes:

t+2¢ t+4e

Cecht(X ) » Cech '~ (X) « s Cech’ (X)) cmmmmmmmmo-
ktye kii3e
Jt Jt+2e Jt+4e
——————————— > Cecht+€(Y) f > Cecht+3€(Y) ; > Cecht+5€(Y)
Now, we apply the i*" homology functor.
Cech X)) — H; Cecht+2€ X)) s H, Cecht+46 X)) ---mmm---
/_\

&\\ (%/ N7\

i _ ~—"
————— » H; Cecht+ CechtJr (Y)) >H¢(Cecht+5 Y))

persistence module of Cech complex of X

persistence module of Cech complex of Y

e-interleaving between the persistence modules



Back to the thickenings 9/11 (7/9)

. > t > t
Hence the persistence modules (Hz-(Cech (X)))t>0 and (Hi(Cech (Y))) are

e-interleaved. a \ B
U / v
Hence d; (U, V) <e.



Back to the thickenings 9/11 (8/9)

. o ot
Hence the persistence modules ( (X))) . and (Hi(Cech (Y))) are
t

Hi((v?echt
e-interleaved. / N \ -

v v
Hence d; (U, V) <e.

We use the isometry theorem: dy, (U,V) =d; (U,V) <e.



Back to the thickenings 9/11 (9/9)

. . ot
Hence the persistence modules ( (X))) . and (Hi(Cech (Y))) are
t

Hi((v?echt
e-interleaved. / N \ -

v %
Hence d; (U, V) <e.

We use the isometry theorem: dy, (U,V) =d; (U,V) <e.

Let X and Y be two subsets of
R™. Consider their Cech (resp. Rips) filtrations, and the corresponding i" homology

persistence modules, U and V. Suppose that they are interval-decomposables. Then
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Summary

10/11 (1/2)
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Conclusion

We interpreted topological noise as small bars in barcodes.
We defined a distance between barcodes that is not too sensitive to small bars.
We linked this distance with an algebraic-flavoured distance.

We deduced a satisfactory result of stability.

Homework: Exercise 53



Conclusion

We interpreted topological noise as small bars in barcodes.
We defined a distance between barcodes that is not too sensitive to small bars.
We linked this distance with an algebraic-flavoured distance.

We deduced a satisfactory result of stability.

Homework: Exercise 53

| ast lesson tomorrow!
Merci !



