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Introduction 2/15 (1/2)

Let f : R — R be a map. Remember that f is continuous if
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Introduction 2/15 (2/2)

Let f : R — R be a map. Remember that f is continuous if
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Aim of this lesson: generalize the notion of continuity to more general spaces O



I - Topological spaces



opological spaces 4/15 (1/10)

Topological spaces are abstractions of the concept of ‘shape’ or ‘geometric object’.

A topological space is a pair (X,7T) where X is a set and 7T is a collection
of subsets of X such that:
e )T and X € T,

e for every infinite collection {O,}aca C T, we have |J O, €T,
acA

e for every finite collection {O;}1<i<n C T, we have (] O; € T.
1<:<n

The set T is called a topology on X. The elements of T are called the open sets.



opological spaces 4/15 (2/10)

Topological spaces are abstractions of the concept of ‘shape’ or ‘geometric object’.

A topological space is a pair (X,7T) where X is a set and 7T is a collection
of subsets of X such that:
e )T and X € T,

e for every infinite collection {O,}aca C T, we have |J O, €T,
acA

e for every finite collection {O;}1<i<n C T, we have (] O; € T.
1<:<n

The set T is called a topology on X. The elements of T are called the open sets.

In other words,
e the empty set is an open set, the set X itself is an open set,
e an infinite union of open sets is an open set,
e a finite intersection of open sets is an open set.



opological spaces 4/15 (3/10)

A topological space is a pair (X,7T) where X is a set and 7T is a collection
of subsets of X such that:
e )T and X € T,

e for every infinite collection {O,}aca C T, we have |J O, € T,
acA

e for every finite collection {O; }1<i<n, C T, we have (] O; €T.
1<i<n

Example: Let X = {0,1} be a set with two elements. There exists four different
topologies on X:

e 71 = {(Z)v {07 1}}v

° Ty = {(Dv {0},{0,1}},

o T3 ={0,{1},{0,1}},

o Ty = {(Z)v {0}7 {1}7 {07 1}}



opological spaces 4/15 (4/10)

A topological space is a pair (X,7T) where X is a set and 7T is a collection
of subsets of X such that:
e )T and X € T,

e for every infinite collection {Oy}oca C T, we have |J O, €T,
acA

e for every finite collection {O; }1<i<n, C T, we have (] O; €T.
1<i<n

Example: Let X ={0,1,2} be a set with three elements.
The following is a topology on X:

T = {(Z)v {0}7 {07 1, 2}}

But the following are not:

o 71 ={0,{0}},

o Ty = {(Z)v {0}7 {1}7 {07 L, 2}}'

o T3 = {(Da {Oa 1}7 {17 2}7 {07 1, 2}}'
Why 7



opological spaces 4/15 (5/10)

A topological space is a pair (X,7T) where X is a set and 7T is a collection
of subsets of X such that:

e )T and X €T,

e for every infinite collection {O,}aca C T, we have |J O, € T,
acA

e for every finite collection {O; }1<i<n, C T, we have (] O; €T.
1<i<n

Example: Let X ={0,1,2} be a set with three elements.
The following is a topology on X:

T = {(Z)v {0}7 {07 1, 2}}

But the following are not:

o 71 ={0,{0}},
® 7-2 — {®7{0}7{1}7{07172}}' O 1 2
e T3 = {®7{071}7{172}7{07172}}v ¢ ¢ ®

Why 7



opological spaces 4/15 (6/10)

A topological space is a pair (X,7T) where X is a set and 7T is a collection
of subsets of X such that:

e )T and X €T,

e for every infinite collection {O,}aca C T, we have |J O, € T,
acA

e for every finite collection {O; }1<i<n, C T, we have (] O; €T.
1<i<n

Example: Let X ={0,1,2} be a set with three elements.
The following is a topology on X:

T = {(Z)v {0}7 {07 1, 2}}

But the following are not:

¢ Tu=10,{0}}, e

o T2 ={0,{0} {1},{0,1,2}}, 0N 1 9

o T3 =1{0,{0,1},{1,2},{0,1,2}}, e ) e e ;
Why ? e g

X ={0,1,2} is missing



opological spaces 4/15 (7/10)

A topological space is a pair (X,7T) where X is a set and 7T is a collection
of subsets of X such that:

e )T and X €T,

e for every infinite collection {O,}aca C T, we have |J O, € T,
acA

e for every finite collection {O; }1<i<n, C T, we have (] O; €T.
1<i<n

Example: Let X ={0,1,2} be a set with three elements.
The following is a topology on X:

T = {(Z)v {0}7 {07 1, 2}}

But the following are not:

o 71 ={0,{0}},
o 75=1{0,{0},{1},{0,1,2}}, 0 1 2
o T3 = {®7{071}7{172}7{071’2}}' ° ° °

Why 7



opological spaces 4/15 (8/10)

A topological space is a pair (X,7T) where X is a set and 7T is a collection
of subsets of X such that:

e )T and X €T,

e for every infinite collection {O,}aca C T, we have |J O, € T,
acA

e for every finite collection {O; }1<i<n, C T, we have (] O; €T.
1<i<n

Example: Let X ={0,1,2} be a set with three elements.
The following is a topology on X:

T = {(Z)v {0}7 {07 1, 2}}

But the following are not:

e n={0.{0}y, T

° 7-2 — {@,{0},{1},{0,1,2}}, /" O 1\\ 2

e T3 ={0,{0,1},{1,2},{0,1,2}}, L\ e o ' e
Why ? T TO ’

{0,1} = {0} U {1} is missing



opological spaces 4/15 (9/10)

A topological space is a pair (X,7T) where X is a set and 7T is a collection
of subsets of X such that:

e )T and X €T,

e for every infinite collection {O,}aca C T, we have |J O, € T,
acA

e for every finite collection {O; }1<i<n, C T, we have (] O; €T.
1<i<n

Example: Let X ={0,1,2} be a set with three elements.
The following is a topology on X:

T = {(Z)v {0}7 {07 1, 2}}

But the following are not:

o 71 ={0,{0}},
o Ty = {(2)7{0}7{1}7{07172}}7 O 1 9
o T3 = {®7{071}7{172}7{07172}}v ® ® o

Why 7



opological spaces 4/15 (10/10)

A topological space is a pair (X,7T) where X is a set and 7T is a collection
of subsets of X such that:

e )T and X €T,

e for every infinite collection {O,}aca C T, we have |J O, € T,
acA

e for every finite collection {O; }1<i<n, C T, we have (] O; €T.
1<i<n

Example: Let X ={0,1,2} be a set with three elements.
The following is a topology on X:

T = {(Z)v {0}7 {07 1, 2}}

But the following are not:

o 71 ={0,{0}},

e Ty = {(2)7{0}7{1}7{07172}}7 O ,o"]'_\‘ 9

° T3 = {(Do {07 1}7 {172}7 {07 172}}v ® :‘ o /e
Why 7 S

{1} ={0,1} N {1, 2} is missing



Definition via closed sets 5/15 (1/4)

Let (X,7) be a topological space. For every open set O € T, its complement
‘O={x € X,z ¢ O} is called a closed set.

In other words, a set A C X is closed iff €A is open.

We have:
e the sets () and X are closed sets,

e for every infinite collection {P,},ca of closed set, () P, is a closed set,
acA

e for every finite collection {P; }1<i<, of closed sets, ] P; is a closed set.
1<i<n



Definition via closed sets 5/15 (2/4)

Let (X,7) be a topological space. For every open set O € T, its complement
‘O={x € X,z ¢ O} is called a closed set.

In other words, a set A C X is closed iff €A is open.

We have:
e the sets () and X are closed sets,

e for every infinite collection {P,},ca of closed set, () P, is a closed set,
acA

e for every finite collection {P; }1<i<, of closed sets, ] P; is a closed set.
1<i<n

Proof of first point: The set () is closed because Q) = X is open. The set X is closed
because °X = () is open.



Definition via closed sets 5/15 (3/4)

Let (X,7) be a topological space. For every open set O € T, its complement
‘O={x € X,z ¢ O} is called a closed set.

In other words, a set A C X is closed iff €A is open.

We have:
e the sets () and X are closed sets,

e for every infinite collection {P,},ca of closed set, () P, is a closed set,
acA

e for every finite collection {P; }1<i<, of closed sets, ] P; is a closed set.
1<i<n

Proof of second point: If {P,}.ca is an infinite collection of closed set, then for every
a € A, ¢P, is open. Now, we use the relation

c (ﬂ&) = | JeP..
a€cA a€EA

This is a union of open sets, hence it is open. Hence () P, is closed.
acA



Definition via closed sets 5/15 (4/4)

Let (X,7) be a topological space. For every open set O € T, its complement
‘O={x € X,z ¢ O} is called a closed set.

In other words, a set A C X is closed iff €A is open.

We have:
e the sets () and X are closed sets,

e for every infinite collection {P,},ca of closed set, () P, is a closed set,
acA

e for every finite collection {P; }1<i<, of closed sets, ] P; is a closed set.
1<i<n

Proof of third point: If {P;}1<i<y is a finite collection of closed set, then for every
1 <1 <n, °P; is open. Now, we use the relation

c c
Ur)=n-n
1<i<n 1<i<n

This is a finite intersection of open sets, hence it is open. Hence |J P; is closed.
1<:<n



I - Topological spaces

IT - Topology of R"”

III - Topology of subsets of R"

V1 - Continuous maps



Open balls Of R™ 7/15 (1/4)

We want to give R™ a topology.

The Euclidean metric on R is defined for all x = (x1,...,x,) € R™ as:

el = \/a? + ... +a2.

Let x € R™ and r > 0. The open ball of center = and radius r, denoted
B(x,r), is defined as:
B(z,r) ={y € R", [z —y[| <r}.



Open balls Of R™ 7/15 (2/4)

We want to give R™ a topology.

The Euclidean metric on R is defined for all x = (x1,...,x,) € R™ as:

el = \/a? + ... +a2.

Let x € R™ and r > 0. The open ball of center = and radius r, denoted
B(x,r), is defined as:
B(z,r) ={y e R", |lz —y| <r}.

—1 0 1 2
In R: o ° ° o °
B(1,0.9)
B((0,0.5),0.3) _ B(x,0.2)

o Xr — (1,15,05)
In RQZ ° In RS: J

A




n
Open balls of R 7/15 (3/4)
Let x € R™ and r > 0. The open ball of center x and radius r, denoted
B(z,r), is defined as:
B(z,r) ={y e R", [lz —y| <r}.

Proposition: Let z € R™, and r > 0. Let y € B(x,r) We have

B(y,r — |z —yl) € B(z,r).

-
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Open balls Of R™ 7/15 (4/4)

Let x € R™ and r > 0. The open ball of center x and radius r, denoted
B(z,r), is defined as:
B(z,r) ={y e R", [lz —y| <r}.

Proposition: Let z € R™, and r > 0. Let y € B(x,r) We have

- =~

B(y,r — ||z —yl]) C B(x,7). / .;\f(w— Iz - )
A
Proof: e
By definition, g
B(z,r)={z € R", ||z —z|| <7} .

Bly,r =z —yll) ={z e R", [ly — 2| <r = [lz — yl[}

Let z € B(y,r — || — y||).
We have to show that ||z — z|| < r. But

|z —z|| < ||z =yl + ||y — 2] (trianglg i.n_equality)
<|le=yll+ (o —=lz—y|) (definition of z)

=

Hence z € B(x,r).




Euclidean topology 8/15 (1/13)

Let A C R™ be a subset. Let x € A.
We say that A is open around x if there exists € > 0 such that B(z,r) C A.
We say that A is open if for every x € A, A is open around .

We denote the set of such open sets by 7r», the Euclidean topology on R™.
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Euclidean topology 8/15 (2/13)

Let A C R™ be a subset. Let x € A.
We say that A is open around x if there exists € > 0 such that B(z,r) C A.
We say that A is open if for every x € A, A is open around .

We denote the set of such open sets by 7r», the Euclidean topology on R™.
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Euclidean topology 8/15 (3/13)

Let A C R™ be a subset. Let x € A.
We say that A is open around x if there exists € > 0 such that B(z,r) C A.
We say that A is open if for every x € A, A is open around .

We denote the set of such open sets by 7r», the Euclidean topology on R™.
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Euclidean topology 8/15 (4/13)

Let A C R™ be a subset. Let x € A.
We say that A is open around x if there exists € > 0 such that B(z,r) C A.
We say that A is open if for every x € A, A is open around .

We denote the set of such open sets by 7r», the Euclidean topology on R™.
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Euclidean topology 8/15 (5/13)

Let A C R™ be a subset. Let x € A.
We say that A is open around x if there exists € > 0 such that B(z,r) C A.
We say that A is open if for every x € A, A is open around .

We denote the set of such open sets by 7r», the Euclidean topology on R™.
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Euclidean topology 8/15 (6/13)

Let A C R™ be a subset. Let x € A.
We say that A is open around x if there exists € > 0 such that B(z,r) C A.
We say that A is open if for every x € A, A is open around .

We denote the set of such open sets by 7r», the Euclidean topology on R™.
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Euclidean topology 8/15 (7/13)

Let A C R™ be a subset. Let x € A.
We say that A is open around x if there exists € > 0 such that B(z,r) C A.
We say that A is open if for every x € A, A is open around .

We denote the set of such open sets by 7r», the Euclidean topology on R™.
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Euclidean topology 8/15 (8/13)

Let A C R™ be a subset. Let x € A.
We say that A is open around x if there exists € > 0 such that B(z,r) C A.
We say that A is open if for every x € A, A is open around .

We denote the set of such open sets by 7r», the Euclidean topology on R™.
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Euclidean topology 8/15 (9/13)

Let A C R™ be a subset. Let x € A.
We say that A is open around x if there exists € > 0 such that B(z,r) C A.
We say that A is open if for every x € A, A is open around .

We denote the set of such open sets by 7r», the Euclidean topology on R™.
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Euclidean topology 8/15 (10/13)

Let A C R™ be a subset. Let x € A.
We say that A is open around x if there exists € > 0 such that B(z,r) C A.
We say that A is open if for every x € A, A is open around .

We denote the set of such open sets by 7r», the Euclidean topology on R™.
Proposition: Tg~ is a topology on R™.

Proof:
We have to check the three axioms of a topological space.



Euclidean topology 8/15 (11/13)

Let A C R™ be a subset. Let x € A.
We say that A is open around x if there exists € > 0 such that B(z,r) C A.
We say that A is open if for every x € A, A is open around .

We denote the set of such open sets by 7r», the Euclidean topology on R™.
Proposition: Tg~ is a topology on R™.

Proof:
We have to check the three axioms of a topological space.

First axiom (the empty set and the set X are open sets).

The set () is clearly open according to the definition of 7g~ (indeed, () contains no
point.)

The set R™ also is open: for every x € R", the ball B(x,1) is a subset of R".




Euclidean topology 8/15 (12/13)

Let A C R” be a subset. Let z € A.
We say that A is open around z if there exists € > 0 such that B(z,r) C A.
We say that A is open if for every x € A, A is open around .

We denote the set of such open sets by 7r», the Euclidean topology on R™.
Proposition: Tg~ is a topology on R™.

Proof:
Second axiom (an infinite union of open sets is an open set).

Let {On}aca C Trn be a infinite collection of open sets, and define

0= |JOa.

acA

Let x € O. There exists an « € A such that x € O,. Since O, is open, it is open
around z, i.e. there exists > 0 such that B(x,r) C O,.
We deduce that B(x,r) C O, and that O is open around z.

Since this it true for any x € O, we have proven that O is open.



Euclidean topology 8/15 (13/13)

Let A C R” be a subset. Let z € A.
We say that A is open around z if there exists € > 0 such that B(z,r) C A.
We say that A is open if for every x € A, A is open around .

We denote the set of such open sets by 7r», the Euclidean topology on R™.
Proposition: Tg~ is a topology on R™.

Proof:
Third axiom (a finite intersection of open sets is an open set).
Consider a finite collection {O; }1<i<n C Trn, and define

Let x € O. For every i € [1,n], we have x € O;. Since O; is open, it is open around =z,
i.e. there exists r; > 0 such that B(z,r;) C O;.

Define rnin = min{ry,...r,,}. For every i € [1,n], we have B(z, rmin) C O;.
We deduce that B(x,7min) C O, and that O is open around .

Since this is true for any x € O, we have proven that O is open.



Euclidean topology - case of R 9/15 (1/6)

Proposition: In (R™, Tgn ), the open balls B(x,r) are open sets.

In particular, in (R, 7g), the open intervals (a,b) are open sets.

Exercise:
Consider X = R endowed with the Euclidean topology. Are the following sets open?
Are they closed?

e [0,1],

e [0,1),
¢ (—OO, 1)1
e the singletons {z}, = € R,
e the rationnals Q.



Euclidean topology - case of R 9/15 (2/6)

Proposition: In (R™, Tgn ), the open balls B(x,r) are open sets.

In particular, in (R, 7g), the open intervals (a,b) are open sets.

Exercise:
Consider X = R endowed with the Euclidean topology. Are the following sets open?

Are they closed?
0, 1],
[0, 1),
(—OO, 1>1

the singletons {z}, = € R,
the rationnals Q.

Not open:
with = = 0, there exist no r > 0 such that B(z,r) = (z —r,x +r) C [0, 1]

Closed:
its complement is ¢[0, 1] = (—o00,0) U (1, 4+00). It is the union of two open
sets.



Euclidean topology - case of R 9/15 (3/6)

Proposition: In (R™, Tgn ), the open balls B(x,r) are open sets.

In particular, in (R, 7g), the open intervals (a,b) are open sets.

Exercise:
Consider X = R endowed with the Euclidean topology. Are the following sets open?
Are they closed?

0, 1],
0,1),

o (—o0, 1),

the singletons {z}, = € R,
the rationnals Q.

Not open:
with = = 0, there exist no r > 0 such that B(z,r) = (z —r,x +r) C [0, 1]

Not closed:
its complement is ¢[0, 1] = (—o0,0) U [1, +00).
This set is not open around 1.



Euclidean topology - case of R 9/15 (4/6)

Proposition: In (R™, Tgn ), the open balls B(x,r) are open sets.

In particular, in (R, 7g), the open intervals (a,b) are open sets.

Exercise:
Consider X = R endowed with the Euclidean topology. Are the following sets open?
Are they closed?

0,1],
0.1),

o|(—00,1)

the singletons {z}, = € R,
the rationnals Q.

Open:
It i1s an interval

Not closed:
its complement is ¢(—o0, 1) = [1, +00).
This set is not open around 1.



Euclidean topology - case of R 9/15 (5/6)

Proposition: In (R™, Tgn ), the open balls B(x,r) are open sets.

In particular, in (R, 7g), the open intervals (a,b) are open sets.

Exercise:
Consider X = R endowed with the Euclidean topology. Are the following sets open?
Are they closed?

0, 1],
0,1),

o (—00.1),

the singletons {z}, = € R,
the rationnals .

Not open:
It is not open around .

Closed:
its complement is “{x} = (—o0, z) U (x, +00).
It is a union of two open sets (intervals).



Euclidean topology - case of R 9/15 (6/6)

Proposition: In (R™, Tgn ), the open balls B(x,r) are open sets.

In particular, in (R, 7g), the open intervals (a,b) are open sets.

Exercise:
Consider X = R endowed with the Euclidean topology. Are the following sets open?
Are they closed?

e [0,1],

e [0,1),
¢ (—OO, 1)'
e the singletons {z}, = € R,
o[ the rationnals Q.

Not open

Not closed



III - Topology of subsets of R"



Subspace topology 11/15 (1/5)

Let (X,7T) be a topological space, and Y C X a subset. We define the
subspace topology on Y as the following set:

ﬂy:{OﬂY,OET}.



Subspace topology 11/15 (2/5)

Let (X,7T) be a topological space, and Y C X a subset. We define the
subspace topology on Y as the following set:

ﬂy:{OﬂY,OET}.

Proposition: The set 7T}y is a topology on Y.

Proof: We have to check the three axioms of a topological space.

First axiom (the empty set and the set X are open sets).
The set () is clearly open for Ty because it can be written DNY. The set Y also is

open for 7Ty because it can be written X NY, and X is open for 7.




Subspace topology 11/15 (3/5)

Let (X,7T) be a topological space, and Y C X a subset. We define the
subspace topology on Y as the following set:

7hf::{C)F1YZC)€’T}.

Proposition: The set 7T}y is a topology on Y.

Proof: We have to check the three axioms of a topological space.

Second axiom (an infinite union of open sets is an open set).

Let {On}aca C Tjy be a infinite collection of open sets, and define O = J O,.
acA

By definition of 7}y, for every a € A, there exists O, such that O, = O, NY.

Define O = [ J OL. It is an open set for 7. We have
acA

O=|JOa=|JO,nY = (Uo;)meo’w

a€EA acA acA

Hence O € T}y



Subspace topology 11/15 (4/5)

Let (X,7T) be a topological space, and Y C X a subset. We define the
subspace topology on Y as the following set:

7Ty ::{C)fW)C(? c 7ﬁk

Proposition: The set 7T}y is a topology on Y.

Proof: We have to check the three axioms of a topological space.
Third axiom (a finite intersection of open sets is an open set).

Consider a finite collection {O; }1<i<n C Trn, and define O = () O;.
1<i<n

Just as before, for every i € [1,n], there exists O, such that O; = O; NY".

Define O’ = |J O.. Itis an open set for 7. We have
1<i<n

O= () Oa= [ O,NY=[ () O,|nY=0nY.

1<i<n 1<i<n 1<i<n

Hence O € Ty



Subspace topology 11/15 (5/5)

Let (X,7T) be a topological space, and Y C X a subset. We define the

subspace topology on Y as the following set:

ﬂy:{OﬂY,OET}.

Among the subsets of R™ that we will consider, let us list:

the unit sphere S,,_1 = {x € R", ||z|| = 1}

the unit cube C,,_1 = {x = (21, ..., xp) € R", max(|z1], ..., |zn|) = 1}
the open balls B(z,r) ={y € R", ||lzr —y| < r}

the closed balls B (z,r) = {y € R", |z — y|| <}

the standard simplex

A, 1 =4{x=(r1,...,xpn) ER" 21,...,2, > 0and 1 + ... + &, = 1}

L
'''''

~ v
------



VI - Continuous maps



Continuous maps 13/15 (1/4)

The topologist’s point of view allows to define the notion of continuity in great
generality.

Let us consider two topological spaces (X,7T) and (Y,U).

Let f: X — Y be a map. We say that f is continuous if for every O € U,
the preimage f~1(0O)={z € X, f(z) € O} isin T.

In other words, a map is continuous if the preimage of any open set is an open set.
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The topologist’s point of view allows to define the notion of continuity in great
generality.

Let us consider two topological spaces (X,7T) and (Y,U).

Let f: X — Y be a map. We say that f is continuous if for every O € U,
the preimage f~1(0O)={z € X, f(z) € O} isin T.

In other words, a map is continuous if the preimage of any open set is an open set.

Proposition: A map is continuous if and only if the preimage of closed sets are closed
sets.



Continuous maps 13/15 (3/4)

Let f: X — Y be a map. We say that f is continuous if for every O € U,
the preimage f~1(0O)={z € X, f(z) € O} isin T.

Proposition: A map is continuous if and only if the preimage of closed sets are closed
sets.

Example: Let X =Y = R, endowed with the Euclidean topology.
Let f: R — R be defined as f(x) =0 for all z <0, and f(z) =1 for all z > 0.

The set {0} is closed, but f~1({0}) = (—00,0) is not. Hence f is not continuous.

v



Continuous maps 13/15 (4/4)

Let f: X — Y be a map. We say that f is continuous if for every O € U,
the preimage f~1(0O)={z € X, f(z) € O} isin T.

Proposition: Let (X,7), (Y,U) and (Z,V) be three topological spaces, and f: X — Y,
g: Y — Z two continuous maps. The composition g o f, defined as
gof: X —2Z
r s g(f(2)

IS a continuous map.

Proof: Let O € V be an open set of Z. We have to show that (go f)71(O) isin T.
First, note that (go f)~1(0) = f~1 (g7 (0)).

Since g is continuous, the set g~1(O) is in U, i.e., it is an open set of Y.
But since f is continuous, its preimage f_1<g_1(0)) also is an open set (of X).

Since this is true for any open set O € V, we deduce that g o f is continuous.



Link with e-0 calculus 14/15 (1/5)

We now investigate what continuity means between the Euclidean spaces R™.

Consider a continuous map f: R — R™. Let ¢ > 0 and x € R".

We have seen that the open ball B(f(x),€) is an open set of R”. By continuity of f,
the preimage f~1(B(f(x),€)) is an open set.

Note that x belongs to f~}(B(f(z),¢€)). By definition of the Euclidean topology, we
have that:

f~Y(B(f(x),¢€)) is open around z.
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We now investigate what continuity means between the Euclidean spaces R™.

Consider a continuous map f: R — R™. Let ¢ > 0 and x € R".

We have seen that the open ball B(f(x),€) is an open set of R”. By continuity of f,
the preimage f~1(B(f(x),€)) is an open set.

Note that x belongs to f~}(B(f(z),¢€)). By definition of the Euclidean topology, we
have that:

f~Y(B(f(x),¢€)) is open around z.

In other words, there exists a n > 0 such that

Bz, n) C [ (B(f(z),¢€)).



Link with e-0 calculus 14/15 (3/5)

We now investigate what continuity means between the Euclidean spaces R™.

Consider a continuous map f: R — R™. Let ¢ > 0 and x € R".

We have seen that the open ball B(f(x),€) is an open set of R”. By continuity of f,
the preimage f~1(B(f(x),€)) is an open set.

Note that x belongs to f~}(B(f(z),¢€)). By definition of the Euclidean topology, we
have that:

f~Y(B(f(x),¢€)) is open around z.

In other words, there exists a n > 0 such that

B(z,n) C fTHB(f(z),¢€)).
In other words,

vy € Bz, n), f(y) € B(f(x),e).
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We now investigate what continuity means between the Euclidean spaces R™.
Consider a continuous map f: R — R™. Let ¢ > 0 and x € R".

We have seen that the open ball B(f(x),€) is an open set of R”. By continuity of f,
the preimage f~1(B(f(x),¢€)) is an open set.

Note that x belongs to f~}(B(f(z),¢€)). By definition of the Euclidean topology, we
have that:

f~Y(B(f(x),¢€)) is open around z.

In other words, there exists a n > 0 such that

B(x,n) C f7H(B(f(x),€)).
In other words,
Vy € Bz, n), f(y) € B(f(x)e€).
We deduce that, for all y € R™,

le —yll <n = [[f(z) = FY)ll <e

We recognize the usual definition of continuity.



Link with e-0 calculus 14/15 (5/5)

Proposition: A map f: R™ — R™ is continuous if and only if, for every x € R™ and
e > 0, there exists n > 0 such that for all y € R",

le —yll <n = [[f(z) = Fy)ll <e.

As a consequence, what you already know about continuity still applies here.



Conclusion

We have generalized the notion of continuity (from e-é calculus) to topological spaces.

This will allow us to define more general concepts (connectedness, triangulations,
topological functoriality, ...)

Homework for tomorrow: Exercise 4 and 5

Facultative exercises: Exercise 2 and 7



Conclusion

We have generalized the notion of continuity (from e-é calculus) to topological spaces.

This will allow us to define more general concepts (connectedness, triangulations,
topological functoriality, ...)

Homework for tomorrow: Exercise 4 and 5

Facultative exercises: Exercise 2 and 7

Thank you!



