EMAp Summer Course

Topological Data Analysis with Persistent Homology

https://raphaeltinarrage.github.io/EMAp.html

Lesson 1: Topological spaces

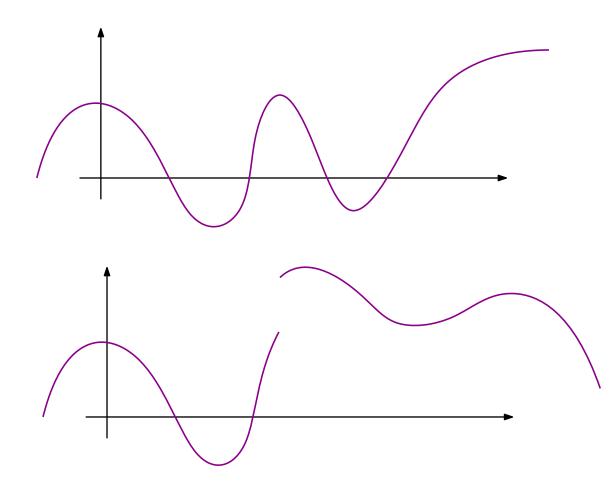
Last update: January 26, 2021

Introduction

2/15 (1/2)

Let $f : \mathbb{R} \to \mathbb{R}$ be a map. Remember that f is continuous if

 $\forall x \in \mathbb{R}, \forall \epsilon > 0, \exists \eta > 0, \forall y \in \mathbb{R}, \|x - y\| < \eta \implies \|f(x) - f(y)\| < \epsilon.$

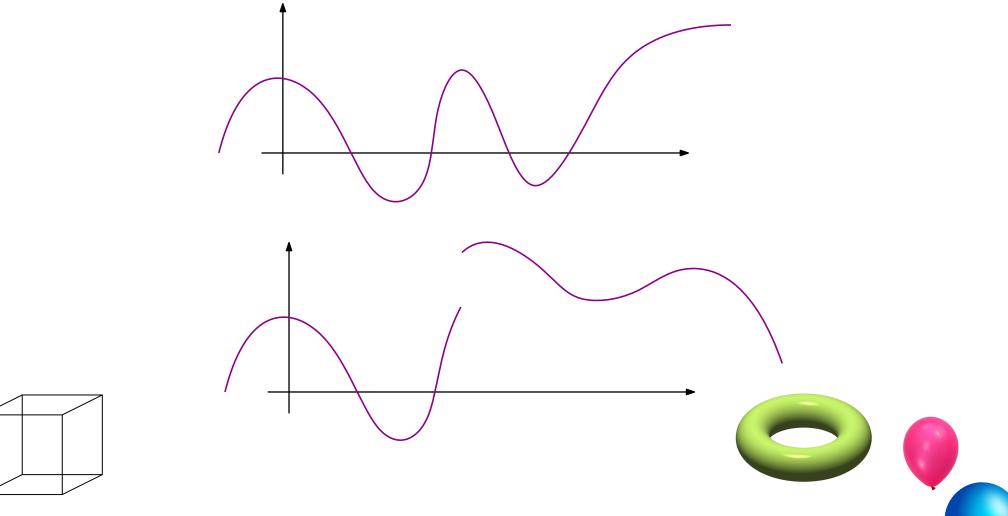


Introduction

2/15 (2/2)

Let $f : \mathbb{R} \to \mathbb{R}$ be a map. Remember that f is continuous if

 $\forall x \in \mathbb{R}, \forall \epsilon > 0, \exists \eta > 0, \forall y \in \mathbb{R}, \|x - y\| < \eta \implies \|f(x) - f(y)\| < \epsilon.$



Aim of this lesson: generalize the notion of continuity to more general spaces

I - Topological spaces

II - Topology of \mathbb{R}^n

III - Topology of subsets of \mathbb{R}^n

VI - Continuous maps

Topological spaces are abstractions of the concept of 'shape' or 'geometric object'.

Definition: A topological space is a pair (X, \mathcal{T}) where X is a set and \mathcal{T} is a collection of subsets of X such that:

- $\emptyset \in \mathcal{T}$ and $X \in \mathcal{T}$,
- for every infinite collection $\{O_{\alpha}\}_{\alpha \in A} \subset \mathcal{T}$, we have $\bigcup O_{\alpha} \in \mathcal{T}$,
- for every finite collection $\{O_i\}_{1 \le i \le n} \subset \mathcal{T}$, we have $\bigcap_{1 \le i \le n} O_i \in \mathcal{T}$.

The set \mathcal{T} is called a *topology* on X. The elements of \mathcal{T} are called the *open sets*.

Topological spaces are abstractions of the concept of 'shape' or 'geometric object'.

Definition: A topological space is a pair (X, \mathcal{T}) where X is a set and \mathcal{T} is a collection of subsets of X such that:

- $\emptyset \in \mathcal{T}$ and $X \in \mathcal{T}$,
- for every infinite collection $\{O_{\alpha}\}_{\alpha \in A} \subset \mathcal{T}$, we have $\bigcup O_{\alpha} \in \mathcal{T}$,
- for every finite collection $\{O_i\}_{1 \le i \le n} \subset \mathcal{T}$, we have $\bigcap_{1 \le i \le n} O_i \in \mathcal{T}$.

The set \mathcal{T} is called a *topology* on X. The elements of \mathcal{T} are called the *open sets*.

In other words,

- the empty set is an open set, the set X itself is an open set,
- an infinite union of open sets is an open set,
- a finite intersection of open sets is an open set.

4/15 (3/10)

Definition: A topological space is a pair (X, \mathcal{T}) where X is a set and \mathcal{T} is a collection of subsets of X such that:

- $\emptyset \in \mathcal{T}$ and $X \in \mathcal{T}$,
- for every infinite collection $\{O_{\alpha}\}_{\alpha \in A} \subset \mathcal{T}$, we have $\bigcup O_{\alpha} \in \mathcal{T}$,
- for every finite collection $\{O_i\}_{1 \le i \le n} \subset \mathcal{T}$, we have $\bigcap_{1 \le i \le n}^{\alpha \in A} O_i \in \mathcal{T}$.

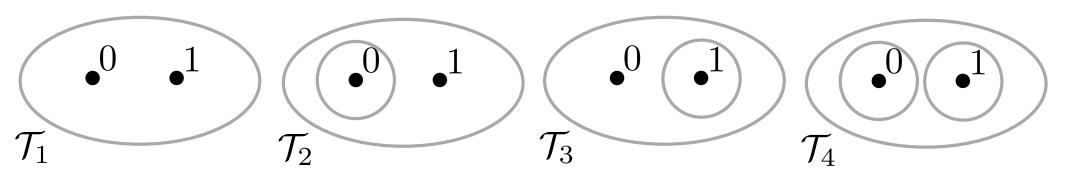
Example: Let $X = \{0, 1\}$ be a set with two elements. There exists four different topologies on X:

• $\mathcal{T}_1 = \{\emptyset, \{0, 1\}\},\$

•
$$\mathcal{T}_2 = \{\emptyset, \{0\}, \{0, 1\}\}$$

•
$$\mathcal{T}_3 = \{ \emptyset, \{1\}, \{0, 1\} \}$$
,

• $\mathcal{T}_4 = \{\emptyset, \{0\}, \{1\}, \{0, 1\}\}.$



4/15 (4/10)

Definition: A topological space is a pair (X, \mathcal{T}) where X is a set and \mathcal{T} is a collection of subsets of X such that:

- $\emptyset \in \mathcal{T}$ and $X \in \mathcal{T}$,
- for every infinite collection $\{O_{\alpha}\}_{\alpha \in A} \subset \mathcal{T}$, we have $\bigcup O_{\alpha} \in \mathcal{T}$,
- for every finite collection $\{O_i\}_{1 \le i \le n} \subset \mathcal{T}$, we have $\bigcap_{1 \le i \le n} O_i \in \mathcal{T}$.

Example: Let $X = \{0, 1, 2\}$ be a set with three elements. The following is a topology on X:

$$\mathcal{T} = \{\emptyset, \{0\}, \{0, 1, 2\}\}$$

But the following are not:

- $\mathcal{T}_1 = \{\emptyset, \{0\}\},\$
- $\mathcal{T}_2 = \{\emptyset, \{0\}, \{1\}, \{0, 1, 2\}\},\$
- $\mathcal{T}_3 = \{ \emptyset, \{0, 1\}, \{1, 2\}, \{0, 1, 2\} \},$ Why ?

4/15 (5/10)

Definition: A topological space is a pair (X, \mathcal{T}) where X is a set and \mathcal{T} is a collection of subsets of X such that:

- $\emptyset \in \mathcal{T}$ and $X \in \mathcal{T}$,
- for every infinite collection $\{O_{\alpha}\}_{\alpha \in A} \subset \mathcal{T}$, we have $\bigcup O_{\alpha} \in \mathcal{T}$,
- for every finite collection $\{O_i\}_{1 \le i \le n} \subset \mathcal{T}$, we have $\bigcap_{1 \le i \le n} O_i \in \mathcal{T}$.

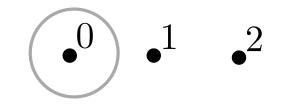
Example: Let $X = \{0, 1, 2\}$ be a set with three elements. The following is a topology on X:

$$\mathcal{T} = \{\emptyset, \{0\}, \{0, 1, 2\}\}$$

But the following are not:

•
$$\mathcal{T}_1 = \{\emptyset, \{0\}\},\$$

• $\mathcal{T}_2 = \{\emptyset, \{0\}, \{1\}, \{0, 1, 2\}\},\$
• $\mathcal{T}_3 = \{\emptyset, \{0, 1\}, \{1, 2\}, \{0, 1, 2\}\},\$
Why ?



4/15 (6/10)

Definition: A topological space is a pair (X, \mathcal{T}) where X is a set and \mathcal{T} is a collection of subsets of X such that:

- $\emptyset \in \mathcal{T}$ and $X \in \mathcal{T}$,
- for every infinite collection $\{O_{\alpha}\}_{\alpha \in A} \subset \mathcal{T}$, we have $\bigcup O_{\alpha} \in \mathcal{T}$,
- for every finite collection $\{O_i\}_{1 \le i \le n} \subset \mathcal{T}$, we have $\bigcap_{1 \le i \le n} O_i \in \mathcal{T}$.

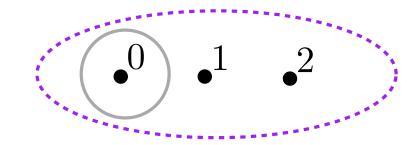
Example: Let $X = \{0, 1, 2\}$ be a set with three elements. The following is a topology on X:

$$\mathcal{T} = \{\emptyset, \{0\}, \{0, 1, 2\}\}$$

But the following are not:

•
$$\mathcal{T}_1 = \{\emptyset, \{0\}\},\$$

• $\mathcal{T}_2 = \{\emptyset, \{0\}, \{1\}, \{0, 1, 2\}\},\$
• $\mathcal{T}_3 = \{\emptyset, \{0, 1\}, \{1, 2\}, \{0, 1, 2\}\},\$
Why ?



 $---- X = \{0, 1, 2\}$ is missing

4/15 (7/10)

Definition: A topological space is a pair (X, \mathcal{T}) where X is a set and \mathcal{T} is a collection of subsets of X such that:

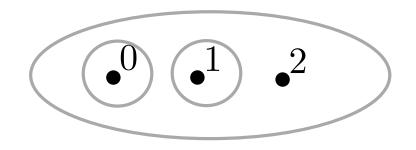
- $\emptyset \in \mathcal{T}$ and $X \in \mathcal{T}$,
- for every infinite collection $\{O_{\alpha}\}_{\alpha \in A} \subset \mathcal{T}$, we have $\bigcup O_{\alpha} \in \mathcal{T}$,
- for every finite collection $\{O_i\}_{1 \le i \le n} \subset \mathcal{T}$, we have $\bigcap_{1 \le i \le n} O_i \in \mathcal{T}$.

Example: Let $X = \{0, 1, 2\}$ be a set with three elements. The following is a topology on X:

$$\mathcal{T} = \{\emptyset, \{0\}, \{0, 1, 2\}\}$$

But the following are not:

• $\mathcal{T}_1 = \{\emptyset, \{0\}\},\$ • $\mathcal{T}_2 = \{\emptyset, \{0\}, \{1\}, \{0, 1, 2\}\},\$ • $\mathcal{T}_3 = \{\emptyset, \{0, 1\}, \{1, 2\}, \{0, 1, 2\}\},\$ Why ?



4/15 (8/10)

Definition: A topological space is a pair (X, \mathcal{T}) where X is a set and \mathcal{T} is a collection of subsets of X such that:

- $\emptyset \in \mathcal{T}$ and $X \in \mathcal{T}$,
- for every infinite collection $\{O_{\alpha}\}_{\alpha \in A} \subset \mathcal{T}$, we have $\bigcup O_{\alpha} \in \mathcal{T}$,
- for every finite collection $\{O_i\}_{1 \le i \le n} \subset \mathcal{T}$, we have $\bigcap_{1 \le i \le n}^{\alpha \in A} O_i \in \mathcal{T}$.

Example: Let $X = \{0, 1, 2\}$ be a set with three elements. The following is a topology on X:

$$\mathcal{T} = \{\emptyset, \{0\}, \{0, 1, 2\}\}$$

But the following are not:

•
$$\mathcal{T}_1 = \{\emptyset, \{0\}\},\$$

• $\mathcal{T}_2 = \{\emptyset, \{0\}, \{1\}, \{0, 1, 2\}\},\$
• $\mathcal{T}_3 = \{\emptyset, \{0, 1\}, \{1, 2\}, \{0, 1, 2\}\},\$
Why ?

 \bullet^0 \bullet^1 ; \bullet^2

 $\{0,1\}=\{0\}\cup\{1\}$ is missing

4/15 (9/10)

Definition: A topological space is a pair (X, \mathcal{T}) where X is a set and \mathcal{T} is a collection of subsets of X such that:

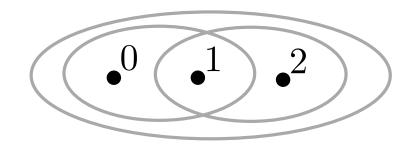
- $\emptyset \in \mathcal{T}$ and $X \in \mathcal{T}$,
- for every infinite collection $\{O_{\alpha}\}_{\alpha \in A} \subset \mathcal{T}$, we have $\bigcup O_{\alpha} \in \mathcal{T}$,
- for every finite collection $\{O_i\}_{1 \le i \le n} \subset \mathcal{T}$, we have $\bigcap_{1 \le i \le n} O_i \in \mathcal{T}$.

Example: Let $X = \{0, 1, 2\}$ be a set with three elements. The following is a topology on X:

$$\mathcal{T} = \{\emptyset, \{0\}, \{0, 1, 2\}\}$$

But the following are not:

• $\mathcal{T}_1 = \{\emptyset, \{0\}\},\$ • $\mathcal{T}_2 = \{\emptyset, \{0\}, \{1\}, \{0, 1, 2\}\},\$ • $\mathcal{T}_3 = \{\emptyset, \{0, 1\}, \{1, 2\}, \{0, 1, 2\}\},\$ Why ?



4/15 (10/10)

Definition: A topological space is a pair (X, \mathcal{T}) where X is a set and \mathcal{T} is a collection of subsets of X such that:

- $\emptyset \in \mathcal{T}$ and $X \in \mathcal{T}$,
- for every infinite collection $\{O_{\alpha}\}_{\alpha \in A} \subset \mathcal{T}$, we have $\bigcup O_{\alpha} \in \mathcal{T}$,
- for every finite collection $\{O_i\}_{1 \le i \le n} \subset \mathcal{T}$, we have $\bigcap_{1 \le i \le n} O_i \in \mathcal{T}$.

Example: Let $X = \{0, 1, 2\}$ be a set with three elements. The following is a topology on X:

$$\mathcal{T} = \{\emptyset, \{0\}, \{0, 1, 2\}\}$$

But the following are not:

•
$$\mathcal{T}_1 = \{\emptyset, \{0\}\},\$$

• $\mathcal{T}_2 = \{\emptyset, \{0\}, \{1\}, \{0, 1, 2\}\},\$
• $\mathcal{T}_3 = \{\emptyset, \{0, 1\}, \{1, 2\}, \{0, 1, 2\}\},\$
Why ?

 \bullet^0 \bullet^1 \bullet^2

 $\{1\} = \{0,1\} \cap \{1,2\}$ is missing

5/15 (1/4)

Let (X, \mathcal{T}) be a topological space. For every open set $O \in \mathcal{T}$, its complement $^{c}O = \{x \in X, x \notin O\}$ is called a closed set.

In other words, a set $A \subset X$ is closed iff ${}^{c}A$ is open.

Proposition: We have:

- the sets \emptyset and X are closed sets,
- for every infinite collection $\{P_{\alpha}\}_{\alpha \in A}$ of closed set, $\bigcap_{\alpha \in A} P_{\alpha}$ is a closed set,
- for every finite collection $\{P_i\}_{1 \le i \le n}$ of closed sets, $\bigcup_{1 \le i \le n} P_i$ is a closed set.

5/15 (2/4)

Let (X, \mathcal{T}) be a topological space. For every open set $O \in \mathcal{T}$, its complement $^{c}O = \{x \in X, x \notin O\}$ is called a closed set.

In other words, a set $A \subset X$ is closed iff ${}^{c}A$ is open.

Proposition: We have:

- the sets \emptyset and X are closed sets,
- for every infinite collection $\{P_{\alpha}\}_{\alpha \in A}$ of closed set, $\bigcap_{\alpha \in A} P_{\alpha}$ is a closed set,
- for every finite collection $\{P_i\}_{1 \le i \le n}$ of closed sets, $\bigcup_{1 \le i \le n} P_i$ is a closed set.

Proof of first point: The set \emptyset is closed because ${}^{c}\emptyset = X$ is open. The set X is closed because ${}^{c}X = \emptyset$ is open.

5/15 (3/4)

Let (X, \mathcal{T}) be a topological space. For every open set $O \in \mathcal{T}$, its complement $^{c}O = \{x \in X, x \notin O\}$ is called a closed set.

In other words, a set $A \subset X$ is closed iff ${}^{c}A$ is open.

Proposition: We have:

- the sets \emptyset and X are closed sets,
- for every infinite collection $\{P_{\alpha}\}_{\alpha \in A}$ of closed set, $\bigcap_{\alpha \in A} P_{\alpha}$ is a closed set,
- for every finite collection $\{P_i\}_{1 \le i \le n}$ of closed sets, $\bigcup_{1 \le i \le n} P_i$ is a closed set.

Proof of second point: If $\{P_{\alpha}\}_{\alpha \in A}$ is an infinite collection of closed set, then for every $\alpha \in A$, ${}^{c}P_{\alpha}$ is open. Now, we use the relation

$${}^{c}\left(\bigcap_{\alpha\in A}P_{\alpha}\right)=\bigcup_{\alpha\in A}{}^{c}P_{\alpha}.$$

This is a union of open sets, hence it is open. Hence $\bigcap_{\alpha \in A} P_{\alpha}$ is closed.

5/15 (4/4)

Let (X, \mathcal{T}) be a topological space. For every open set $O \in \mathcal{T}$, its complement $^{c}O = \{x \in X, x \notin O\}$ is called a closed set.

In other words, a set $A \subset X$ is closed iff ${}^{c}A$ is open.

Proposition: We have:

- the sets \emptyset and X are closed sets,
- for every infinite collection $\{P_{\alpha}\}_{\alpha \in A}$ of closed set, $\bigcap_{\alpha \in A} P_{\alpha}$ is a closed set,
- for every finite collection $\{P_i\}_{1 \le i \le n}$ of closed sets, $\bigcup_{1 \le i \le n} P_i$ is a closed set.

Proof of third point: If $\{P_i\}_{1 \le i \le n}$ is a finite collection of closed set, then for every $1 \le i \le n$, cP_i is open. Now, we use the relation

$$^{c}\left(\bigcup_{1\leq i\leq n}P_{i}\right)=\bigcap_{1\leq i\leq n}{}^{c}P_{i}.$$

This is a *finite* intersection of open sets, hence it is open. Hence $\bigcup_{1 \le i \le n} P_i$ is closed.

I - Topological spaces

II - Topology of \mathbb{R}^n

III - Topology of subsets of \mathbb{R}^n

VI - Continuous maps

7/15 (1/4)

We want to give \mathbb{R}^n a topology.

The Euclidean metric on \mathbb{R}^n is defined for all $x = (x_1, ..., x_n) \in \mathbb{R}^n$ as:

$$\|x\| = \sqrt{x_1^2 + \ldots + x_n^2}$$

Definition: Let $x \in \mathbb{R}^n$ and r > 0. The open ball of center x and radius r, denoted $\mathcal{B}(x, r)$, is defined as:

$$\mathcal{B}(x,r) = \{ y \in \mathbb{R}^n, \|x - y\| < r \}.$$

7/15 (2/4)

We want to give \mathbb{R}^n a topology.

The Euclidean metric on \mathbb{R}^n is defined for all $x = (x_1, ..., x_n) \in \mathbb{R}^n$ as:

$$\|x\| = \sqrt{x_1^2 + \ldots + x_n^2}$$

Definition: Let $x \in \mathbb{R}^n$ and r > 0. The open ball of center x and radius r, denoted $\mathcal{B}(x, r)$, is defined as:

$$\mathcal{B}(x,r) = \{ y \in \mathbb{R}^n, \|x - y\| < r \}.$$



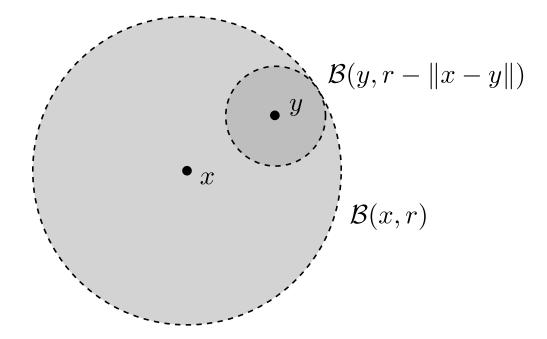
7/15 (3/4)

Definition: Let $x \in \mathbb{R}^n$ and r > 0. The open ball of center x and radius r, denoted $\mathcal{B}(x,r)$, is defined as:

$$\mathcal{B}(x,r) = \{ y \in \mathbb{R}^n, \|x - y\| < r \}.$$

Proposition: Let $x \in \mathbb{R}^n$, and r > 0. Let $y \in \mathcal{B}(x, r)$ We have

$$\mathcal{B}(y, r - ||x - y||) \subset \mathcal{B}(x, r).$$



7/15 (4/4)

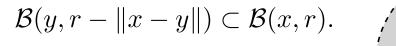
 $\mathcal{B}(y, r - \|x - y\|)$

 $\mathcal{B}(x,r)$

Definition: Let $x \in \mathbb{R}^n$ and r > 0. The open ball of center x and radius r, denoted $\mathcal{B}(x, r)$, is defined as:

$$\mathcal{B}(x,r) = \{ y \in \mathbb{R}^n, \|x - y\| < r \}.$$

Proposition: Let $x \in \mathbb{R}^n$, and r > 0. Let $y \in \mathcal{B}(x, r)$ We have



Proof: By definition,

 $\mathcal{B}(x,r) = \{ z \in \mathbb{R}^n, \|x - z\| < r \}$

$$\mathcal{B}(y, r - \|x - y\|) = \{z \in \mathbb{R}^n, \|y - z\| < r - \|x - y\|\}$$

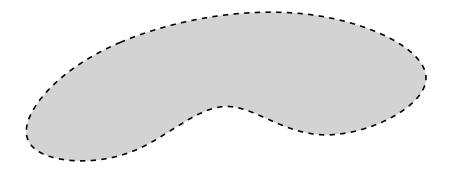
Let $z \in \mathcal{B}(y, r - ||x - y||)$. We have to show that ||x - z|| < r. But

$$\begin{aligned} \|x - z\| &\leq \|x - y\| + \|y - z\| & \text{(triangle inequality)} \\ &< \|x - y\| + (r - \|x - y\|) & \text{(definition of } z\text{)} \\ &= r \end{aligned}$$

Hence $z \in \mathcal{B}(x, r)$.

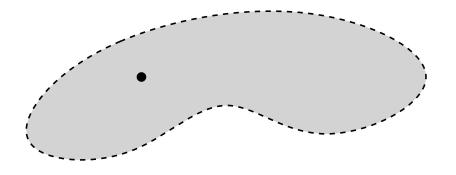
8/15 (1/13)

Definition: Let $A \subset \mathbb{R}^n$ be a subset. Let $x \in A$. We say that A is open around x if there exists $\epsilon > 0$ such that $\mathcal{B}(x,r) \subset A$. We say that A is open if for every $x \in A$, A is open around x.



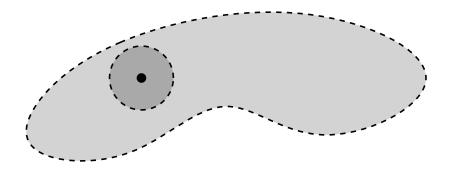
8/15 (2/13)

Definition: Let $A \subset \mathbb{R}^n$ be a subset. Let $x \in A$. We say that A is open around x if there exists $\epsilon > 0$ such that $\mathcal{B}(x,r) \subset A$. We say that A is open if for every $x \in A$, A is open around x.



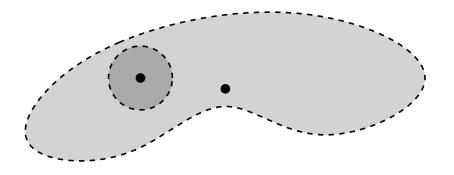
8/15 (3/13)

Definition: Let $A \subset \mathbb{R}^n$ be a subset. Let $x \in A$. We say that A is open around x if there exists $\epsilon > 0$ such that $\mathcal{B}(x,r) \subset A$. We say that A is open if for every $x \in A$, A is open around x.



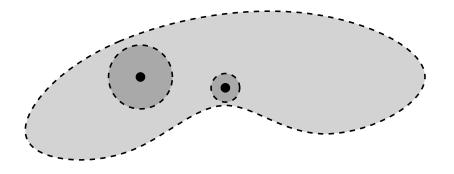
8/15 (4/13)

Definition: Let $A \subset \mathbb{R}^n$ be a subset. Let $x \in A$. We say that A is open around x if there exists $\epsilon > 0$ such that $\mathcal{B}(x,r) \subset A$. We say that A is open if for every $x \in A$, A is open around x.



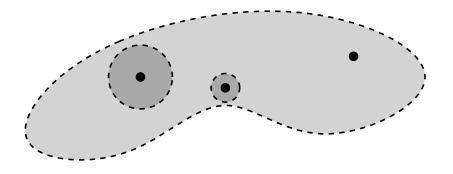
8/15 (5/13)

Definition: Let $A \subset \mathbb{R}^n$ be a subset. Let $x \in A$. We say that A is open around x if there exists $\epsilon > 0$ such that $\mathcal{B}(x,r) \subset A$. We say that A is open if for every $x \in A$, A is open around x.



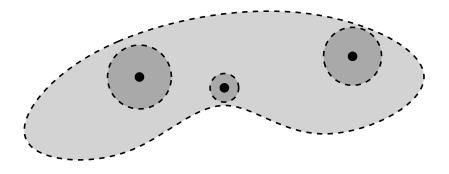
8/15 (6/13)

Definition: Let $A \subset \mathbb{R}^n$ be a subset. Let $x \in A$. We say that A is open around x if there exists $\epsilon > 0$ such that $\mathcal{B}(x,r) \subset A$. We say that A is open if for every $x \in A$, A is open around x.



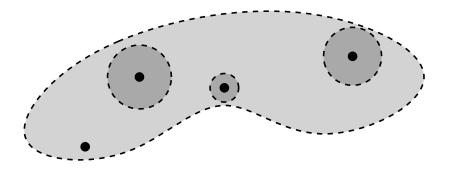
8/15 (7/13)

Definition: Let $A \subset \mathbb{R}^n$ be a subset. Let $x \in A$. We say that A is open around x if there exists $\epsilon > 0$ such that $\mathcal{B}(x,r) \subset A$. We say that A is open if for every $x \in A$, A is open around x.



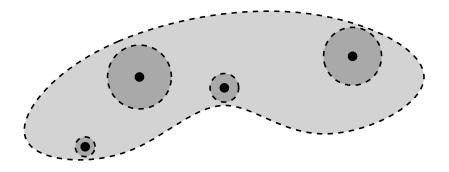
8/15 (8/13)

Definition: Let $A \subset \mathbb{R}^n$ be a subset. Let $x \in A$. We say that A is open around x if there exists $\epsilon > 0$ such that $\mathcal{B}(x,r) \subset A$. We say that A is open if for every $x \in A$, A is open around x.



8/15 (9/13)

Definition: Let $A \subset \mathbb{R}^n$ be a subset. Let $x \in A$. We say that A is open around x if there exists $\epsilon > 0$ such that $\mathcal{B}(x,r) \subset A$. We say that A is open if for every $x \in A$, A is open around x.



Definition: Let $A \subset \mathbb{R}^n$ be a subset. Let $x \in A$. We say that A is open around x if there exists $\epsilon > 0$ such that $\mathcal{B}(x,r) \subset A$. We say that A is open if for every $x \in A$, A is open around x.

We denote the set of such open sets by $\mathcal{T}_{\mathbb{R}^n}$, the Euclidean topology on \mathbb{R}^n .

Proposition: $\mathcal{T}_{\mathbb{R}^n}$ is a topology on \mathbb{R}^n .

Proof:

We have to check the three axioms of a topological space.

Definition: Let $A \subset \mathbb{R}^n$ be a subset. Let $x \in A$. We say that A is open around x if there exists $\epsilon > 0$ such that $\mathcal{B}(x,r) \subset A$. We say that A is open if for every $x \in A$, A is open around x.

We denote the set of such open sets by $\mathcal{T}_{\mathbb{R}^n}$, the Euclidean topology on \mathbb{R}^n .

Proposition: $\mathcal{T}_{\mathbb{R}^n}$ is a topology on \mathbb{R}^n .

Proof:

We have to check the three axioms of a topological space.

First axiom (the empty set and the set X are open sets).

The set \emptyset is clearly open according to the definition of $\mathcal{T}_{\mathbb{R}^n}$ (indeed, \emptyset contains no point.)

The set \mathbb{R}^n also is open: for every $x \in \mathbb{R}^n$, the ball $\mathcal{B}(x,1)$ is a subset of \mathbb{R}^n .

Definition: Let $A \subset \mathbb{R}^n$ be a subset. Let $x \in A$. We say that A is open around x if there exists $\epsilon > 0$ such that $\mathcal{B}(x,r) \subset A$. We say that A is open if for every $x \in A$, A is open around x.

We denote the set of such open sets by $\mathcal{T}_{\mathbb{R}^n}$, the Euclidean topology on \mathbb{R}^n .

Proposition: $\mathcal{T}_{\mathbb{R}^n}$ is a topology on \mathbb{R}^n .

Proof:

Second axiom (an infinite union of open sets is an open set).

Let $\{O_{\alpha}\}_{\alpha \in A} \subset \mathcal{T}_{\mathbb{R}^n}$ be a infinite collection of open sets, and define

$$O = \bigcup_{\alpha \in A} O_{\alpha}.$$

Let $x \in O$. There exists an $\alpha \in A$ such that $x \in O_{\alpha}$. Since O_{α} is open, it is open around x, i.e. there exists r > 0 such that $\mathcal{B}(x,r) \subset O_{\alpha}$. We deduce that $\mathcal{B}(x,r) \subset O$, and that O is open around x. Since this it true for any $x \in O$, we have proven that O is open.

Definition: Let $A \subset \mathbb{R}^n$ be a subset. Let $x \in A$. We say that A is open around x if there exists $\epsilon > 0$ such that $\mathcal{B}(x,r) \subset A$. We say that A is open if for every $x \in A$, A is open around x.

We denote the set of such open sets by $\mathcal{T}_{\mathbb{R}^n}$, the Euclidean topology on \mathbb{R}^n .

Proposition: $\mathcal{T}_{\mathbb{R}^n}$ is a topology on \mathbb{R}^n .

Proof:

Third axiom (a finite intersection of open sets is an open set). Consider a finite collection $\{O_i\}_{1 \le i \le n} \subset \mathcal{T}_{\mathbb{R}^n}$, and define

$$O = \bigcap_{1 \le i \le n} O_i.$$

Let $x \in O$. For every $i \in [\![1, n]\!]$, we have $x \in O_i$. Since O_i is open, it is open around x, i.e. there exists $r_i > 0$ such that $\mathcal{B}(x, r_i) \subset O_i$. Define $r_{\min} = \min\{r_1, ..., r_n\}$. For every $i \in [\![1, n]\!]$, we have $\mathcal{B}(x, r_{\min}) \subset O_i$. We deduce that $\mathcal{B}(x, r_{\min}) \subset O$, and that O is open around x.

Since this is true for any $x \in O$, we have proven that O is open.

9/15 (1/6)

Proposition: In $(\mathbb{R}^n, \mathcal{T}_{\mathbb{R}^n})$, the open balls $\mathcal{B}(x, r)$ are open sets.

In particular, in $(\mathbb{R}, \mathcal{T}_{\mathbb{R}})$, the open intervals (a, b) are open sets.

Exercise:

Consider $X = \mathbb{R}$ endowed with the Euclidean topology. Are the following sets open? Are they closed?

- [0,1],
- [0,1),
- $(-\infty, 1)$,
- the singletons $\{x\}$, $x \in \mathbb{R}$,
- the rationnals \mathbb{Q} .

9/15 (2/6)

Proposition: In $(\mathbb{R}^n, \mathcal{T}_{\mathbb{R}^n})$, the open balls $\mathcal{B}(x, r)$ are open sets.

In particular, in $(\mathbb{R}, \mathcal{T}_{\mathbb{R}})$, the open intervals (a, b) are open sets.

Exercise:

Consider $X = \mathbb{R}$ endowed with the Euclidean topology. Are the following sets open? Are they closed?

- [0,1],
- [0, 1),
- $(-\infty, 1)$,
- the singletons $\{x\}$, $x \in \mathbb{R}$,
- the rationnals \mathbb{Q} .

Not open:

with x = 0, there exist no r > 0 such that $\mathcal{B}(x, r) = (x - r, x + r) \subset [0, 1]$

Closed:

its complement is $^c[0,1]=(-\infty,0)\cup(1,+\infty).$ It is the union of two open sets.

9/15 (3/6)

Proposition: In $(\mathbb{R}^n, \mathcal{T}_{\mathbb{R}^n})$, the open balls $\mathcal{B}(x, r)$ are open sets.

In particular, in $(\mathbb{R}, \mathcal{T}_{\mathbb{R}})$, the open intervals (a, b) are open sets.

Exercise:

Consider $X = \mathbb{R}$ endowed with the Euclidean topology. Are the following sets open? Are they closed?

- [0, 1],
- [0, 1),
- $(-\infty, 1)$,
- the singletons $\{x\}$, $x \in \mathbb{R}$,
- the rationnals \mathbb{Q} .

Not open: with m = 0 there exist no m > 0 such that k

with x = 0, there exist no r > 0 such that $\mathcal{B}(x, r) = (x - r, x + r) \subset [0, 1]$

Not closed: its complement is ${}^c[0,1]=(-\infty,0)\cup[1,+\infty).$ This set is not open around 1.

9/15 (4/6)

Proposition: In $(\mathbb{R}^n, \mathcal{T}_{\mathbb{R}^n})$, the open balls $\mathcal{B}(x, r)$ are open sets.

In particular, in $(\mathbb{R}, \mathcal{T}_{\mathbb{R}})$, the open intervals (a, b) are open sets.

Exercise:

Consider $X = \mathbb{R}$ endowed with the Euclidean topology. Are the following sets open? Are they closed?

- [0, 1],
- [0, 1),
- $(-\infty, 1)$, • the singletons $\{x\}$, $x \in \mathbb{R}$,
- the rationnals \mathbb{Q} .

Open: It is an interval

Not closed: its complement is $c(-\infty, 1) = [1, +\infty)$. This set is not open around 1.

Euclidean topology - case of $\mathbb R$

9/15 (5/6)

Proposition: In $(\mathbb{R}^n, \mathcal{T}_{\mathbb{R}^n})$, the open balls $\mathcal{B}(x, r)$ are open sets.

In particular, in $(\mathbb{R}, \mathcal{T}_{\mathbb{R}})$, the open intervals (a, b) are open sets.

Exercise:

Consider $X = \mathbb{R}$ endowed with the Euclidean topology. Are the following sets open? Are they closed?

- [0,1],
- [0, 1),
- $(-\infty,1)$
- the singletons $\{x\}$, $x \in \mathbb{R}$, the rationnals \mathbb{Q} .

Not open: It is not open around x.

Closed: its complement is ${}^{c}{x} = (-\infty, x) \cup (x, +\infty).$ It is a union of two open sets (intervals).

9/15 (6/6)

Proposition: In $(\mathbb{R}^n, \mathcal{T}_{\mathbb{R}^n})$, the open balls $\mathcal{B}(x, r)$ are open sets.

In particular, in $(\mathbb{R}, \mathcal{T}_{\mathbb{R}})$, the open intervals (a, b) are open sets.

Exercise:

Consider $X = \mathbb{R}$ endowed with the Euclidean topology. Are the following sets open? Are they closed?

- [0,1],
- [0,1),
- $(-\infty, 1)$,
- the singletons $\{x\}$, $x \in \mathbb{R}$,
- the rationnals \mathbb{Q} .

Not open

Not closed

I - Topological spaces

II - Topology of \mathbb{R}^n

III - Topology of subsets of \mathbb{R}^n

VI - Continuous maps

11/15 (1/5)

Definition: Let (X, \mathcal{T}) be a topological space, and $Y \subset X$ a subset. We define the subspace topology on Y as the following set:

 $\mathcal{T}_{|Y} = \{ O \cap Y, O \in \mathcal{T} \}.$

11/15 (2/5)

Definition: Let (X, \mathcal{T}) be a topological space, and $Y \subset X$ a subset. We define the subspace topology on Y as the following set:

 $\mathcal{T}_{|Y} = \{ O \cap Y, O \in \mathcal{T} \}.$

Proposition: The set $\mathcal{T}_{|Y}$ is a topology on Y.

Proof: We have to check the three axioms of a topological space.

First axiom (the empty set and the set X are open sets).

The set \emptyset is clearly open for $\mathcal{T}_{|Y}$ because it can be written $\emptyset \cap Y$. The set Y also is open for $\mathcal{T}_{|Y}$ because it can be written $X \cap Y$, and X is open for \mathcal{T} .

11/15 (3/5)

Definition: Let (X, \mathcal{T}) be a topological space, and $Y \subset X$ a subset. We define the subspace topology on Y as the following set:

$$\mathcal{T}_{|Y} = \{ O \cap Y, O \in \mathcal{T} \}.$$

Proposition: The set $\mathcal{T}_{|Y}$ is a topology on Y.

Proof: We have to check the three axioms of a topological space. Second axiom (an infinite union of open sets is an open set). Let $\{O_{\alpha}\}_{\alpha \in A} \subset \mathcal{T}_{|Y}$ be a infinite collection of open sets, and define $O = \bigcup_{\alpha \in A} O_{\alpha}$. By definition of $\mathcal{T}_{|Y}$, for every $\alpha \in A$, there exists O'_{α} such that $O_{\alpha} = O'_{\alpha} \cap Y$. Define $O' = \bigcup_{\alpha \in A} O'_{\alpha}$. It is an open set for \mathcal{T} . We have

$$O = \bigcup_{\alpha \in A} O_{\alpha} = \bigcup_{\alpha \in A} O'_{\alpha} \cap Y = \left(\bigcup_{\alpha \in A} O'_{\alpha}\right) \cap Y = O' \cap Y.$$

Hence $O \in \mathcal{T}_{|Y}$.

11/15 (4/5)

Definition: Let (X, \mathcal{T}) be a topological space, and $Y \subset X$ a subset. We define the subspace topology on Y as the following set:

$$\mathcal{T}_{|Y} = \{ O \cap Y, O \in \mathcal{T} \}.$$

Proposition: The set $\mathcal{T}_{|Y}$ is a topology on Y.

Proof: We have to check the three axioms of a topological space. <u>Third axiom (a finite intersection of open sets is an open set)</u>. Consider a finite collection $\{O_i\}_{1 \le i \le n} \subset \mathcal{T}_{\mathbb{R}^n}$, and define $O = \bigcap_{1 \le i \le n} O_i$. Just as before, for every $i \in [\![1, n]\!]$, there exists O'_i such that $O_i = O'_i \cap Y$. Define $O' = \bigcup_{1 \le i \le n} O'_i$. It is an open set for \mathcal{T} . We have

$$O = \bigcap_{1 \le i \le n} O_{\alpha} = \bigcap_{1 \le i \le n} O_{\alpha}' \cap Y = \left(\bigcap_{1 \le i \le n} O_{\alpha}'\right) \cap Y = O' \cap Y.$$

Hence $O \in \mathcal{T}_{|Y}$.

11/15 (5/5)

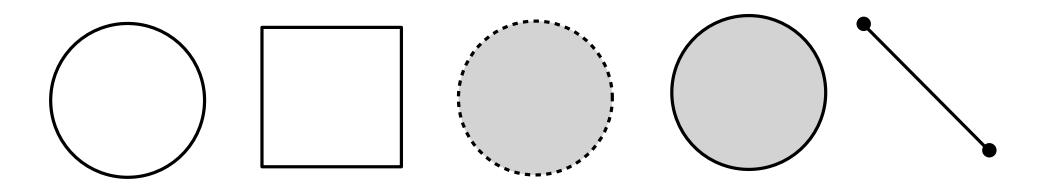
Definition: Let (X, \mathcal{T}) be a topological space, and $Y \subset X$ a subset. We define the subspace topology on Y as the following set:

 $\mathcal{T}_{|Y} = \{ O \cap Y, O \in \mathcal{T} \}.$

Among the subsets of \mathbb{R}^n that we will consider, let us list:

- the unit sphere $\mathbb{S}_{n-1} = \{x \in \mathbb{R}^n, \|x\| = 1\}$
- the unit cube $C_{n-1} = \{x = (x_1, ..., x_n) \in \mathbb{R}^n, \max(|x_1|, ..., |x_n|) = 1\}$
- the open balls $\mathcal{B}(x,r) = \{y \in \mathbb{R}^n, \|x y\| < r\}$
- the closed balls $\overline{\mathcal{B}}(x,r) = \{y \in \mathbb{R}^n, \|x-y\| \le r\}$
- the standard simplex

 $\Delta_{n-1} = \{ x = (x_1, ..., x_n) \in \mathbb{R}^n, x_1, ..., x_n \ge 0 \text{ and } x_1 + ... + x_n = 1 \}$



I - Topological spaces

II - Topology of \mathbb{R}^n

III - Topology of subsets of \mathbb{R}^n

VI - Continuous maps

13/15 (1/4)

The topologist's point of view allows to define the notion of continuity in great generality.

Let us consider two topological spaces (X, \mathcal{T}) and (Y, \mathcal{U}) .

Definition: Let $f: X \to Y$ be a map. We say that f is *continuous* if for every $O \in \mathcal{U}$, the preimage $f^{-1}(O) = \{x \in X, f(x) \in O\}$ is in \mathcal{T} .

In other words, a map is continuous if the preimage of any open set is an open set.

13/15 (2/4)

The topologist's point of view allows to define the notion of continuity in great generality.

Let us consider two topological spaces (X, \mathcal{T}) and (Y, \mathcal{U}) .

Definition: Let $f: X \to Y$ be a map. We say that f is *continuous* if for every $O \in \mathcal{U}$, the preimage $f^{-1}(O) = \{x \in X, f(x) \in O\}$ is in \mathcal{T} .

In other words, a map is continuous if the preimage of any open set is an open set.

Proposition: A map is continuous if and only if the preimage of closed sets are closed sets.

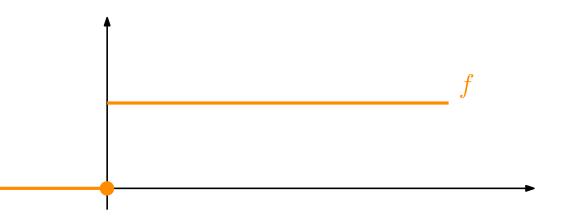
Definition: Let $f: X \to Y$ be a map. We say that f is *continuous* if for every $O \in \mathcal{U}$, the preimage $f^{-1}(O) = \{x \in X, f(x) \in O\}$ is in \mathcal{T} .

Proposition: A map is continuous if and only if the preimage of closed sets are closed sets.

Example: Let $X = Y = \mathbb{R}$, endowed with the Euclidean topology.

Let $f \colon \mathbb{R} \to \mathbb{R}$ be defined as f(x) = 0 for all $x \leq 0$, and f(x) = 1 for all x > 0.

The set $\{0\}$ is closed, but $f^{-1}(\{0\}) = (-\infty, 0)$ is not. Hence f is not continuous.



13/15 (3/4)

Definition: Let $f: X \to Y$ be a map. We say that f is *continuous* if for every $O \in \mathcal{U}$, the preimage $f^{-1}(O) = \{x \in X, f(x) \in O\}$ is in \mathcal{T} .

13/15 (4/4)

Proposition: Let (X, \mathcal{T}) , (Y, \mathcal{U}) and (Z, \mathcal{V}) be three topological spaces, and $f: X \to Y$, $g: Y \to Z$ two continuous maps. The composition $g \circ f$, defined as

$$g \circ f \colon X \longrightarrow Z$$
$$x \longmapsto g(f(x))$$

is a continuous map.

Proof: Let $O \in \mathcal{V}$ be an open set of Z. We have to show that $(g \circ f)^{-1}(O)$ is in \mathcal{T} . First, note that $(g \circ f)^{-1}(O) = f^{-1}(g^{-1}(O))$.

Since g is continuous, the set $g^{-1}(O)$ is in \mathcal{U} , i.e., it is an open set of Y.

But since f is continuous, its preimage $f^{-1}(g^{-1}(O))$ also is an open set (of X).

Since this is true for any open set $O \in \mathcal{V}$, we deduce that $g \circ f$ is continuous.

Link with ϵ - δ calculus

We now investigate what continuity means between the Euclidean spaces \mathbb{R}^n .

Consider a continuous map $f \colon \mathbb{R}^n \to \mathbb{R}^m$. Let $\epsilon > 0$ and $x \in \mathbb{R}^n$.

We have seen that the open ball $\mathcal{B}(f(x), \epsilon)$ is an open set of \mathbb{R}^m . By continuity of f, the preimage $f^{-1}(\mathcal{B}(f(x), \epsilon))$ is an open set.

Note that x belongs to $f^{-1}(\mathcal{B}(f(x), \epsilon))$. By definition of the Euclidean topology, we have that:

 $f^{-1}(\mathcal{B}(f(x),\epsilon))$ is open around x.

Link with ϵ - δ calculus

We now investigate what continuity means between the Euclidean spaces \mathbb{R}^n .

Consider a continuous map $f \colon \mathbb{R}^n \to \mathbb{R}^m$. Let $\epsilon > 0$ and $x \in \mathbb{R}^n$.

We have seen that the open ball $\mathcal{B}(f(x), \epsilon)$ is an open set of \mathbb{R}^m . By continuity of f, the preimage $f^{-1}(\mathcal{B}(f(x), \epsilon))$ is an open set.

Note that x belongs to $f^{-1}(\mathcal{B}(f(x),\epsilon))$. By definition of the Euclidean topology, we have that:

 $f^{-1}(\mathcal{B}(f(x),\epsilon))$ is open around x.

In other words, there exists a $\eta > 0$ such that

 $\mathcal{B}(x,\eta) \subset f^{-1}(\mathcal{B}(f(x),\epsilon)).$

Link with $\epsilon\text{-}\delta$ calculus

We now investigate what continuity means between the Euclidean spaces \mathbb{R}^n .

Consider a continuous map $f \colon \mathbb{R}^n \to \mathbb{R}^m$. Let $\epsilon > 0$ and $x \in \mathbb{R}^n$.

We have seen that the open ball $\mathcal{B}(f(x), \epsilon)$ is an open set of \mathbb{R}^m . By continuity of f, the preimage $f^{-1}(\mathcal{B}(f(x), \epsilon))$ is an open set.

Note that x belongs to $f^{-1}(\mathcal{B}(f(x),\epsilon))$. By definition of the Euclidean topology, we have that:

 $f^{-1}(\mathcal{B}(f(x),\epsilon))$ is open around x.

In other words, there exists a $\eta>0$ such that

 $\mathcal{B}(x,\eta) \subset f^{-1}(\mathcal{B}(f(x),\epsilon)).$

In other words,

$$\forall y \in \mathcal{B}(x,\eta), f(y) \in \mathcal{B}(f(x),\epsilon).$$

Link with $\epsilon\text{-}\delta$ calculus

We now investigate what continuity means between the Euclidean spaces \mathbb{R}^n .

Consider a continuous map $f \colon \mathbb{R}^n \to \mathbb{R}^m$. Let $\epsilon > 0$ and $x \in \mathbb{R}^n$.

We have seen that the open ball $\mathcal{B}(f(x), \epsilon)$ is an open set of \mathbb{R}^m . By continuity of f, the preimage $f^{-1}(\mathcal{B}(f(x), \epsilon))$ is an open set.

Note that x belongs to $f^{-1}(\mathcal{B}(f(x),\epsilon))$. By definition of the Euclidean topology, we have that:

 $f^{-1}(\mathcal{B}(f(x),\epsilon))$ is open around x.

In other words, there exists a $\eta>0$ such that

$$\mathcal{B}(x,\eta) \subset f^{-1}(\mathcal{B}(f(x),\epsilon)).$$

In other words,

$$\forall y \in \mathcal{B}(x,\eta), f(y) \in \mathcal{B}(f(x),\epsilon).$$

We deduce that, for all $y \in \mathbb{R}^n$,

$$||x - y|| < \eta \implies ||f(x) - f(y)|| < \epsilon.$$

We recognize the usual definition of continuity.

Link with $\epsilon\text{-}\delta$ calculus

14/15 (5/5)

Proposition: A map $f: \mathbb{R}^n \to \mathbb{R}^m$ is continuous if and only if, for every $x \in \mathbb{R}^n$ and $\epsilon > 0$, there exists $\eta > 0$ such that for all $y \in \mathbb{R}^n$,

$$||x - y|| < \eta \implies ||f(x) - f(y)|| < \epsilon.$$

As a consequence, what you already know about continuity still applies here.

Conclusion

We have generalized the notion of continuity (from ϵ - δ calculus) to topological spaces.

This will allow us to define more general concepts (connectedness, triangulations, topological functoriality, ...)

Homework for tomorrow: Exercise 4 and 5 Facultative exercises: Exercise 2 and 7

Conclusion

We have generalized the notion of continuity (from ϵ - δ calculus) to topological spaces.

This will allow us to define more general concepts (connectedness, triangulations, topological functoriality, ...)

Homework for tomorrow: Exercise 4 and 5 Facultative exercises: Exercise 2 and 7

Thank you!