Homework

Tiago da Silva

January 2021

Exercise 8. We want to show that $B(0,1) \subset \mathbb{R}^{n}$ and \mathbb{R}^{n} are homeomorphic. For this, we will show that

$$
\begin{aligned}
& f: \mathbb{R}^{n} \rightarrow B(0,1) \\
& x \mapsto \frac{\|x\|}{(\|x\|+1)^{2}} x
\end{aligned}
$$

is a homeomorphism between the two spaces. Initially, we will prove that, for each $a \in B(0,1)$, there is exactly one $b \in \mathbb{R}^{n}$ such that $f(b)=a$, and thus conclude that f is indeed a bijection (it is injective, since, by its definition, $f(x)=f(y) \Longleftrightarrow x=y$). Then, we will find f^{-1} and show that it is continuous (the function itself is continuous, as we can see by its definition). So, we want to solve $a=\frac{\|b\| b}{\| \| b \|+1)^{2}}$ for b; some algebraic manipulations show that $b=\frac{a}{\sqrt{\|a\|}(1-\sqrt{\|a\|})}$ (since $\|a\|=\left(\frac{\|b\|}{1+\|b\|}\right)^{2}<1$, the denominator is positive). Therefore, for each $a \in B(0,1)$, there is a (unique) $b \in \mathbb{R}^{n}$ such that $f(b)=a$; thus, f is a bijection. Moreover, we found that

$$
f^{-1}(x)=\frac{x}{\sqrt{\|x\|}(1-\sqrt{\|x\|})},
$$

a continuous function in $B(0,1)$. Since f is a continuous bijection with continuous inverse, it is a homeomorphism; this proves that $B(0,1)$ and \mathbb{R}^{n} are homeomorphic.

Exercise 11. We want to show that $[0,1)$ and $(0,1)$ are not homeomorphic. For contradiction, suppose that there is a homeomorphism $f:[0,1) \rightarrow(0,1)$. Let, then,

$$
g:(0,1) \rightarrow(0,1) \backslash f(0) .
$$

Since $g=\left.f\right|_{(0,1)}, g$ is a homeomorphism. However, $(0,1)$ has one connected component, and $(0,1) \backslash f(0)$ has two (since $(0,1) \backslash f(0)=(0, f(0)) \cup(f(0), 1)$ is the union of two disjoint connected open sets); absurd, because homeomorphic sets have the same number of connected components. Therefore, $[0,1)$ and $(0,1)$ aren't homeomorphic.

