Homework 1 Topological Data Analysis with Persistent Homology

Lucas Emanuel Resck Domingues Professor: Raphaël Tinarrage

Escola de Matemática Aplicada Fundação Getulio Vargas

January 26, 2021

Exercise 4. Consider a point $z \in \mathcal{B}\left(\frac{x+y}{2}, \frac{r}{2}\right)$, that is, $\left\|z - \frac{x+y}{2}\right\| < \frac{r}{2}$. We know that $\left\|x - \frac{x+y}{2}\right\| = \left\|\frac{x-y}{2}\right\| = \frac{r}{2}$. This way, we see that

$$\|z - x\| = \left\|z - \frac{x + y}{2} + \frac{x + y}{2} - x\right\|$$

$$\leq \left\|z - \frac{x + y}{2}\right\| + \left\|\frac{x + y}{2} - x\right\|$$

$$< \frac{r}{2} + \frac{r}{2}$$

$$= r$$

Therefore, $z \in \mathcal{B}(x, r)$.

Similarly, we can show that $z \in \mathcal{B}(y,r)$. So we conclude that $z \in \mathcal{B}(x,r) \cap \mathcal{B}(y,r)$, which means $\mathcal{B}\left(\frac{x+y}{2},\frac{r}{2}\right) \subset \mathcal{B}(x,r) \cap \mathcal{B}(y,r)$.

Exercise 5. Consider an open ball $\mathcal{B}(x, r)$ of \mathbb{R}^n . Take an arbitrary point inside it, let's call it y. So ||x - y|| < r.

Now, consider the open ball $\mathcal{B}(y,d)$, with d = r - ||x-y||. Because ||x-y|| < r, we have d > 0. If we take a point z inside this open ball, we will have ||y-z|| < d = r - ||x-y||. Well, it's the same of ||y-z|| + ||x-y|| < r, that is, by triangle inequality, ||x-z|| < r. We can say that $z \in \mathcal{B}(x,r)$ and $\mathcal{B}(y,d) \subset \mathcal{B}(x,r)$.

We can conclude that, for any point y of the open ball $\mathcal{B}(x,r)$, there is another open ball $\mathcal{B}(y,d)$ that contains y but also $\mathcal{B}(y,d) \subset \mathcal{B}(x,r)$, that is, $\mathcal{B}(x,r)$ is open.