Homework 1
Topological Data Analysis with Persistent Homology
Lucas Emanuel Resck Domingues
Professor: Raphaël Tinarrage
Escola de Matemática Aplicada
Fundação Getulio Vargas

January 26, 2021

Exercise 4. Consider a point $z \in \mathcal{B}\left(\frac{x+y}{2}, \frac{r}{2}\right)$, that is, $\left\|z-\frac{x+y}{2}\right\|<\frac{r}{2}$. We know that $\left\|x-\frac{x+y}{2}\right\|=\left\|\frac{x-y}{2}\right\|=\frac{r}{2}$. This way, we see that

$$
\begin{aligned}
\|z-x\| & =\left\|z-\frac{x+y}{2}+\frac{x+y}{2}-x\right\| \\
& \leq\left\|z-\frac{x+y}{2}\right\|+\left\|\frac{x+y}{2}-x\right\| \\
& <\frac{r}{2}+\frac{r}{2} \\
& =r
\end{aligned}
$$

Therefore, $z \in \mathcal{B}(x, r)$.
Similarly, we can show that $z \in \mathcal{B}(y, r)$. So we conclude that $z \in \mathcal{B}(x, r) \cap$ $\mathcal{B}(y, r)$, which means $\mathcal{B}\left(\frac{x+y}{2}, \frac{r}{2}\right) \subset \mathcal{B}(x, r) \cap \mathcal{B}(y, r)$.

Exercise 5. Consider an open ball $\mathcal{B}(x, r)$ of \mathbb{R}^{n}. Take an arbitrary point inside it, let's call it y. So $\|x-y\|<r$.

Now, consider the open ball $\mathcal{B}(y, d)$, with $d=r-\|x-y\|$. Because $\|x-y\|<r$, we have $d>0$. If we take a point z inside this open ball, we will have $\|y-z\|<$ $d=r-\|x-y\|$. Well, it's the same of $\|y-z\|+\|x-y\|<r$, that is, by triangle inequality, $\|x-z\|<r$. We can say that $z \in \mathcal{B}(x, r)$ and $\mathcal{B}(y, d) \subset \mathcal{B}(x, r)$.

We can conclude that, for any point y of the open ball $\mathcal{B}(x, r)$, there is another open ball $\mathcal{B}(y, d)$ that contains y but also $\mathcal{B}(y, d) \subset \mathcal{B}(x, r)$, that is, $\mathcal{B}(x, r)$ is open.

